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Background: Mild cognitive impairment (MCI) is considered a preclinical stage

of Alzheimer’s disease (AD). People with MCI have a higher risk of developing

dementia than healthy people. As one of the risk factors for MCI, stroke has been

actively treated and intervened. Therefore, selecting the high-risk population of

stroke as the research object and discovering the risk factors of MCI as early as

possible can prevent the occurrence of MCI more effectively.

Methods: The Boruta algorithm was used to screen variables, and eight machine

learning models were established and evaluated. The best performing models

were used to assess variable importance and build an online risk calculator.

Shapley additive explanation is used to explain the model.

Results: A total of 199 patients were included in the study, 99 of whom were male.

Transient ischemic attack (TIA), homocysteine, education, hematocrit (HCT),

diabetes, hemoglobin, red blood cells (RBC), hypertension, prothrombin time (PT)

were selected by Boruta algorithm. Logistic regression (AUC = 0.8595) was the

best model for predicting MCI in high-risk groups of stroke, followed by elastic

network (ENET) (AUC = 0.8312), multilayer perceptron (MLP) (AUC = 0.7908),

extreme gradient boosting (XGBoost) (AUC = 0.7691), and support vector

machine (SVM) (AUC = 0.7527), random forest (RF) (AUC = 0.7451), K-nearest

neighbors (KNN) (AUC = 0.7380), decision tree (DT) (AUC = 0.6972). The

importance of variables suggests that TIA, diabetes, education, and hypertension

are the top four variables of importance.

Conclusion: Transient ischemic attack (TIA), diabetes, education, and

hypertension are the most important risk factors for MCI in high-risk

groups of stroke, and early intervention should be performed to reduce the

occurrence of MCI.
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Introduction

Cognitive dysfunction generally refers to various degrees of
impairment of sensation, perception, attention, memory and other
processes caused by various reasons, affecting the content of
consciousness rather than the level of consciousness, including
mild cognitive impairment (MCI) and dementia (Tangalos and
Petersen, 2018). MCI is a transitional state between normal
aging and early dementia, and is considered a preclinical stage
of Alzheimer’s disease (AD), which provides a “window of
opportunity” for the prevention and treatment of dementia
(Petersen, 2016). Some studies (Petersen et al., 2001) have
found that MCI is bidirectionally transformable, and cognitive
function at this stage is reversible and can be transformed into a
normal cognitive state. Early detection and reasonable intervention
measures can effectively delay the formation of dementia. Previous
studies have shown that age, genetic characteristics, lower
educational attainment, and various clinical features are risk
factors for the development of dementia (Bowler, 2005; Vanhanen
et al., 2006; Razay et al., 2007; Raffaitin et al., 2009; Solfrizzi
et al., 2010). A large number of studies have shown that the
risk of conversion to dementia in MCI patients is much higher
than that of the healthy elderly population (Jia et al., 2020).
An epidemiological survey showed that the proportion of MCI
among community-dwelling elderly people over 71 years old was
about 21% (Plassman et al., 2008). The risk of progression to
any form of dementia in patients with MCI is three to five
times higher than in the general population (Petersen et al.,
1999, 2009; Yaffe et al., 2006; Mitchell and Shiri-Feshki, 2008).
Currently, many studies have shown that stroke and vascular risk
factors (e.g., hypertension, smoking, obesity) contribute to the
development of cognitive impairment and dementia (Sahathevan
et al., 2012). Brain tissue may be damaged in stroke patients,
and the risk of MCI is higher than that of healthy people.
Therefore, we believe that identifying the occurrence of MCI in
stroke patients as early as possible can reduce the incidence of
MCI more effectively. As an early stage of cognitive impairment,
the occurrence and development of MCI can be prevented by
controlling risk factors.

There are many studies on specific disease groups with
cognitive impairment (such as cerebral infarction, diabetes),
but less research on cognitive impairment in stroke high-risk
groups. In this study, the mini-mental state examination (MMSE)

Abbreviations: MCI, mild cognitive impairment; AD, Alzheimer’s disease;
MMSE, mini-mental state examination; MoCA, Montreal Cognitive
Assessment; TIA, transient ischemic attack; SBP, systolic blood pressure;
DBP, diastolic blood pressure; BMI, body mass index; WBC, white blood
cells; RBC, red blood cells; PLT, platelets; HCT, hematocrit; MCV, mean
corpuscular volume; MCH, mean corpuscular hemoglobin volume;
MCHC, mean corpuscular hemoglobin concentration; RDW, red blood
cell distribution width; HDL, HDL cholesterol; LDL, LDL cholesterol; ALT,
alanine aminotransferase; AST, aspartate aminotransferase; CKMB, creatine
kinase myocardial band; PT, prothrombin time; APTT, activated partial
thromboplastin time; INR, international normalized ratio; CAD, coronary
atherosclerotic heart disease; LR, logistic regression; DT, decision tree;
KNN, K-nearest neighbors; RF, random forest; XGBoost, extreme gradient
boosting; ENET, elastic network; SVM, support vector machine; MLP,
multilayer perceptron; DCA, decision curve analysis; AUC, area under the
curve; ROC, receiver operating characteristic curve; SHAP, shapley additive
explanation; OR, odds ratio.

and the Montreal Cognitive Assessment (MoCA) were used to
evaluate the cognitive function status of stroke high-risk groups
(Kang et al., 2018).

Materials and methods

Data source

We collected data on 199 patients from a population at high-
risk of stroke from three community health centers of Shenzhen
Longhua District Central Hospital from June 2021 to June 2022 as
the research objects.

Inclusion and exclusion criteria

Inclusion criteria: (1) patients with 3 or more stroke risk
factors among hypertension, diabetes, atrial fibrillation, valvular
heart disease, dyslipidemia, smoking history, obesity, lack of
exercise, and family history of stroke, or with transient ischemic
attack (TIA); (2) people aged 60∼80; (3) those who signed the
informed consent form.

Exclusion criteria: (1) patients with acute stroke who have been
discharged from hospital for less than 6 months, or who have severe
heart, liver, lung, kidney and other life-threatening conditions
or who cannot cooperate with investigation and evaluation; (2)
patients with a definite diagnosis of dementia which affect their
daily and self-care ability.

Research variable

A total of 46 variables were included in this study. The
variables include basic information of patients, vital signs,
laboratory tests, complications, and medication history, with
the number of variables for each category being 4, 6, 31,
4, and 1, respectively. Basic information included education,
age, sex, and smoking history, Illiteracy, primary school and
junior high school education are defined as lower education
level; high school education and above are defined as higher
education level. Vital signs include systolic blood pressure, diastolic
blood pressure, temperature, heart rate, respiratory rate, body
mass index. Laboratory items include white blood cells, red
blood cells, hemoglobin, platelets, hematocrit, mean corpuscular
volume, mean corpuscular hemoglobin volume, mean corpuscular
hemoglobin concentration, red blood cell distribution width,
triglycerides, total cholesterol, HDL cholesterol, LDL cholesterol,
serum glucose, serum sodium, serum chloride, serum potassium,
serum calcium, serum bicarbonate, serum creatinine, serum uric
acid, serum albumin, total bilirubin, alanine aminotransferase,
aspartate aminotransferase, creatine kinase myocardial band,
homocysteine, prothrombin time, activated partial thromboplastin
time, international normalized ratio, D-dimer. Comorbidities
include TIA, hypertension, diabetes, coronary heart disease.
Medication history was defined as taking one of aspirin,
clopidogrel, or ticagrelor.
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TABLE 1 Descriptive characteristics of overall participants.

Variables Total (n = 199) Control group (n = 111) Incidence group (n = 88) P-value

Age (year) 68 (64, 72) 67 (63, 72) 68 (65, 73) 0.062

SBP (mmHg) 134 (124, 152) 131 (122, 148) 136 (126, 155) 0.048

DBP (mmHg) 81 (75, 90) 81 (74, 90) 82 (76, 89) 0.445

Body temperature (◦C) 36.50 (36.40, 36.60) 36.50 (36.35, 36.60) 36.50 (36.40, 36.60) 0.759

Heart rate (beats/min) 77 (67, 87) 77 (67, 87) 77 (68, 87) 0.797

Respiratory rate (beats/min) 20 (19, 20) 20 (20, 20) 20 (19, 20) 0.777

BMI 23.96 (21.95, 25.87) 24.13 (22.03, 26.51) 23.76 (21.73, 25.64) 0.363

WBC (109/L) 6.60 (5.28, 7.99) 6.60 (5.18, 8.13) 6.57 (5.40, 7.92) 0.624

RBC (1012/L) 4.44 (4.15, 4.88) 4.43 (4.17, 4.88) 4.44 (4.06, 4.88) 0.734

Hemoglobin (g/L) 133 (122, 142) 135 (125, 142) 132 (120, 142) 0.291

PLT (109/L) 220 (176, 262) 213 (174, 258) 225 (177, 264) 0.639

HCT (%) 40.1 (36.8, 42.8) 40.6 (37.3, 42.8) 39.5 (34.8, 42.4) 0.094

MCV (fl) 89 (86, 92) 90 (86, 92) 88 (86, 91) 0.143

MCH (pg) 30.10 (28.80, 30.90) 30.10 (28.95, 30.85) 30.05 (28.60, 30.92) 0.868

MCHC (g/L) 332 (325, 344) 333 (325, 343) 332 (324, 345) 0.599

RDW (%) 13.10 (12.50, 13.70) 12.90 (12.40, 13.75) 13.20 (12.60, 13.70) 0.248

Triglycerides (mmol/L) 1.41 (0.99, 1.96) 1.34 (0.94, 2.00) 1.49 (1.14, 1.92) 0.249

Total cholesterol (mmol/L) 4.36 (3.37, 5.16) 4.38 (3.33, 5.20) 4.35 (3.38, 5.15) 0.818

HDL (mmol/L) 1.14 (0.99, 1.35) 1.18 (0.99, 1.35) 1.12 (1.00, 1.34) 0.798

LDL (mmol/L) 2.36 (1.74, 3.02) 2.35 (1.74, 3.11) 2.38 (1.74, 2.94) 0.756

Serum glucose (mmol/L) 5.99 (5.25, 7.81) 5.87 (5.14, 7.67) 6.23 (5.38, 8.25) 0.091

Serum sodium (mmol/L) 141.70 (139.80, 143.15) 141.80 (140.00, 143.10) 141.20 (139.57, 143.12) 0.277

Chloride (mmol/L) 105.0 (102.2, 106.7) 105.0 (102.7, 106.3) 105.0 (102.2, 107.0) 0.859

Serum potassium (mmol/L) 4.09 (3.84, 4.31) 4.04 (3.85, 4.28) 4.12 (3.83, 4.32) 0.286

Serum calcium (mmol/L) 2.29 (2.23, 2.36) 2.28 (2.22, 2.37) 2.30 (2.24, 2.35) 0.559

Bicarbonate (mmol/L) 24.00 (22.30, 26.20) 24.10 (22.40, 26.55) 23.95 (22.08, 25.83) 0.171

Serum creatinine (umoI/L) 74 (62, 90) 71 (60, 88) 78 (65, 94) 0.044

Uric acid (mg/dL) 340 (296, 406) 327 (274, 394) 364 (316, 429) 0.011

Serum albumin (g/L) 42.1 (39.9, 45.1) 42.2 (40.0, 45.5) 42.0 (39.9, 44.5) 0.254

Total bilirubin (umol/L) 11.1 (7.8, 15.1) 11.3 (7.8, 14.5) 10.8 (8.1, 15.1) 0.973

ALT (U/L) 19 (14, 25) 20 (14, 25) 18 (14, 23) 0.327

AST (U/L) 23 (20, 27) 24 (20, 28) 23 (20, 26) 0.358

CKMB (U/L) 10 (1, 15) 11 (1, 15) 10 (1, 15) 0.760

Homocysteine (umol/L) 12.0 (9.4, 15.8) 11.2 (9.0, 14.9) 13.4 (10.3, 17.3) 0.008

PT (s) 11.70 (11.00, 12.40) 11.80 (11.20, 12.50) 11.55 (10.80, 12.22) 0.129

APTT (s) 25.6 (23.1, 28.0) 25.8 (23.3, 28.6) 25.4 (23.0, 27.4) 0.375

INR 1.03 (0.96, 1.08) 1.03 (0.97, 1.09) 1.03 (0.95, 1.07) 0.290

D-dimer (mg/L) 0.39 (0.24, 0.62) 0.38 (0.21, 0.56) 0.44 (0.26, 0.69) 0.067

Education (n, %) 0.001

1 152 (76%) 75 (68%) 77 (88%)

2 47 (24%) 36 (32%) 11 (12%)

Sex (n, %) 0.727

Male 99 (50%) 54 (49%) 45 (51%)

Female 100 (50%) 57 (51%) 43 (49%)

(Continued)
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TABLE 1 (Continued)

Variables Total (n = 199) Control group (n = 111) Incidence group (n = 88) P-value

Smoke (n, %) 0.342

No 149 (75%) 86 (77%) 63 (72%)

Yes 50 (25%) 25 (23%) 25 (28%)

TIA (n, %) < 0.001

No 135 (68%) 91 (82%) 44 (50%)

Yes 64 (32%) 20 (18%) 44 (50%)

Hypertension (n, %) 0.015

No 35 (18%) 26 (23%) 9 (10%)

Yes 164 (82%) 85 (77%) 79 (90%)

Diabetes (n, %) 0.017

No 70 (35%) 47 (42%) 23 (26%)

Yes 129 (65%) 64 (58%) 65 (74%)

CAD (n, %) 0.976

No 97 (49%) 54 (49%) 43 (49%)

Yes 102 (51%) 57 (51%) 45 (51%)

Drug (n, %) 0.135

No 55 (28%) 26 (23%) 29 (33%)

Yes 144 (72%) 85 (77%) 59 (67%)

Education: 1, lower education level; 2, higher education level.

Statistical analysis

The Boruta algorithm is currently a very popular feature
screening method (Lei et al., 2021). We integrated the filtered
variables into the machine learning model. In this study, we
aimed to compare eight machine learning methods to build the
model and select the model with the best performance for model
interpretation. In order to improve the efficiency of use and clinical
usability, we developed an online risk calculator using the best
model, which can effectively help doctors identify the risk of MCI
in stroke high-risk groups.

The Boruta algorithm is used for feature importance selection,
the core of which is based on shadow features. We randomly
scramble each feature, these scrambled features are called shadow
features, and take the mean of feature importance before selection.
The features most associated with the dependent variable are then
included in the model. Eight machine learning algorithms are used
to build the model, which are logistic regression (LR), decision tree
(DT), K-nearest neighbors (KNN), random forest (RF), extreme
gradient boosting (XGBoost), elastic network (ENET), support
vector machine (SVM), multilayer perceptron (MLP). Before the
algorithm starts, we set the hyperparameters (Supplementary
Table 1) to improve the performance and effect of the machine
learning model. The specific hyperparameters can be seen in the
Supplementary material. The data of 199 patients were randomly
divided into training set (70%) and testing set (30%) according to
the ratio of 7:3. In order to assess the robustness of the model,
we employ fivefold cross-validation on the training set and testing
set. On the training set, eight machine learning algorithms were
used to build the model, and the testing set was used to test

the effectiveness of the model. The performance metrics of the
eight machine learning models are represented by parallel line
graphs. In addition, a calibration curve was used to assess the
agreement between observed and predicted probabilities, and a
decision curve (DCA) was used to assess clinical validity. We
defined the model with the maximum value of the area under the
curve (AUC) of the receiver operating characteristic curve (ROC)
as the best model.

Variable importance is used to show the importance of each
feature to the model output, and select the top four variables
for discussion. In addition, shapley additive explanation (SHAP)
is used for model visualization. Firstly, the SHAP summary
plot was used to illustrate the effects of the features attributed
to the model. Secondly, partial dependence plots were used to
analyze the effect of a feature on the outcome. Finally, single-
sample SHAP is used to demonstrate the impact of features
on the outcome of a single forecast sample. If the SHAP value
assigned to each feature in the forecast sample is greater than
0, it is positively correlated with the outcome, and if it is less
than 0, it is negatively correlated with the outcome. Continuous
variables were represented using medians and quartiles, compared
by using the Wilcoxon rank sum test. Categorical variables
were expressed using frequencies and percentages, and chi-
square tests or Fisher’s exact probability method were used
for comparisons.

All analyzes were performed using R software (version 4.2.0),
and two-sided P-values < 0.05 were considered statistically
significant. The used R packages include tidymodels, Boruta,
rpart.plot, NeuralNetTools, pROC, PredictABEL, iml, fastshap,
gtsummary, Table 1, dplyr.
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FIGURE 1

Feature selection based on Boruta algorithm.

FIGURE 2

Receiver operating characteristic curve of the eight models.

Results

The baseline characteristics of the patients are presented in
Table 1. In this study, a total of 199 patients with high-risk of stroke

were included, with a median age of 68 years (interquartile range,
64–72 years old), of whom 88 (44.2%) had MCI, and 99 (49.7%)
were male. The systolic blood pressure, creatinine, uric acid and
homocysteine in the disease group were higher than those in the
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FIGURE 3

Decision curve analysis of eight types of machine learning.

control group, and the difference was statistically significant. In the
higher education group, the incidence of MCI was lower than that
in the lower education group, and the difference was significant.
Among people with diabetes, hypertension, and TIA, the number
of people with MCI was more than those without the above three
diseases, and the difference was significant.

Model building and verification

Figure 1 shows the results of feature selection based on
the Boruta algorithm. Sorted according to the Z score value,
the green ones are considered acceptable variables, a total of 9
variables, namely TIA, homocysteine, education, HCT, diabetes,
hemoglobin, RBC, hypertension, PT. Using the above nine
variables, eight machine learning models were established to
predict the risk of MCI in stroke high-risk groups. Figure 2
shows the ROC curve of each model, and the model effect is
expressed by AUC value. Logistic regression (AUC = 0.8595)
was the best model for predicting MCI in high-risk groups of
stroke, followed by ENET (AUC = 0.8312), MLP (AUC = 0.7908),
XGBoost (AUC = 0.7691), and SVM (AUC = 0.7527), RF
(AUC = 0.7451), KNN (AUC = 0.7380), DT (AUC = 0.6972).

Supplementary Figure 1 shows other indicators of each model, in
which the accuracy of logistic regression is 0.770, the sensitivity is
0.778, the specificity is 0.765, and the recall is 0.778. Supplementary
Figure 2 shows the calibration curves of each model. The
calibration curve of the logistic regression model did not deviate
significantly from the reference line, indicating that it has good
predictive performance. According to the DCA curve (Figure 3),
logistic regression showed a greater net benefit, indicating good
clinical validity of the logistic regression model. Figure 4 shows
the importance of variables, among which the top four are
TIA, diabetes, education level, and hypertension. The forest plot
(Figure 5) shows the odds ratio (OR) and 95% confidence interval
(95% CI) of the top 4 variables of importance. The (OR, 95% CI) of
patients with hypertension, diabetes and TIA were 3.85 (1.59–10.2),
5.04 (2.35–11.67), 8.56 (3.94–20.23), respectively, and the difference
was significant. The (OR, 95% CI) of lower education level was 4.38
(1.91–10.9), and the difference was significant. In order to improve
the speed of operation and clinical utility, the most efficient logistic
regression model was used to develop an online risk calculation1 to
assess the risk of MCI in high-risk stroke populations.

1 https://shrpmci.shinyapps.io/shrpmciprediction/
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FIGURE 4

Variable importance.

FIGURE 5

Odds ratios and 95% confidence intervals for hypertension, diabetes, TIA, education.

Model interpretation

The partial dependence plot (Figure 6) shows the effect of the
top four most important variables on the outcome in the logistic
regression model. Among high-risk groups of stroke, TIA, diabetes,

and hypertension were positively correlated with the occurrence
of MCI, while higher education was negatively correlated with
the risk of developing MCI. The SHAP summary plot (Figure 7)
shows the impact of each variable on the outcome in the logistic
regression model, including positive and negative. Each point in
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FIGURE 6

Partial dependence plot of features (TIA, diabetes, education level, hypertension).

Figure 7 represents the SHAP value of each sample. In this study,
for continuous variables, purple indicates that the value is larger,
and yellow indicates that the value is smaller. The more dispersed
the points, the greater the impact of the variable on the outcome
of the model; for binary variables, purple represents occurred, and
yellow represents not occurred. Figure 7 shows that patients with
TIA, diabetes and hypertension have a positive SHAP value, which
is more conducive to the occurrence of MCI. Higher education has
a lower SHAP value, indicating that higher education prevents the
occurrence of MCI. Figure 8A shows the single-sample predictions
of MCI, with TIA, diabetes, and hypertension contributing to the
occurrence of the disease, while higher education was protective.
Figure 8B shows the prediction of a single sample without MCI,
high education and no TIA are beneficial to prevent the occurrence
of MCI, while diabetes and hypertension promote the occurrence
of MCI.

Discussion

In this retrospective cohort study, Boruta algorithm was
used to screen 46 variables, and a machine learning model was
developed and validated to predict the risk of MCI in stroke
high-risk population. Machine learning models can be used to
realize early dynamic monitoring, which can save clinicians’ time

(Li et al., 2020). Artificial intelligence and machine learning are
gaining popularity in clinical research, such as assessing patient
outcomes after surgery (Voglis et al., 2020), predicting hypotension
(Kendale et al., 2018), and depth of anesthesia (Lee et al., 2018).

Firstly, the Boruta algorithm shuffles each feature value of the
feature matrix, and splices the shuffled features (shadow features)
with the original features (real features) to form a new feature
matrix. Secondly, calculate the Z-score of the real features and the
shadow features. Find the largest Z-score in the shadow features
and define it as Z-max. Mark a real feature with a Z-score greater
than Z-max as “important.” Set all other real features whose
Z-score is significantly smaller than Z-max as “unimportant” and
permanently remove them from the feature set. Repeat the above
steps until all features are marked as “important” or “unimportant”
(Kursa and Rudnicki, 2010). Finally, we obtain the eigenvalues
of the three color channels. The red area represents the rejection
zone, and features in this area are considered noise and can
be discarded. The blue area is the hesitation zone, which poses
difficulty for Boruta in selecting the features. The green region
is considered the acceptable area, where features are generally
considered predictive and can be kept. In this study, we included
variables in the green area into the model. In the machine learning
modeling process, we use grid search and fivefold cross-validation
to find the hyperparameters of the model. The training cohort is
randomly divided into 5 subsets, one of which is selected as the
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FIGURE 7

SHAP value according to the feature of MCI in high-risk groups of stroke.

FIGURE 8

SHAP values for each feature of a single sample. (A) MIC occurs; (B) MIC does not occur.

validation data set, and the other four are used as the training data
set, and five iterations are performed to obtain a reliable and stable
model. Our DCA suggests that the logistic regression model has
good clinical utility.

As one of the machine learning algorithms, logistic regression
has been compared with other machine learning algorithms in
previous studies, and it has been shown that other machine
learning algorithms do not necessarily perform better than logistic
regression. Logistic regression provides odds ratios that are easily
interpreted. The importance output of machine learning for
individual predictors is not very informative. Our research also
shows that logistic regression models perform best (Kuhle et al.,
2018). Logistic regression models were interpreted using SHAP.

Variable importance found that TIA, diabetes, education level, and
hypertension were the top four variables with the greatest influence
on predicting MCI. The odds ratios of the above four variables
were calculated using a logistic regression model, and the results
were presented in a forest plot. We used the SHAP force to predict
individual and overall MCI in the high-risk group of stroke in the
logistic regression model, and the results showed that diabetes, TIA,
hypertension, and lower education level promoted the occurrence
of MCI.

Studies have shown that about one-third of stroke patients
develop MCI (Sachdev et al., 2006), and some patients may recover
over time (Desmond et al., 1996), but the overall cognitive function
shows a downward trend, which is due to stroke Patients are
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at increased risk of cerebrovascular disease progression (Wentzel
et al., 2001; Aharon-Peretz et al., 2002; Nyenhuis et al., 2002; Tham
et al., 2002; Srikanth et al., 2004; del Ser et al., 2005). A previous
study showed that transient cognitive impairment was common
and most patients were asymptomatic when evaluated within 7 days
of TIA (Pendlebury et al., 2011). Meanwhile, some TIA patients
developed MCI after the first day (Pendlebury et al., 2011). Our
results show that TIA is an important risk factor for MCI in stroke
high-risk groups, which is consistent with previous research results.

Hypertension has been confirmed to be closely related to
cerebral small vessel lesions such as white matter lesion (WML),
lacunar infarction, or cerebral microbleeds (Viswanathan et al.,
2009), and these diseases also play an important role in the process
of dementia (Debette and Markus, 2010). In addition, hypertension
can easily lead to atherosclerosis and tortuosity of small blood
vessels in the cerebrovascular system, and pathological changes
in these blood vessels can lead to vascular stenosis and decreased
perfusion. This hypoperfusion promotes diffuse ischemic changes
in the deep white matter, leading to vascular cognitive impairment
(O’Brien et al., 2003). The study by Skoog et al. (1996) found
that elevated blood pressure at the age of 70 was associated with
the development of dementia 10–15 years later, suggesting that
previous elevated blood pressure may lead to the development of
dementia through WML. Our study also showed that among high-
risk groups of stroke, compared with those without hypertension,
the risk of MCI in patients with hypertension increased by 3.85
times, and the difference was significant (P-value < 0.05).

The results of our study showed that the risk of MCI increased
by 5.04 times in patients with diabetes comorbidities among the
high-risk groups of stroke. Meta-analyses of an increasing number
of observational studies have shown that diabetes has a large
adverse effect on cognitive function (Cheng et al., 2012; Sadanand
et al., 2016; Zhang et al., 2017). A study by Zhou et al. (2010)
showed that in diabetic patients, the cognitive subdomains served
by the frontotemporal cortex are affected, leading to a decline
in cognitive functions such as memory and processing ability.
In addition, in the non-demented population, the relative risk of
MCI in diabetic patients was 1.49 (Xue et al., 2019), which is
consistent with the results of Cheng’s meta-analysis. The results of
a prospective study in 2019 showed that prediabetes was associated
with accelerated decline in cognitive function and was associated
with smaller overall brain volume, especially lower white matter
volume (Marseglia et al., 2019). Our study showed that the risk of
MCI increased 4.38 times with lower educational level. Studies have
shown that a higher education level can effectively delay the decline
of individual cognitive function (Vadikolias et al., 2012). At the
same time, for people with higher education, it is more conducive
to understand the assessment scale and implement it perfectly,
which may also be one of the reasons for the lower incidence
of MCI. At the same time, when MCI is diagnosed, relevant
treatment should be given as soon as possible. Studies have shown
that reasonable exercise, good sleep, stress management, mental
exercise, optimization of gut and oral microbiome, optimization of
nutritional support, reduction of inflammation, and neutralization
of free radicals will promote the reversal of MCI. Therefore, early
recognition of MCI and early intervention are crucial for the
treatment of MCI (Rao et al., 2023).

This study compared eight machine learning models for the
first time to comprehensively analyze, predict the risk of MCI

in high-risk stroke groups, and identify the most important risk
factors, which are the highlights of this study. This can effectively
enable patients to intervene on the risk factors of MCI before
the onset of stroke, which is more conducive to preventing the
occurrence of MCI. Our study also has some limitations. Firstly,
the included sample size is not large, and the established model
may not be effective enough. Secondly, this is a single-center
retrospective study, and we hope that in future studies, a multi-
center population can be included as an external validation to
obtain more information.

Conclusion

Transient ischemic attack (TIA), diabetes, education, and
hypertension are the most important risk factors for MCI in
high-risk population of stroke, and early intervention should be
performed to reduce the occurrence of MCI.
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