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Neurodegenerative diseases have reached alarming numbers in the past decade.

Unfortunately, clinical trials testing potential therapeutics have proven futile. In

the absence of disease-modifying therapies, physical activity has emerged as

the single most accessible lifestyle modification with the potential to fight o�

cognitive decline and neurodegeneration. In this review, we discuss findings

from epidemiological, clinical, and molecular studies investigating the potential of

lifestyle modifications in promoting brain health. We propose an evidence-based

multidomain approach that includes physical activity, diet, cognitive training, and

sleep hygiene to treat and prevent neurodegenerative diseases.
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Introduction

The World Health Organization (WHO) declared neurological disorders as the leading

cause of disability and the second leading cause of death worldwide in 2022 (https://

www.who.int/). The number of deaths from all neurological disorders combined was

estimated to be 9 million in 2016, representing an increase of 39% between 1990 and

2016 according to the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD)

(GBDNeurologyCollaborators, 2019). The rising prevalence of major disabling neurological

disorders has been accompanied by increased demand for treatment and medical costs

estimated to be nearly $300 billion (GBDNeurologyCollaborators, 2019), exacerbatedmainly

due to the COVID-19 pandemic (Alzheimer’s Association, 2022).

A key shared feature among neurodegenerative diseases is their progressive and

incurable nature. Prescribed drugs for neurodegenerative diseases provide symptomatic

treatment, but disease-modifying therapeutics are lacking. Moreover, many potential

pharmacological therapies have been proven futile in clinical trials. Neurodegenerative

diseases, namely Alzheimer’s (AD), Parkinson’s (PD), Huntington’s disease (HD),

amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and multiple sclerosis

(MS), are debilitating and chronic diseases affecting older adults and represent a significant

threat to human health (GBDNeurologyCollaborators, 2019; Yang et al., 2020).

The etiology of neurodegenerative diseases is highly complex; genetic, environmental

factors, and comorbidities influence disease pathogenesis and treatments. It has

become evident that a single drug is unlikely to confer neuroprotection. Despite

numerous research studies investigating potential biomarkers, the lack of robust

diagnostic and prognostic biomarkers for identifying early-stage patients is

among the most significant hurdles in clinical trials. In the absence of effective

therapeutics, research into lifestyle modifications, including physical activity
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and diet, for example, has sparked interest among scientists

and clinicians.

WHO defines physical activity as any bodily movement of

skeletal muscles resulting in energy expenditure (https://www.

who.int/news-room/fact-sheets/detail/physical-activity). Physical

activity thus encompasses all actions during leisure time and

planned exercise in various forms and modalities ranging from

low, moderate, to vigorous intensities. In other words, physical

activitiesmay include walking, running, and cycling, for example, at

any given intensity and frequency. The terms physical activity and

exercise are used interchangeably, but some noteworthy differences

exist. Physical activity is an umbrella term that covers a wide

range of activities conducted in a relatively unstructured manner

but includes specific, planned, and structured forms of activities

collectively known as physical exercise (Herold et al., 2019).

It is well-documented that regular physical activity confers

numerous beneficial effects across multiple domains, including the

cardiovascular, immune, digestive, and central nervous systems

(Ruegsegger and Booth, 2018; Figure 1). In the context of

brain health, physical activity has been shown to reduce stress,

anxiety, and depression and counteract the effects of aging by

improving memory and cognitive abilities (Alanko et al., 2022;

Ross et al., 2023). Nevertheless, the specific molecular determinants

and neuroprotective mechanisms afforded by physical activity

still need to be fully characterized. Here, we discuss the

studies exploring the effects of physical activity on brain health

from several lines of evidence, including but not limited to

epidemiological, animal, molecular, and bioinformatic analyses.

We provide evidence supporting a multidimensional approach

involving physical activity, diet, cognitive training, and sleep for

preventing and treating neurodegenerative diseases.

Physical activity and exercise in
Alzheimer’s disease dementia

Alzheimer’s disease (AD) is a degenerative brain disease and the

most common cause of dementia (Arvanitakis et al., 2019). The

terms “Alzheimer’s disease,” “Alzheimer’s disease dementia,” and

“dementia” are frequently used interchangeably; however, dementia

is not a single disease but rather an umbrella term that covers the

characteristic symptoms, which include difficulties with memory,

language, problem-solving skills, and other executive functions

(Arvanitakis et al., 2019). Misfolded extracellular amyloid β

aggregates and intraneuronal neurofibrillary tangles are key disease

features (Knopman et al., 2021). According to the Alzheimer’s

Disease Association, the number of people aged 65 and older with

AD dementia is currently 6.5 million and it is expected to reach 13.8

million by 2060, and roughly 10–15% of people with mild cognitive

impairment will develop overt dementia each year (Alzheimer’s

Association, 2022).

As of January 2022, 143 potential drugs were tested in 172

clinical trials for AD (Cummings et al., 2022). However, these

medications would only help manage symptoms in people with

mild andmoderate AD. Numerous clinical trials in AD have proven

futile, and many are still ongoing. A recent phase 3 double-blind

clinical trial showed moderate clinical benefits of lecanemab, a

humanized monoclonal antibody that binds to Aβ soluble fibrils,

in early-stage AD (van Dyck et al., 2023). Patients receiving

lecanemab displayed a greater reduction in amyloid burden and less

cognitive decline than placebo. Notably, adverse events, including

infusion reactions and edema, were reported in 26.4% and 12% of

participants, respectively. Although promising, extended trials are

warranted to evaluate the safety and efficacy of lecanemab in AD.

Given the absence of a modifying treatment for AD,

investigations on lifestyle factors, including diet, physical activity,

and exercise, have become an appealing alternative for therapeutic

development. Different levels of physical activity have been

suggested to slow and prevent cognitive decline and progression to

dementia. Growing evidence from epidemiological studies suggests

that different modalities of physical activity, including light

and moderate exercise, can slow cognitive decline and improve

behavioral problems in mild cognitive impairment (MCI) and AD

patients (Buchman et al., 2012; Table 1). Interestingly, even light

physical activity like walking is protective against cognitive decline

in older adults (Stubbs et al., 2017). Supporting these findings, a

meta-analysis of 15 prospective studies determined that all physical

activity levels were protective against cognitive decline in non-

demented adults (Sofi et al., 2011). These results are supported by

recent studies that have reported the benefits of physical activity

against cognitive decline and dementia in several populations. For

instance, a prospective cohort in Japan found that a higher level

of moderate to vigorous physical activity was associated with a

decreased risk of dementia in men (Ihira et al., 2022). Similarly,

an increase in physical activity, including light-intensity physical

activity, was associated with a reduction in the risk of dementia in

Korea (Yoon et al., 2021). In addition, a prospective cohort study

in the United Kingdom suggested that a dose of just under 10,000

steps daily was associated with a lower risk of dementia onset (Del

Pozo Cruz et al., 2022).

In contrast, mixed results and inconclusive evidence have

been reported by other investigations (Brasure et al., 2018; Du

et al., 2018). For instance, a meta-analysis of 19 prospective

studies showed no significant association between dementia and

physical activity when assessing physical activity ≥10 years before

dementia onset (Kivimaki et al., 2019). Similarly, other clinical

studies have not found a significant association between physical

activities and cognitive function, and the risk of AD (Young

et al., 2015; Baumeister et al., 2020). Evidence for short-term and

single-component physical activity interventions in the prevention

of cognitive impairment and dementia is largely insufficient,

indicating that multidomain interventions are necessary (Brasure

et al., 2018). Reverse causation is a possible explanation for the

negative findings. In other words, older adults might stop engaging

in physical activities due to symptoms either in the prodromal

phase or later in the disease course. The mixed evidence calls

for larger randomized multicenter clinical trials assessing different

modalities and multidomain interventions in older adults at risk

for AD.

Physical activity and exercise in
Parkinson’s disease

Parkinson’s disease (PD) is the second most common

neurodegenerative disease affecting over 8.5 million people
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FIGURE 1

Engaging in daily physical activity and exercise has been shown to promote brain health through the regulation of multiple organ systems. Physical

activity improves the regulation of metabolic pathways, including insulin signaling, glucose, carbohydrates, and fatty acid metabolism. Proper control

of these pathways is linked to reduced inflammation, insulin resistance, obesity, and diabetes. Additionally, physical activity and exercise improve

blood circulation, blood pressure, and respiration. Notably, physical activity and exercise regulate the microbiome and metabolism of essential

nutrients. Furthermore, exercising regularly improves bone mass and may prevent osteoporosis. Exercise-induced benefits of sleep include changes

in the core body temperature, reduced inflammation, neurotransmitter release, melatonin regulation, and increased expression of growth hormone

and BDNF. The release of endorphins during exercise is known to improve mood and depression. Collectively, lifestyle modifications may

independently or synergistically guard the brain against neurodegeneration.

globally (https://www.who.int/). Accumulation of misfolded α-

synuclein aggregates into intraneuronal inclusions named Lewy

bodies is a characteristic pathological feature of the disease.

Clinically, PD is characterized by prominent motor symptoms,

resting tremors, rigidity, postural instability, and bradykinesia

(Poewe et al., 2017). Multiple non-motor symptoms, including

cognitive decline, dementia, constipation, hyposmia, restless leg

syndrome, and sleep behavior disorder, have been frequently

reported in clinical studies (Santiago et al., 2017). Current

treatments using carbidopa/levodopa formulations improve motor

symptoms, but a disease-modifying drug is yet to be discovered.

The search for diagnostic biomarkers for identifying patients at

earlier stages of the disease is a pressing matter in the field

(Chen-Plotkin et al., 2018).

Cognitive impairment is common in PD patients. Several

studies have explored the effects of physical activity on cognition,

motor symptoms, and the risk of PD (Table 2). Clinical trials

have demonstrated that physical activity is safe, tolerable, and

effective in PD patients. For example, a phase 2 randomized trial

showed that high-intensity but not moderate treadmill exercise

reached the non-futility threshold and decreased motor symptoms

in de novo PD patients (Schenkman et al., 2018). Phase 3 of this

trial is currently underway and will determine the efficacy of high-

intensity treadmill exercise in delaying the progression of PD.

Recently, moderate-intensity physical activity following the WHO

recommendations, but not light physical activity, was associated

with improved global cognition, visuospatial function, memory,

and executive function in mild-moderate PD patients (Donahue

et al., 2022).

Long-term adherence to exercise routines can be challenging

for patients with chronic conditions like PD and AD. A

randomized trial employing a motivational mobile application for

remote supervision determined that aerobic exercise at home can

effectively alleviate somemotor symptoms in PD patients with mild

disease severity (van der Kolk et al., 2019). In this context, wearable

devices can provide real-time monitoring of movements, tremors,

and physical activity patterns that may be useful in the clinical

management of PD patients (Rovini et al., 2017). Furthermore,

wearable technologies are being developed to suppress motor

symptoms in PD patients, including hand tremors (Faizan and

Muzammil, 2020).

Gait disturbances and falls are common among PD

patients, and these may limit the ability to perform physical

activities. A small pilot study suggested that intensive
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TABLE 1 Epidemiological and clinical studies of physical activity and exercise in mild cognitive impairment and Alzheimer’s disease dementia.

Study type,
country, year

Sample size Follow
up, years

Physical activity
category, intensity

Statistics Main outcome

Prospective, USA,

2012 (Buchman

et al., 2012)

Non-demented: 716 4 yrs TPA HR= 0.48

[0.273, 0.832]

A higher level of TPA is associated

with a reduced risk of AD.

Prospective,

Taiwan, 2017

(Stubbs et al., 2017)

Non-demented: 274 1.84 yrs LPA RR= 0.75

[0.60, 0.92]

LPA is associated with reduced

cognitive decline.

Meta-analysis,

multiple countries,

2011 (Sofi et al.,

2011)

15 prospective

studies,

non-demented:

33,816

1–12 yrs HPA, LMPA HPA (HR= 0.62

[0.54, 0.70]) LMPA

(HR= 0.65

[0.57, 0.75])

High PA and low to moderate PA

were associated with reduced

cognitive decline.

Prospective, Japan,

2022 (Ihira et al.,

2022)

Non-demented:

43,896

10 yrs TPA, leisure-time MVPA TPA (men, HR=

0.75 [0.66, 0.85],

women, 0.75 [0.67,

0.84]) and

leisure-time MVPA

(men, HR= 0.74

[0.65, 0.84] women,

0.74 [0.66–0.83])

TPA and leisure-time MVPA were

associated with reduced risk of

dementia.

Prospective, Korea,

2021 (Yoon et al.,

2021)

Non-demented:

62,286

3.5 yrs 1–499 MET-min/wk Active:

500–999 MET-min/wk Highly

active: >1,000 MET-min/wk

Insufficiently active

(HR= 0.90

[0.81–0.99]) Active

(HR= 0.80

[0.71–0.92]) Highly

active (HR=

0.72 [0.60–0.83])

Increased PA was associated with a

reduced risk of dementia.

Prospective,

United Kingdom,

2022 (Del Pozo

Cruz et al., 2022)

Non-demented:

78,328

6.9 yrs Daily step count Optimal dose: 9,826

steps (HR= 0.49

[0.39–0.62])

Minimal dose: 3,826

steps (HR=

0.75 [0.67–0.83])

Approximately 10k steps may be

optimally associated with a lower

risk of dementia.

Meta-analysis,

multiple countries,

2016 (Groot et al.,

2016)

18 RCTs, dementia:

802

N. A Aerobic and non-aerobic

exercise

HR=

0.41 [0.05–0.76]

Aerobic exercise had a positive

effect on cognition in patients with

dementia.

Meta-analysis,

multiple countries,

2020 (Law et al.,

2020)

46 RCTs, MCI and

dementia: 5099

N. A Aerobic exercise HR=

0.44 [0.27–0.61]

Aerobic exercise reduced cognitive

decline in MCI or dementia

patients.

Meta-analysis,

multiple countries,

2020 (Zhu et al.,

2020)

MCI: 842 N. A Aerobic exercise HR=

1.43 [0.59–2.27]

Aerobic exercise improves global

cognition and executive functions

in MCI patients.

Meta-analysis,

multiple countries,

2020 (Demurtas

et al., 2020)

MCI and dementia:

28,205

N. A Mixed physical activity MCI (SMD= 0.30

[0.11–0.49])

Dementia (SMD=

1.10 [0.65–1.64])

PA improved global cognition in

MCI and dementia.

Meta-analysis,

multiple countries,

2022 (Lopez-Ortiz

et al., 2022)

21 studies,

>150,000

N. A Physical activity AD (OR= 0.60

[0.51–0.71]) Global

cognition (SMD=

0.41 [0.24–0.58])

Meeting the WHO

recommendations for PA

associated with a lower risk of AD

and improved global cognition in

AD patients.

PA, physical activity; LPA, light physical activity; TPA, total physical activity; LMPA, low to moderate physical activity; MVPA, moderate to vigorous physical activity; OR, odds ratio; HR, hazard

ratio; SMD, standardized mean difference; MET, metabolic equivalent of task; RR, risk ratio; N.A, not applicable.

treadmill training for 6 weeks improved motor symptoms

and enhanced gait rhythmicity in PD (Herman et al., 2007).

The therapeutic effect afforded by treadmill training may be

facilitated via modifications in cerebellum activity (Maidan

et al., 2017), reduced pre-frontal cortex activation (Thumm

et al., 2018), and changes in interregional connectivity

between cortical and subcortical brain regions (Ding et al.,

2022).

Tai Chi, sometimes described as “meditation in motion,” is

a low-impact and slow-motion exercise with breathing control

that has been shown to improve gait and balance in PD. Tai Chi

outperformed brisk walking in improving balance, gait, and motor
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TABLE 2 Epidemiological and clinical studies of physical activity and exercise in PD.

Study type,
country, year

Sample size Follow up
period

Physical activity
category, intensity

Statistics Main outcome

Meta-analysis,

USA, Finland,

Sweden, 2018 (Fang

et al., 2018)

544,336 (PD: 2,192) 12 yrs TPA, LPA MVPA TPA (RR= 0.79 [0.68–0.91])

MVPA (RR= 0.71

[0.58–0.87]), LPA (RR=

0.86 [0.60–1.23])

TPA and MVPA but not LPA were

associated with a reduced risk of

PD with stronger associations in

men.

Meta-analysis,

multiple countries,

2022 (Zhen et al.,

2022)

PD: 802 N.A Aerobic exercise Balance (SMD= 0.99

[0.76–1.23]), gait

(SMD= 0.49 [0.20–0.78]),

motor function UPDRS-III

(SMD=−0.40 [−0.55

to (−0.24)])

Aerobic exercise improved balance

(gait and motor function in PD

patients.

Cross-sectional,

USA, 2018,

(Loprinzi et al.,

2018)

PD: 25 2 weeks MVPA MVPA (MoCA, β = 0.09

[−0.003 to 0.19])

MVPA improved cognition in PD

patients.

RCT, phase II, USA,

2022, (Schenkman

et al., 2018)

PD: 128 6 months Treadmill exercise: high and

moderate intensity

High-intensity treadmill

(UPDRS, 0.3 [−1.7 to 2.3])

High-intensity treadmill but not

moderate reached the non-futility

threshold.

RCT, phase I/II,

USA, 2014, (Uc

et al., 2014)

PD: 60 6 months Aerobic walking UPDRS-I: Pre (2.1± 1.9) Post

(1.6± 1.3) UPDRS-III: Pre

(18.8± 10.4) Post (15.9± 8.4)

Continuous aerobic exercise

improves motor function in mild

to moderate PD patients.

Cross-sectional,

USA, 2022

(Donahue et al.,

2022)

PD: 96 1 week LPA, MVPA MVPA, MoCA: β = 0.40

[0.003–0.076] Global

cognition: β = 0.015

[0.005–0.025] Executive

function: β = 0.017

[0.003–0.030] Memory: β =

0.014 [0.002–0.026]

Visuospatial function: β =

0.02 [0.006–0.034]

MVPA but not LPA improved

cognition, executive function, and

memory in mild-moderate PD

patients.

Population-based

cohort, USA, 2022

(Zhang et al.,

2022b)

PD: 1251 32–24 yrs Daily physical activity (MET) HR= 0.35 [0.23–0.52] Daily physical activity and a

healthy diet are associated with a

lower rate of all-cause mortality.

RCT, Netherlands,

2019, (van der Kolk

et al., 2019)

PD: 130 6 months Aerobic exercise or stretching Aerobic exercise: UPDRS

4.2 [1.6–6.9]

Aerobic exercise attenuated motor

symptoms assessed by UPDRS.

Open-label, pilot

study, Israel, 2007

(Herman et al.,

2007)

PD: 9 6 weeks Intensive treadmill Pre (UPDRS= 29), gait 1.11

m/s) Post (UPDRS= 22, gait

1.26 m/s)

Intensive treadmill training

improved motor symptoms

assessed by UPDRS and gait speed.

RCT, China, 2022

(Li et al., 2022)

PD: 95 1 yr Tai Chi, brisk walking Tai Chi: Berg balance score (p

= 0.022), UPDRS total (p=

0.015) UPDRS-III (p= 0.001)

PD patients in the Tai Chi group

had better improvements in

balance and motor symptoms.

PA, physical activity, PD, Parkinson’s disease, LPA, light physical activity, TPA, total physical activity, LMPA, low to moderate physical activity, MVPA, moderate to vigorous physical activity,

OR, odds ratio, HR, hazard ratio, SMD, standardized mean difference, MET, metabolic equivalent of task, MoCA, Montreal Cognitive Assessment, UPDRS, Unified Parkinson’s Disease Rating

Scale, RCT, randomized controlled trial, RR, risk ratio, N.A, not applicable.

symptoms in PD patients (Li et al., 2022). The improvement of

motor symptoms correlated with reduced interleukin 1 beta (IL-

1β), L-malic, and phosphoglyceric acids. Additionally, arginine

biosynthesis, urea cycle, tricarboxylic acid cycle, and β oxidation

of very long chain fatty acids were also improved by Tai Chi.

These studies suggest that moderate-intensity physical activity

including aerobic exercise, treadmill training, and low-impact

activities like Tai Chi can improvemotor and non-motor symptoms

in PD.

Physical activity and exercise in rare
neurodegenerative diseases

The effects of physical activity have been primarily investigated

in aging, AD, and PD studies. Still, its actions on other

neurodegenerative diseases, such as ALS, FTD, and HD, have

been largely neglected. Contrary to AD and PD, prescribing

physical activity interventions in rare neurodegenerative diseases

can be challenging due to the disabling nature of these conditions.
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For example, the progressive degeneration of motor functions

and respiratory muscles in ALS significantly limits the ability

to perform physical activities. Nevertheless, several studies have

shown that various modalities of physical activity can be safe and

may be effective in improving the quality of life of ALS patients

(Clawson et al., 2018) and other rare neurodegenerative diseases

(Table 3). For instance, a small study showed that resistance

exercise improved the functional capacity of the upper and lower

extremities in ALS patients with no adverse events (Bello-Haas

et al., 2007). The combination of aerobic and resistance training

improved or maintained the physical function of ALS patients

(Ferri et al., 2019; Zhu et al., 2022), albeit without improvement

in muscle function. Recently, the use of motor-assisted movement

exercisers (MME) for a minimum of five sessions per week had a

beneficial effect on preserving and improving muscle strength and

general wellbeing in ALS (Maier et al., 2022).

In contrast, several studies have shown no benefit from physical

activity and that it may be a risk factor for ALS. For example,

a resistance training program did not improve neuromuscular

function in ALS patients (Jensen et al., 2017). Similarly, an exercise

regime consisting of aerobic exercise, endurance, and stretching did

not improve motor and respiratory functions, and the quality of life

of ALS patients (Zucchi et al., 2019).

Evidence from larger studies has suggested that physical activity

may increase the risk of ALS. For instance, a higher level of

leisure-time physical activity was associated with an increased risk

of ALS, and no differences were found in the level of physical

activities, including marathons and triathlons (Huisman et al.,

2013). Amulticenter study of three European countries determined

a positive association between physical activity and the risk of ALS

(Visser et al., 2018). Recently, a Mendelian randomization study

observed that moderate to vigorous physical activity could increase

the risk of ALS in individuals of European ancestry (Liao et al.,

2022). Several studies have reported a higher risk of ALS among

athletes, particularly professional soccer, and football players (Chio

et al., 2005; Lehman et al., 2012).

Several hypotheses to explain these associations have been

posited. Concussions and traumatic brain injuries are common

among athletes, and it has been suggested that repetitive head

injuries contribute to lower resilience to neurodegeneration and

increased risk of ALS (Chen et al., 2007), AD-like dementias

(Ramos-Cejudo et al., 2018), and PD (Delic et al., 2020).

Nevertheless, this association remains debated (Armon andNelson,

2012). Indeed, a history of head injury did not correlate with disease

progression or neuropathological changes in ALS (Fournier et al.,

2015).

Frontotemporal dementia (FTD) shares remarkably similar

pathogenic mechanisms with ALS. FTD is characterized by the

progressive degeneration of the frontal and temporal lobes of

the brain. Approximately 50% of FTD cases are familial and

associated with mutations in microtubule-associated protein tau

(MAPT), progranulin (GRN), and C9orF72 (Wood et al., 2013).

The first study showed that greater physical and cognitive activities

were associated with an estimated 55% less functional decline

in autosomal dominant FTD (Casaletto et al., 2020). Strikingly,

autosomal dominant FTD-mutation carriers in C9orF72, MAPT,

and GRN, who engaged in physical and cognitive activities, showed

improved functional and cognitive trajectories despite their brain

atrophy compared to their less active peers. This study suggested

that physical activity confers neuroprotection through mechanisms

that can influence brain structure functions, such as inflammation

and synaptic signaling, rather than directly altering brain structure

(Casaletto et al., 2020). A recent follow-up study by the same group

showed that FTD subjects carrying autosomal dominant variants

who engaged in higher physical activity displayed lower levels of

neurofilament light chain (NfL), a marker of axonal degeneration

(Casaletto et al., 2023).

Huntington’s disease (HD) is a rare autosomal dominant

neurodegenerative disease with an estimated prevalence of 2.71 per

100,000 people (Pringsheim et al., 2012). The mean age of onset

is 45 years, and some characteristic symptoms include involuntary

movements, memory loss, and personality changes (Tucci et al.,

2022). Several clinical trials have shown that physical activity is safe,

feasible, and effective in improving motor and cognitive function

in HD patients. A small randomized trial showed that physical

activity improved the cognitive scores assessed by the SF-36 Mental

Component Summary but did not improve the UnifiedHuntington

Disease Rating Scale cognitive scores (Busse et al., 2013). Another

trial indicated that aerobic and resistance exercises reduced motor

symptoms, including chorea and postural instability (Thompson

et al., 2013). These studies demonstrate that engaging in physical

activity has the potential to modify disease even in autosomal

dominant disorders.

Physical activity in multiple sclerosis

Multiple sclerosis (MS) is an immune-mediated

neurodegenerative disease characterized by the degeneration

of myelin sheaths by auto-reactive lymphocytes. MS usually

presents with earlier onset than other neurodegenerative diseases.

The worldwide prevalence of MS is estimated to be approximately

2.8 million people, with an increased prevalence in women (Walton

et al., 2020). Strikingly, in the United States, nearly one million

people live with MS, and 74% are female patients (https://www.

nationalmssociety.org/). Drugs prescribed to MS patients work by

downregulating the immune response and have shown beneficial

effects during the early stages of the disease (Torkildsen et al.,

2016). Therapeutics targeting the immune system have gained

interest since a recent study found a link between the Epstein-Barr

virus and MS (Lanz et al., 2022).

Decades ago, clinicians did not recommend exercise to MS

patients because it would increase fatigue and worsen symptoms

(Proschinger et al., 2022). This assumption, however, was proven

erroneous when physical activity and exercise programs were

shown to be safe and effective in improving symptoms, restoring

functions, and optimizing the overall quality of life of MS patients

(Motl et al., 2017). Several clinical studies have indicated that

physical activity and exercise benefit patients withMS. For example,

aerobic exercise with low to moderate intensity, stretching, and

flexibility exercises have successfully improved fatigue and reduced

muscle spasticity and painful contractions in patients with mild or

moderate MS (Halabchi et al., 2017). Indeed, clinical studies have

demonstrated improvement in clinically relevant scales used to

assess disability inMS patients. For instance, cross-sectional studies

have shown a negative correlation between physical activity and
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TABLE 3 Epidemiological and clinical studies of physical activity and exercise in rare neurodegenerative diseases.

Study type,
country, year

Sample size,
disease

Follow up
period

Physical activity
category, intensity

Statistics Main outcome

RCT, USA, 2018

(Clawson et al.,

2018)

ALS: 59 12 and 24

weeks

Resistance, endurance,

stretching/range of motion

N.A All three forms of exercise are safe

and tolerated.

RCT, Canada, 2007

(Bello-Haas et al.,

2007)

ALS: 33 6 months Resistance Total ALSFRS score (t =

−2.05, df = 23, p= 0.05)

Resistance training improved

ALSFRS functional scores.

Meta-analysis,

multiple countries,

2022 (Zhu et al.,

2022)

10 RCT studies,

ALS

N.A Aerobic, resistance, standard

rehabilitation, passive

exercise, daily activity

Probability rank: quality of life

(probability= 0.64), fatigue

(probability= 0.39), physical

function (probability= 0.51)

Combined aerobic and resistance

exercises and traditional

rehabilitation reduced fatigue and

improved quality of life.

Cross-sectional,

Germany, 2022

(Maier et al., 2022)

ALS: 144 N.A Motor-assisted movement

exerciser

Reduction of muscle stiffness

(p= 0.011), limbs rigidity (p

= 0.0280, improved general

wellbeing (p= 0.048)

MME improved rigidity, muscle

stiffness, and general wellbeing.

RCT, Italy, 2019

(Ferri et al., 2019)

ALS: 16 12 weeks Aerobic and strength The gas exchange threshold

increased from 0.94± 0.08 to

1.06± 0.10 (p= 0.009, ES=

0.47)

Combined aerobic and strength

training 60min 3 times per week

improved aerobic fitness and

maintained physical function.

Open-label,

Denmark, 2017

(Jensen et al., 2017)

ALS: 12 12 weeks Resistance ALSFRS-R scores Baseline:

40.2± 2.3 Pre-exercise: 38.6

± 1.9 Post-exercise: 35.2± 4.3

Resistance training did not

improve physical function.

RCT, Italy, 2019

(Zucchi et al., 2019)

ALS: 65 2 yr High intensity (Aerobic,

endurance, stretching)

ALFRS-R scores 3 months:

34.87± 8.49, p= 0.48 12

months: 30.16± 9.78, p=

0.72 24 months:27.25± 9.20,

p= 0.73

High-intensity physical exercise

did not improve ALSFRS scores,

motor, and respiratory functions,

fatigue, and survival.

Population-based,

case-control,

Netherlands, 2013

(Huisman et al.,

2013)

ALS: 636 N.A Leisure time PA OR= 1.08 [1.02,1.14] Leisure time PA associated with an

increased risk of ALS.

Prospective cohort,

USA, 2020

(Casaletto et al.,

2020)

105 mutation

carriers (C9orf72,

MAPT, GRN)

69 non-carriers

3 yrs Leisure time PA PASE× time β =−0.11, p=

0.016 CAS× time β =−0.13,

p= 0.003

Greater physical and cognitive

activities were associated with less

functional decline and better

cognitive performance.

Prospective cohort,

USA, 2022

(Casaletto et al.,

2023)

160 mutation

carriers (C9orf72,

MAPT, GRN)

4 yrs Leisure time PA Plasma Nfl (β =−0.13; b=

−0.002, SE= 0.001, p= 0.03)

Higher PA was associated with

lower levels of plasma Nfl, a marker

indicative of axonal damage.

ALSFRS, ALS functional rating scale; CAS, Cognitive Activity Scale; df, degrees of freedom; ES, effect size; GRN, progranulin; PA, physical activity; LPA, light physical activity; TPA, total physical

activity; LMPA, low to moderate physical activity; MAPT, microtubule-associated protein tau; MVPA, moderate to vigorous physical activity; OR, odds ratio; PASE, Physical Activity Scale for

the Elderly RCT, randomized controlled trial; t, t-test; N.A, not applicable.

the Expanded Disability Status Scale (EDSS), a reliable indicator

of disability in MS (Table 4). Furthermore, some studies indicate

that physical activity is associated with gray and white matter

brain volumes in brain structures involved in motor and cognitive

functions (Klaren et al., 2015; Kalron et al., 2020). Recently,

moderate to vigorous physical activity was positively associated

with axonal and neuronal integrity in MS patients (Kim et al.,

2022). These studies suggest that different physical activity levels

improve symptoms and maintain and preserve brain structures

important for motor and cognitive abilities in MS patients. The

epidemiological and clinical studies addressing the impact of

physical activity and exercise in MS patients have been described

in detail elsewhere (Proschinger et al., 2022).

In addition to physical activity and exercise, nutrition is an

important determinant of health outcomes in MS patients and

other neurodegenerative diseases. Several dietary approaches have

shown promise in improving symptoms in MS patients. Low

saturated fat, low fat vegan, modified Paleolithic (Wahls), gluten-

free, Mediterranean, intermittent fasting, and calorie restriction

have been investigated, showing promising results in alleviating

symptoms inMS patients (Chenard et al., 2019;Wahls, 2022). Some

of these dietary approaches, including the modified Paleolithic

and Mediterranean diets, have been associated with significant

clinical improvement (Lee et al., 2021; Katz Sand et al., 2023).

Notably, these dietary approaches have proven useful in modifying

comorbidities, including diabetes, cardiovascular disease, and
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TABLE 4 Epidemiological and clinical studies of physical activity and exercise in multiple sclerosis.

Study type,
country, year

Sample
size

Follow-up,
time

Physical activity
category, intensity

Statistics Main outcome

Cross-sectional,

USA, 2011

(Cavanaugh et al.,

2011)

MS:21 1 week Daily step count r =−0.90, p < 0.01 Total step counts count correlated

negatively with EDSS.

Cross-sectional,

USA, 2015

(Fjeldstad et al.,

2015)

MS: 13 HC: 12 1 week Daily step count

(accelerometer)

r =−0.61, p < 0.05 Total weekly step counts correlated

negatively with EDSS.

Cross-sectional,

USA, 2015 (Klaren

et al., 2015)

MS: 39 1 week PA level (accelerometer)

Sedentary (≤100 counts/min)

LPA (100–1,722 counts/min)

MVPA (≥1,723 counts/min)

Hippocampus (pr = 0.49,

p < 0.01)

Thalamus (pr = 0.38, p < 0.05)

Caudate (pr = 0.54, p < 0.01)

Putamen (pr = 0.37, p < 0.05)

Pallidum (pr = 0.50, p < 0.01)

MVPA was associated with whole

brain gray and white matter

volumes and brain structures

involved in motor and cognition in

MS patients.

Cross-sectional,

2017, USA (Block

et al., 2017)

MS: 99 >4 weeks Daily step count

(accelerometer)

r =−0.71, p < 0.001 Daily step count correlated

negatively with EDS. Lower PA was

associated with greater disability.

Prospective, 2019,

USA (Block et al.,

2019)

MS: 95 1 year Daily step count

(accelerometer)

OR= 4.01, 95% CI

[1.17–13.78], p= 0.03

Participants with an average daily

step count below 4,766 had higher

odds of disability according to the

EDSS score.

Cross-sectional,

retrospective, 2020,

Israel (Kalron et al.,

2020)

MS: 153 N.A Leisure time PA Physically active: hippocampus

(48.5, S.D= 32.2)

Insufficiently active:

hippocampus (34.6, S.D= 30.8,

p= 0.004)

Patients who engaged in regular PA

maintain their hippocampal

volume.

RCT, 2004, Finland

(Romberg et al.,

2004)

MS: 95 6 months Strength and aerobic training Physically active: the 7.62m

walk test time decreased by 12%

(95% CI 15% to 7%, p < 0.001).

Exercising patients improved their

walking speed assessed with the

7.62m and 500m walking tests.

RCT, 2015, Belgium

(Wens et al., 2015)

MS: 34 12 weeks High-intensity exercise

High-intensity

cardiovascular training

Mean muscle fibers

crossectional area (HIT:+21±

7%, HCT:+23± 7%)

High-intensity interval (HIT) and

continuous cardiovascular exercise

(HCT) was safe and increased

mean muscle fibers‘crossectional

area.

Cross-sectional,

2022, USA (Kim

et al., 2022)

MS: 41 HC: 79 1 week MVPA RFNL (r = 0.38, p < 0.01) TMV

(r = 0.49, p < 0.01)

MVPA correlated with retinal

nerve fiber thickness (RNFL) and

total macular volume (TMV).

EDSS, Expanded Disability Status Scale PA, physical activity; LPA, light physical activity; MVPA, moderate to vigorous physical activity; OR, odds ratio; pr, partial correlation; RCT, randomized

controlled trial; N.A, not applicable.

depression, which are largely implicated in neurodegenerative

diseases. Larger longitudinal trials evaluating these dietary

interventions are warranted.

Physical activity modifies risk factors
associated with neurodegenerative
diseases

A sedentary lifestyle is a prime contributor to the development

of chronic diseases such as obesity, type II diabetes mellitus

(T2DM), and cardiovascular disease. Physical inactivity was

declared the fourth cause of death worldwide, according to the

WHO (Bull et al., 2020). The 2022 Global status report by theWHO

indicates that approximately 500 million people will develop heart

disease, obesity, and T2DM resulting from physical inactivity by

2030 (https://www.who.int/publications/i/item/9789240059153).

Epidemiological studies have indicated that physical activity

modifies cardiovascular disease, obesity, and T2DM. Earlier

prospective cohort studies suggested that greater physical activity

was associated with a reduced risk of T2DM in women (Hu et al.,

1999), cardiovascular disease, and mortality in adults with T2DM

(Gregg et al., 2003; Tanasescu et al., 2003). In addition, randomized

controlled trials have indicated that engaging in physical activity

is inversely associated with the risk of cardiovascular events in

patients with impaired glucose tolerance (Yates et al., 2014).

Interestingly, lifestyle intervention alone was more effective at

reducing the risk of T2DM than metformin. A 67% reduced risk

of T2DM was observed in subjects who received instructions

on lifestyle interventions, including physical activity and diet

(Kosaka et al., 2005). These findings are important considering the

numerous studies that have shown a potential link between T2DM,

cardiovascular disease, and neurodegenerative diseases (Santiago

and Potashkin, 2013, 2021; Potashkin et al., 2020). Similarly, these
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results highlight the potential of physical activity and diet as adjunct

therapies for disease modification.

T2DM shares several molecular pathways with AD and

PD, suggesting a common disease etiology. Mitochondrial

dysfunction, endoplasmic reticulum stress, insulin resistance,

vascular abnormalities, and inflammation are some shared

mechanisms between T2DM, PD, and AD (Santiago and Potashkin,

2013, 2021). In addition, a diagnosis of T2DM has been shown

to impact the worsening of symptoms and disease progression in

AD and PD (Santiago and Potashkin, 2021; Athauda et al., 2022).

The ample evidence from epidemiological and molecular studies

has fueled the investigations on commonly prescribed anti-diabetic

drugs as potential therapeutics for AD and PD (Reich andHolscher,

2022).

These studies on T2DM and neurodegeneration have

underscored the critical importance of studying comorbidities

in personalized medicine applications and have paved the way

for new therapeutic interventions in neurodegenerative diseases.

One plausible neuroprotective mechanism afforded by physical

activity is the modification and prevention of T2DM and obesity,

frequently associated with an increased risk of neurodegeneration.

Neuroprotective mechanisms
mediated by physical activity:
evidence from pre-clinical models and
bioinformatic approaches

Pre-clinical studies have reported beneficial effects of exercise

in cognitive functions, memory preservation, and the prevention

of neurodegenerative diseases. Regular exercise reduced the

expression of amyloid-β and phosphorylated tau and increased

synaptic activity and expression of glucose transporters GLUT1

and GLUT3 in AD model mice (Pang et al., 2019). Voluntary

running exercise increased microglial glucose metabolism and

protein expression of GLUT5, triggering receptor expressed on

myeloid cells 2 (TREM2), secreted phosphoprotein 1 (SPP1),

and phosphorylated spleen tyrosine kinase (p-SYK) in the

hippocampus of APP/PS1 mice compared to the sedentary group

(Zhang et al., 2022a). Short-term resistance exercise improved

cognition, reduced amyloid-β, and hyperphosphorylated tau brain

deposits, and inhibited the expression of neuroinflammatory

markers tumor necrosis factor alpha (TNF-α) and IL-1β (Liu

et al., 2020). Treadmill running lowered amyloid β burden and

neuroinflammatory markers and improvedmitochondrial function

in the hippocampus and cerebral cortex of triple transgenic AD

mice (3xTg-AD) (Kim et al., 2019).

Similarly, prolonged voluntary wheel running improved spatial

memory performance, increased dendritic spines, and reduced

extracellular amyloid β accumulation in 3xTg-AD mice (Xu

et al., 2022). Long-term voluntary running reversed cognitive

impairment, increased glial fibrillary acidic protein (GFAP)

immunoreactivity, and astrocytic brain-derived neurotrophic

factor (BDNF) in the hippocampus of 5xFAD mice (Belaya et al.,

2020). Treadmill exercise alleviated cognitive decline and β-

amyloid neurotoxicity via furin-mediated iron regulation (Choi

et al., 2021). Physical activity alleviated cognitive impairment and

neuroinflammation via upregulation of miR-129-5p in APP/PS1

AD mice (Li et al., 2020). Boosting the expression of irisin, an

exercise-induced myokine, rescued synaptic plasticity and memory

in APP/PS1 AD mice (Lourenco et al., 2019). Infusion of plasma

from mice exposed to exercise for 3 months into 3xTg AD mice

improved cognitive function and neuroplasticity and suppressed

apoptosis (Kim et al., 2020).

Running exercise slowed the decline in spatial learning and

memory abilities in male and female APP/PS1 mice. In addition,

there was an increase in the myelinated fibers of the white matter

in male AD mice compared to females (Zhou et al., 2018). Aerobic

exercise decreased cognitive impairment and increasedmyelination

in C57/BL-aged mice through the upregulation of ROCK signaling

(Bao et al., 2021), a central pathway inmyelination and axon growth

in the central nervous system (Fujita and Yamashita, 2014).

In the context of PD, physical exercise improved motor

function, reduced cognitive impairment, and modulated the

expression of L-DOPA, cAMP-responsive element binding

protein 1 (CREB1), and RPTOR independent companion of

MTOR complex 2 (RICTOR), genes involved in mitochondrial

function and dopamine signaling in 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-treated mice (Aguiar et al., 2016;

Klemann et al., 2018). Furthermore, it has been suggested that the

observed recovery in motor functions afforded by physical activity

is facilitated via the enhancement of dopamine transporters and

the downregulation of the inflammatory response (Churchill et al.,

2017). In addition, physical exercise normalized the expression of

genes involved in the receptor for advanced glycation products

(RAGE), critical effectors of the innate immune response (Viana

et al., 2017). Furthermore, physical activity upregulated the

neuroprotective factor PD-related DJ-1 in the frontal cortex of

MPTP-treated rats (Viana et al., 2017).

Bioinformatic approaches from human gene expression

datasets have been instrumental in delineating important

biological and molecular mechanisms associated with physical

activity in the brain. Differentially expressed genes in the

hippocampus of physically active subjects inversely correlated

with those from AD and aging individuals (Berchtold et al.,

2019). These genes were enriched in mitochondrial energy

production and synaptic function. Similarly, high physical activity

induced the expression of genes associated with neurogenesis

and T-cell-mediated inflammation in the hippocampus of

cognitively intact individuals (Sanfilippo et al., 2021). Similarly,

our studies showed that physical activity induces dramatic

transcriptional changes in the hippocampus of cognitively

intact individuals. We found that gene expression patterns

induced by physical activity inversely correlated with those from

neurodegenerative diseases, including AD, PD, FTD, and HD

(Santiago et al., 2022).

Interestingly, physical activity mediated its effects through

different pathways across neurodegenerative diseases. For

instance, physical activity induced the upregulation of

genes involved in synaptic signaling in AD, PD, and

HD. In FTD, differentially expressed genes were enriched

in bioenergetic processes and the generation of energy

precursors (Santiago et al., 2022). Furthermore, physical

activity mediated the downregulation of inflammation-related

genes in AD.

Frontiers in AgingNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1185671
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Santiago and Potashkin 10.3389/fnagi.2023.1185671

Metabolomic studies have helped study gut microbiome

alterations in neurodegenerative diseases. Low physical activity

was associated with fecal metabolome differences in PD patients.

Reduced short-chain fatty acids and butyrate levels correlated

with cognitive impairment and worse postural instability-gait

scores (Tan et al., 2021). Metabolomic analysis revealed that

treadmill training increased polyunsaturated fatty acids, cathepsin

B (CTSB), and reduced ceramides, sphingolipids, and BDNF

levels in the plasma of asymptomatic late middle-aged adults

at risk for AD (Gaitan et al., 2021). Increased levels of

plasma CTSB correlated positively with cognitive performance.

Similarly, treadmill exercise reduced depressive symptoms and

increased the Firmicutes/Bacteroidetes ratio, improving gut

dysbiosis in mice treated with Aβ1−40 (Johnston and Barker,

1987). These studies indicate that physical activity helps regulate

the microbiome and metabolism of essential nutrients, thereby

promoting neuroprotection. Recently, a microbiome-dependent

gut–brain axis was found to regulate motivation for exercise

and performance. An intact gut microbiome contributes to the

generation of intestinal fatty acid amides that trigger cannabinoid

receptor 1-expressing neurons to send a signal to the brain that

promotes the downregulation of monoamine oxidase, thereby

increasing dopamine signaling in the brain and enhancing physical

performance and motivation (Dohnalova et al., 2022).

Physical activity, nutrition, sleep, and
mindfulness meditation: a
multidimensional approach to brain
health

Though engaging in physical activity has been well-established

to promote brain health overall, environmental, genetic, and

socioeconomic factors also play a fundamental role in human

health. Indeed, a recent study indicated that the environment in

which exercise is performed plays an equally important role as

the exercise itself, suggesting that outdoor physical activity may be

better for brain health (Boere et al., 2023).

Given the complex etiology of neurodegenerative diseases,

multidomain interventions are more likely to delay or prevent

disease onset. Emerging studies geared toward personalized

medicine have begun investigating the adjunct use of physical

activity with other lifestyle interventions (Figure 2). For

instance, several studies have investigated the synergy between

physical activity, and cognitive training, for the prevention of

neurodegenerative diseases. Both cognitive therapy and physical

activity improved global cognitive function in patients with MCI

and dementia (Wang et al., 2014; Karssemeijer et al., 2017). This is

an important finding considering recent investigations that have

found that reducing time spent in cognitively passive activities such

as watching TV and increasing those that require active cognition

may be more effective at reducing the risk of dementia (Raichlen

et al., 2022). While physical activity alone can be beneficial,

sedentary behaviors can dangerously counteract the benefits of

physical activity and trigger neurodegeneration.

Diet is another key element in promoting overall health.

Engaging in physical activity and healthy dietary patterns were

associated with a lower rate of all causes of mortality in PD patients

(Zhang et al., 2022b). In addition, a multidomain intervention

showed that following a Mediterranean diet, engaging in physical

activity, and cognitive training improved cognitive function in

older adults at risk of dementia (Ngandu et al., 2015). Additional

multidomain trials to increase Mediterranean diet adherence

and physical activity in older adults at risk of dementia are

underway. These trials will be crucial to determine if combined

lifestyle interventions can prevent dementia (Heffernan et al., 2019;

Shannon et al., 2021).

Sleep disorders are common in neurodegenerative diseases and

correlate with cognitive and neuropsychiatric problems (Memon

et al., 2020). Dysregulation in the sleep–wake cycle has been shown

to promote the accumulation of amyloid-β, tau, and synuclein in

the interstitial fluid of mice and CSF in humans (Holth et al.,

2019). Strikingly, sleep deprivation increased tau by 50% and

amyloid- β by 30% in human CSF (Lucey et al., 2018; Holth et al.,

2019). Evidence from animal models showed that chronic sleep

deprivation increased tau pathology spreading (Holth et al., 2019).

A longitudinal study using data from 7959 subjects and a 25-year

follow-up determined that sleeping less than 6 h at ages 50, 60, and

70 was associated with a 30% increased dementia risk (Sabia et al.,

2021). Another study found that midlife and late-life insomnia were

associated with a higher dementia risk (Sindi et al., 2018). The same

study determined that sleeping more than 9 h was also associated

with an increased risk of dementia.

Several exercise modalities, including aerobic, resistance,

and Tai Chi, have improved sleep outcomes in patients with

neurodegenerative diseases. Randomized trials have indicated that

walking daily for 30min improved sleep outcomes in patients with

AD (McCurry et al., 2005, 2011). Mild to moderate aerobic exercise

attenuated sleep disturbances in AD and PD patients (Nascimento

et al., 2014).

Several potential mechanisms underlying exercise-induced

benefits of sleep include changes in the core body temperature,

reduced inflammation, serotonin, norepinephrine, and melatonin

regulation, and increased expression of growth hormone and

BDNF (Memon et al., 2020). Despite the benefits shown in AD and

PD, to the best of our knowledge, there is a lack of studies exploring

the effects of physical activity on sleep disturbances in ALS andHD.

In addition to sleep disturbances, stress, depression, and

anxiety are commonly observed in older adults and increase

the risk of dementia (Wilson et al., 2002). Meditation and

mindfulness practices have been shown to reduce these psycho-

affective states, improve cognition, and preserve brain structure

and function (Gard et al., 2014; Chetelat et al., 2018). For example,

a randomized trial showed that mindfulness training prevented

depression in early-stage AD patients in a 2-year follow-up

(Quintana-Hernandez et al., 2023). Another trial demonstrated

that mindfulness meditation improved cognitive performance and

connectivity between the hippocampus and posteromedial cortex

in healthy adults (Sevinc et al., 2021). Interestingly, neuroimaging

studies in expert meditators revealed increases in gray matter

volume and glucose metabolism in sensitive regions affected by

AD, including the prefrontal, anterior, and posterior cingular

cortices, insula, and temporoparietal regions (Chetelat et al.,

2017). Long-term meditation is associated with thickening in the

prefrontal cortex and right anterior insula (Lazar et al., 2005).
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FIGURE 2

Multidomain clinical trials integrating physical activity, diet, cognitive training, mindfulness, and sleep hygiene in patients at risk of neurodegenerative

diseases can inform lifestyle interventions that promote neuroprotection. Lifestyle modifications have been shown to reduce the risk of diabetes,

obesity, cardiovascular disease, and depression, common conditions associated with dementia and neurodegenerative diseases. Incorporating

lifestyle changes such as physical activity, eating a nutrient-rich diet, restful sleep, cognitive training, and mindfulness will reduce the risk of these

chronic diseases. The implementation of wearable technologies to track participants’ sleep patterns and physical activity in conjunction with the

collection of biofluids for gene expression studies can lead to the identification of biomarkers and potential therapeutics for clinical intervention.

In addition, increased telomerase activity in blood leukocytes and

reduced expression of inflammatory markers have been reported

in experienced meditators (Schutte and Malouff, 2014). Finally,

it has been proposed that mindfulness and cognitive training

improve cognition through increased BDNF levels (Angelucci

et al., 2015; Nicastri et al., 2022). These studies suggest that

mindfulness training can reduce psycho-affective risk factors

associated with dementia and preserve the function of brain regions

implicated in cognition, memory, and emotions. Additional trials

incorporating sleep, diet, cognitive therapy, and physical activity

will help determine whether multidomain interventions are more

effective than single interventions in preventing and treating

neurodegenerative diseases.

Challenges and future directions

Physical activity is the single most accessible lifestyle

modification that has been shown to confer protection against

many diseases. For example, a recent study indicated that 10,000

steps a day are associated with a lower risk of all-cause mortality,

including cancer and cardiovascular disease (Del Pozo Cruz et al.,

2022). Protection against neurodegenerative diseases is mediated

through a wide range of biological mechanisms, including reduced

inflammation, increased synaptic signaling, improved blood

circulation, homeostatic control of glucose and cholesterol levels,

regulation of the sleep–wake cycle, and the intestinal microbiome.

More indirectly, physical activity modifies well-established risk

factors and comorbidities associated with neurodegeneration,

including T2DM, obesity, cardiovascular disease, and depression.

Following the WHO recommendations of daily physical

activity has shown promise in slowing cognitive decline and

mortality. However, prescribing physical activity as an adjunct

treatment poses several challenges to clinicians. The intensity,

frequency, and modality of exercise may vary from person to

person and the target disease. For example, walking and treadmill

running have shown benefits for AD and PD patients, whereas

resistance training has been a better modality in ALS patients. The

challenges of prescribing physical activity as an adjunct treatment

for neurodegenerative diseases are not any different from those of

personalized medicine. The prescription of exercise as an adjuvant

therapy should consider factors beyond those that are non-

modifiable such as sex and genotype. Interindividual heterogeneity

of patients suffering from different neurodegenerative diseases in

response to acute, chronic, and different intensities of exercises

should be considered (Herold et al., 2019). An exercise regime

tailored for each patient according to their neurodegenerative

disease phenotype and comorbid conditions would be ideal for

improving health outcomes. Similarly, incorporating a diet plan

and a sleep hygiene protocol for each patient would be ideal. Finally,

implementing wearable technologies for improving diagnosis,

tracking the progression of motor symptoms, encouraging
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increased physical activity, and tracking compliance may help

transform many aspects of the clinical management of patients.

Multidomain clinical trials investigating the integrative effect

of exercise, diet, cognitive therapy, mindfulness, and sleep on

individuals at high risk will be crucial in determining the best

combination of lifestyle modifications for the prevention and

treatment of neurodegenerative diseases.
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