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Introduction: Numerous studies have shown that aging has important effects 
on specific functional networks of the brain and leads to brain functional 
connectivity decline. However, no studies have addressed the effect of aging at 
the whole-brain level by studying both brain functional networks (i.e., within-
network connectivity) and their interaction (i.e., between-network connectivity) 
as well as their joint changes.

Methods: In this work, based on a large sample size of neuroimaging data including 
6300 healthy adults aged between 49 and 73 years from the UK Biobank project, 
we first use our previously proposed priori-driven independent component 
analysis (ICA) method, called NeuroMark, to extract the whole-brain functional 
networks (FNs) and the functional network connectivity (FNC) matrix. Next, we 
perform a two-level statistical analysis method to identify robust aging-related 
changes in FNs and FNCs, respectively. Finally, we propose a combined approach 
to explore the synergistic and paradoxical changes between FNs and FNCs.

Results: Results showed that the enhanced FNCs mainly occur between different 
functional domains, involving the default mode and cognitive control networks, 
while the reduced FNCs come from not only between different domains but also 
within the same domain, primarily relating to the visual network, cognitive control 
network, and cerebellum. Aging also greatly affects the connectivity within FNs, 
and the increased within-network connectivity along with aging are mainly within 
the sensorimotor network, while the decreased within-network connectivity 
significantly involves the default mode network. More importantly, many 
significant joint changes between FNs and FNCs involve default mode and sub-
cortical networks. Furthermore, most synergistic changes are present between 
the FNCs with reduced amplitude and their linked FNs, and most paradoxical 
changes are present in the FNCs with enhanced amplitude and their linked FNs.

Discussion: In summary, our study emphasizes the diversity of brain aging and 
provides new evidence via novel exploratory perspectives for non-pathological 
aging of the whole brain.
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1. Introduction

As the world is entering a rapidly aging society (Beard et al., 2016), 
the problem of population aging has raised widespread concern. Aging 
is often accompanied by progressive degeneration of all organs of the 
body, particularly the brain, which affects memory, learning, and other 
cognitive functions (Naik et  al., 2017). There are thus increasing 
interests in studying the mechanisms of brain aging, which may 
provide evidence to help facilitate healthy aging. Neuroimaging 
techniques such as functional magnetic resonance imaging (fMRI) can 
help us to further disclose the influence of aging on the brain function.

An increasing number of studies have shown that aging has a 
direct effect on the functional network and connectivity of the brain 
(Sala-Llonch et al., 2015; Edde et al., 2020). However, different analysis 
methods could result in various or even disparate findings (Jockwitz 
and Caspers, 2021). For example, one previous study (Zonneveld 
et  al., 2019) based on independent component analysis (ICA) 
(Calhoun and de Lacy, 2017) found that the connectivity is enhanced 
in older individuals within the visual domain, while an opposite 
conclusion was drawn using graph theory analysis (Xiang et al., 2020) 
in a paper (Stumme et al., 2020) that supports the connectivity is 
decreased with aging within visual domain. It is well acknowledged 
that an advanced analysis method can play an important role in 
maximizing the reliability of findings in terms of brain function aging.

Researchers often apply region-of-interest (ROI) based methods 
(Cansino, 2022), ICA, or graph theory technique to extract and 
analyze brain functional network and connectivity. However, ROI 
based methods depend heavily on the definition or selection of prior 
brain regions, thus such approaches may be most useful to detect brain 
aging effects on targeted specific functional networks and connectivity 
(Zhang et al., 2014; Hausman et al., 2020). Although there have been 
some studies that apply whole-brain ROIs to explore aging effects on 
brain functional connectivity at the whole brain level (King et al., 
2018), they only focus on the connectivity between ROIs but cannot 
investigate the changes within ROIs. Different from the ROI based 
method, ICA is data-driven as there is no need to define brain regions 
in advance based on subjective knowledges. More importantly, ICA 
can output spatial functional networks as well as the temporal 
fluctuations of functional networks, naturally providing a chance to 
study brain functional networks and meanwhile their interaction 
relationship. Regarding the spatial independent components obtained 
from ICA on fMRI data, each biologically meaningful component 
reflects one brain functional network in which the Z-score of each 
voxel represents its within-network connectivity extent. In addition to 
the components, the estimated time courses from ICA include 
temporal information of functional networks, so they are often used 
to further compute functional connectivity between those networks. 
Previous aging-related studies using ICA only worked on some spatial 
functional networks (Ge et  al., 2014) or functional connectivity 
between specific networks (Jockwitz et al., 2017; Patil et al., 2021). 
There has also been some research work exploring whole brain 
functional network connectivity using graph theory approaches 
(Geerligs et al., 2015; Varangis et al., 2019; Stumme et al., 2020), which 
analyzed the data in a more integrative way, but primarily focused only 
on functional connectivity. To the best of our knowledge, most 
previous studies using ICA only explored the within-network 
connectivity or between-network connectivity to understand the brain 
aging mechanism, and few studies investigated both within-network 

and between-network connectivity in a unified framework, 
furthermore the joint changes between within-network and between-
network connectivity along with aging are largely unknown.

Data quality and sample size can impact the effectiveness of brain 
aging exploration. However, many studies used relatively small sample 
numbers, resulting in less generalizable findings. For example, a study 
comprising 40 old adults (aged 59–74 years) and 40 young adults (aged 
18–26 years; Linda et al., 2015) demonstrated that local efficiency of 
sensorimotor network does not change significantly. However, this is 
inconsistent with another study that showed increased local efficiency 
of sensorimotor network using 26 young adults (aged 21–28 years) and 
24 old adults (aged 51–65 years; Song et al., 2014). Using 114 subjects 
aged 48–89 years, another study reported decreased connectivity 
strength for subjects aged 65–79 years (Farràs-Permanyer et al., 2019), 
and did not detect progressive aging. In addition to the data quantity, 
data quality can also affect the reliability of the results. One previous 
study used two datasets, young and old subjects, with a sample size of 
50, and the data age range was 21–28 for young subjects and 52–64 for 
old subjects (Song et al., 2014). Another study used three sets including 
young adults of 18–29 years, middle-aged adults of 43–55 years and old 
adults of 63–76 years (King et al., 2018). Although many studies have 
attempted to cover young and older adults, the age ranges were often 
determined subjectively and did not consider the sample balance 
among different ages. And, some studies involved data with an 
imbalance ratio between the males and females (Hughes et al., 2020; 
Stumme et al., 2020), however males and females can present different 
brain aging mechanisms (Foo et al., 2021; Ficek-Tani et al., 2022), 
which could influence findings. In summary, lower data quantity and 
quality of participants such as imbalanced sample number across 
different age groups and between females and males, small sample size, 
and large age span may not support a more in-depth exploration of 
brain aging, therefore, strict quality control of data as well as large-
sample data would be beneficial for a more reliable finding.

To address the above issues, in this paper we  employ our 
previously proposed NeuroMark method (Du et al., 2020) to obtain 
both the whole-brain spatial functional networks and their temporal 
connectivity relations so as to explore the aging effect at both the 
within-network and between-network levels. To maximize the 
reliability of the findings, we leverage a large sample size of fMRI data 
from 6,300 healthy subjects that almost include all available subjects 
aged between 49 and 73 years in the UK Biobank project (Sudlow 
et al., 2015) for the exploration of brain changes along with the aging. 
To avoid false positives in the results, we exactly match the number of 
subjects between gender and across different ages. By making full use 
of the within-network connectivity and the between-network 
connectivity, our study not only aims to reveal how each network 
changes, but also expects to disclose how the interaction between 
different networks in various functional domains declines along with 
the aging process. After obtaining whole-brain spatial functional 
networks and their connectivity via NeuroMark, we  propose a 
two-level statistical analysis method to detect how aging progressively 
affects the brain and to identify robust aging-related brain alterations. 
Since NeuroMark used in this paper simultaneously yields large-scale 
brain functional networks and their functional connectivities, there is 
a unique advantage to investigate their systematical changes. In this 
paper, we  propose novel fusion analysis strategies to investigate 
systematical changes between the within-network connectivity and 
between-network connectivity as people age.
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2. Materials and methods

2.1. Subjects

To study the aging effect on brain function, we use a large sample 
size of resting-state fMRI data that covers most available healthy 
subjects aged from 49 to 73 years that participate in brain fMRI 
scanning in the UK Biobank project (Sudlow et al., 2015). The UK 
Biobank project is a prospective cohort study with deep genetic and 
phenotypic data collected on approximately 500,000 individuals from 
across the United Kingdom. The subjects who had any mental, neural 
system, and other diseases that could affect the brain function are 
discarded. In detail, we  excluded the subjects with the following 
diseases diagnosed by ICD-10: malignant neoplasms of eye, brain, and 
other parts of the central nervous system, mental and behavioral 
disorders, diseases of the nervous system, diseases of the eye and 
adnexa, diseases of the ear and mastoid process, cerebrovascular 
diseases, and congenital malformations of the nervous system. 
Discovering the neural changes linked to progressive aging in brain is 
our primary interest, so we strictly balance the number of subjects at 
each age to be the same. In the UK Biobank project, there are only a 
few subjects under 49 years old and over 73 years old that were 
scanned for collecting fMRI data, so we study the subjects aged from 
49 to 73 years in order to maintain more subjects for each age group 
as well as cover the main aging period (Peters, 2006). Similarly, the 
number of females and males is set to be identical for each age group, 
which maximizes the reliability of our findings in the general 
population. After performing the quality controls on the preprocessed 
fMRI data to select the data with slight head motion (described in 
Section 2.2), the remaining subjects are divided into 25 groups 
according to their age, while each of the 25 age groups includes 252 
subjects (126 females, 126 males), resulting in n = 6 300, subjects 
(mean age: 61, males: 3150) for our study.

2.2. Image acquisition and preprocessing

All participants underwent resting-state fMRI scanning 
performed on a Siemens Skyra 3T scanner (Siemens Medical 
Solutions, Erlangen, Germany). FMRI data was obtained using a 
blood-oxygenation level dependent (BOLD) with an echo-planar 
imaging (EPI) sequence (TR = 0.735 s, TE = 39 ms, FoV =88 × 88 × 64, 
voxel resolution 2.4 × 2.4 × 2.4 mm, flip angle = 52o), lasting for 6 min 
for 490 time points. Participants were instructed to relax and think of 
nothing while focusing their eyes on a crosshair during the scanning.

For all subjects with fMRI data in the UK Biobank project, 
we  preprocess their fMRI data using the statistical parametric 
mapping (SPM) software (Jia et al., 2019). For each subject’s data, after 
discarding the first ten image volumes, we perform the slice-timing 
and motion correction, normalization into the Montreal Neurological 
Institute (MNI) space using the echo-planar imaging (EPI) template, 
data resampling to 3 × 3 × 3 mm3 isotropic voxels, and finally spatial 
smoothing using a Gaussian function with a specific width at half of 
the maximum value (FWHM) = 6 mm. After that, we only preserve the 
subject data with slight head motion. As such, all remaining data has 
head motion with less than 3 0. mm  x , y, and z translations and less 
than 3° pitch, yaw, and roll rotations, measured by the averaged head 
motion value across all time points.

2.3. Computation of brain functional 
networks and connectivity via a NeuroMark 
method

In order to comprehensively explore brain function alterations 
along with the aging process, we apply our previously proposed 
NeuroMark method (Du et  al., 2020) to obtain both brain 
functional networks and the connectivity between networks. 
NeuroMark computes reliable functional network templates based 
on two independent resting-state fMRI datasets of healthy controls 
from the Brain Genomics Superstruct Project (GSP; Holmes et al., 
2015) and the Human Connectome Project (HCP; Van Essen et al., 
2013). We  first decompose these two datasets separately using 
standard group-level ICA to identify 100 independent components 
(ICs) for each dataset. The Supplementary Figures S1–S3 show the 
spatial maps of the 100 ICs obtained from the GSP dataset, which 
3D image data can be downloaded from www.yuhuidu.com. Next, 
we match the two sets of ICs (from GSP and HCP) using a greedy 
spatial correlation analysis to determine a set of reproducible and 
meaningful ICs as the reliable network templates. Specifically, IC 
pairs are regarded as reproducible if they show a higher spatial 
correlation than 0.4. From the reproducible (i.e., highly matched) 
ICs, 53 pairs of ICs are regarded as brain functional networks and 
then are assigned to different functional domains. Rather than 
averaging each pair of ICs to estimate one network template, 
we select the 53 ICs from the GSP dataset as 53 functional network 
templates, because they are smoother with less noises than that 
from HCP. After that, through an advanced multi-objective 
optimization-based ICA, NeuroMark automatically extracts 
accurate large-scale networks based on the 53 reliable functional 
network templates in a data driven manner (Du and Fan, 2013). 
The NeuroMark toolbox and codes are freely accessible on www.
yuhuidu.com. The NeuroMark method has been widely applied to 
various studies in the neuroscience field, such as extracting the 
brain dynamics of different sites to explore its abnormalities of 
patients with schizophrenia, bipolar and schizoaffective disorders 
(Sendi et  al., 2022; Gazula et  al., 2023), investigating the 
commonality and uniqueness between autism spectrum disorder 
and schizophrenia (Du et al., 2021, 2022), and exploring differences 
between genders using functional networks (Dhamala et al., 2023). 
Guided by 53 reliable functional network templates, in the study 
the corresponding 53 functional networks are computed for each 
of 6,300 subjects based on the preprocessed fMRI data. Because the 
53 functional network templates are arranged into seven functional 
domains according to their functional and anatomical roles (Allen 
et  al., 2014), including the subcortical (SC), auditory (AU), 
sensorimotor (SM), visual (VI), cognitive control (CC), default 
mode (DM), and cerebellar (CB) domains, the individual-level 
functional networks also naturally belong to these domains, which 
enables the subsequent investigation in terms of the aging affects 
at the functional domain level. Regarding those 53 network 
templates, the detailed component IDs and the peak Z-scores’ 
coordinates as well as their domain labels are provided in Table 1. 
After obtaining functional networks of all subjects by the 
NeuroMark, we also use the head motion parameters summarized 
by mean translation and rotation to regress out the motion effect 
from each voxel’s value in functional networks. Particularly, 
we  averaged the absolute translation values and the absolute 
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rotation values across all time points, respectively, to obtain the 
mean translation and the mean rotation values for each subject, 
then took the two metrices as two covariates to regress out their 
effects from each voxel’s Z-score in each network for all subjects. 
As such, the head motion’s negative effects should have been well 
removed and did not greatly affect the findings.

In addition to the spatial functional networks, we also compute 
the time courses (TCs) of those networks to reflect their temporal 
information using the NeuroMark method. After obtaining the TCs 
of all functional networks, we perform post-processing on each TC, 
including transforming the TC to a Fisher’s Z-score, using the six head 
motion parameters to regress TC, removing linear trends and spikes, 
and filtering via a band-pass filter with [0.01–0.15] Hz. Next, a 
functional network connectivity (FNC) matrix is obtained by 

calculating Pearson correlations between the processed TCs of those 
functional networks to reflect the interaction among networks. After 
obtaining the FNC matrices of all subjects, we also further remove the 
motion effect from each FNC by regressing out the head motion 
summarized by the mean translation and rotation values.

While the spatial map of each functional network reflects the 
within-network connectivity (Du et al., 2015), the FNC matrix reflects 
the complex interaction relationship between different networks (Du 
et al., 2020). By making full use of the within-network connectivity 
and the between-network connectivity, our study aims to reveal how 
the within-network and between-network connectivity decline along 
with the aging process, and more importantly also focused on the 
systematical changes between the within-network connectivity and 
the between-network connectivity as people age.

TABLE 1 Peak coordinates of functional network templates in NeuroMark.

FNs (ID) X Y Z FNs (ID) X Y Z

Sub-cortical (SC) domain Cognitive-control (CC) domain

Caudate (69) 6.5 10.5 5.5 Inferior parietal lobule ([IPL], 68) 45.5 −61.5 43.5

Subthalamus/hypothalamus (53) −2.5 −13.5 −1.5 Insula (33) −30.5 22.5 −3.5

Putamen (98) −26.5 1.5 −0.5 Superior medial frontal gyrus ([SMFG], 43) −0.5 50.5 29.5

Caudate (99) 21.5 10.5 −3.5 Inferior frontal gyrus ([IFG], 70) −48.5 34.5 −0.5

Thalamus (45) −12.5 −18.5 11.5 Right inferior frontal gyrus ([R IFG], 61) 53.5 22.5 13.5

Auditory (AU) domain Middle frontal gyrus ([MiFG], 55) −41.5 19.5 26.5

Superior temporal gyrus ([STG], 21) 62.5 −22.5 7.5 Inferior parietal lobule ([IPL], 63) −53.5 −49.5 43.5

Middle temporal gyrus ([MTG], 56) −42.5 −6.5 10.5 Right inferior parietal lobue ([R IPL], 79) 44.5 −34.5 46.5

Sensorimotor (SM) domain Supplementary motor area ([SMA], 84) −6.5 13.5 64.5

Postcentral gyrus ([PoCG], 3) 56.5 −4.5 28.5 Superior frontal gyrus ([SFG], 96) −24.5 26.5 49.5

Left postcentral gyrus ([L PoCG], 9) −38.5 −22.5 56.5 Middle frontal gyrus ([MiFG], 88) 30.5 41.5 28.5

Paracentral lobule ([ParaCL], 2) 0.5 −22.5 65.5 Hippocampus ([HiPP], 48) 23.5 −9.5 −16.5

Right postcentral gyrus ([R PoCG], 11) 38.5 −19.5 55.5 Left inferior parietal lobue ([L IPL], 81) 45.5 −61.5 43.5

Superior parietal lobule ([SPL], 27) −18.5 −43.5 65.5 Middle cingulate cortex ([MCC], 37) −15.5 20.5 37.5

Paracentral lobule ([ParaCL], 54) −18.5 −9.5 56.5 Inferior frontal gyrus ([IFG], 67) 39.5 44.5 −0.5

Precentral gyrus ([PreCG], 66) −42.5 −7.5 46.5 Middle frontal gyrus ([MiFG], 38) −26.5 47.5 5.5

Superior parietal lobule ([SPL], 80) 20.5 −63.5 58.5 Hippocampus ([HiPP], 83) −24.5 −36.5 1.5

Postcentral gyrus ([PoCG], 72) −47.5 −27.5 43.5 Default-mode (DM) domain

Visual (VI) domain Precuneus (32) −8.5 −66.5 35.5

Calcarine gyrus ([CalcarineG], 16) −12.5 −66.5 8.5 Precuneus (40) −12.5 −54.5 14.5

Middle occipital gyrus ([MOG], 5) −23.5 −93.5 −0.5 Anterior cingulate cortex ([ACC], 23) −2.5 35.5 2.5

Middle temporal gyrus ([MTG], 62) 48.5 −60.5 10.5 Posterior cingulate cortex ([PCC], 71) −5.5 −28.5 26.5

Cuneus (15) 15.5 −91.5 22.5 Anterior cingulate cortex ([ACC], 17) −9.5 46.5 −10.5

Right middle occipital gyrus ([R MOG], 

12)

38.5 −73.5 6.5 Precuneus (51) −0.5 −48.5 49.5

Fusiform gyrus (93) 29.5 −42.5 −12.5 Posterior cingulate cortex ([PCC], 94) −2.5 54.5 31.5

Inferior occipital gyrus ([IOG], 20) −36.5 −76.5 −4.5 Cerebellar (CB) domain

Lingual gyrus ([LingualG], 8) −8.5 −81.5 −4.5 Cerebellum ([CB], 13) −30.5 −54.5 −42.5

Middle temporal gyrus ([MTG], 77) −44.5 −57.5 −7.5 Cerebellum ([CB], 18) −32.5 −79.5 −37.5

Cerebellum ([CB], 4) 20.5 −48.5 −40.5

Cerebellum ([CB], 7) 30.5 −63.5 −40.5

The IC ID in each bracket corresponds to the index of IC in the 100 ICs obtained from the GSP dataset.
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2.4. Investigation of joint changes in brain 
functional networks and functional 
network connectivity

In this section, we first clarify how we investigate the changes for 
the FNC and functional networks separately, and then describe how 
we identify their joint changes along with the aging.

2.4.1. Investigating aging effect on brain 
functional network connectivity

Here, we  first introduce the analysis procedure on the FNCs, 
because the connectivity number in the FNC matrix is much lower 
than the voxel number in the functional networks. To maximize the 
reliability in identifying the aging-related FNCs, we  propose a 
two-level statistical analysis framework which idea is that two types of 
statistical analysis are separately performed to find the age-related 
FNCs and then the significant FNCs in both analyses are taken as 
reliable aging-related FNCs. Figure 1 shows the analysis framework 
on the FNCs.

In the first analysis (Figure 1A), for each FNC, we calculate its 
mean strength across subjects in each age group (e.g., the group that 
include subjects at age 70: group70), and then compute Pearson 
correlation (denoted by rFNCMean Age_ ) between the mean FNC 
strength values from different age groups (i.e., group49 to group73) and 
the ages (i.e., 49–73) to evaluate if the FNC is significantly associated 
with the aging process [p < 0.001, Bonferroni (BF) correction]. Next, 
each significant age-related FNC surviving BF correction is assessed 
to determine if it belongs to one of four patterns that are defined 
according to the mean FNC strength of group49 as well as the 
correlation between mean FNC and age (i.e., rFNCMean Age_ ). Here, 
the mean FNC strength of group49, as a baseline, is used to separate 
positive and negative FNCs. As such, in the first analysis using the 
mean FNC strength, the defined four patterns include the 
age-positively-related positive FNC (APRP-M), the age-negatively-
related positive FNC (ANRP-M), the age-positively-related negative 
FNC (APRN-M), and the age-negatively-related negative FNC 
(ANRN-M). Taking FNC belonging to the APRP-M pattern as an 
example, its mean FNC strength of group49 is positive, and the mean 
FNC strength across different ages has a positive correlation with age 
(i.e., rFNCMean Age_  > 0). Similarly, regarding the ANRP-M pattern, its 
mean FNC strength of group49 is positive, and the mean FNC strength 
across different ages has a negative correlation with age (i.e., 
rFNCMean Age_  < 0). Regarding the APRN-M pattern, its mean FNC 
strength of group49 is negative, and the mean FNC strength across 
different ages has a positive correlation with age (i.e., 
rFNCMean Age_  > 0). And regarding the ANRN-M pattern, its mean 
FNC strength of group49 is negative, and the mean FNC strength 
across different ages has a negative correlation with age 
(i.e., rFNCMean Age_  < 0).

In the second analysis (Figure 1B), for each FNC, we first perform 
a two-tailed two-sample t-test between its strength of groupother-age 
(e.g., group50) and that of the group49, and then utilize 24 T-values of 
all two-sample t-tests to calculate its Pearson correlation (denoted by 
rFNCT Age_ ) with the ages (i.e., from 50 to 73). In this paper, we use 
the group aged 49 as the baseline for conducting the two-sample 
t-tests, with an expectation of investigating the progressive aging path. 
Next, the FNCs that are significantly associated with aging according 
to rFNCT Age_  (p < 0.001, BF correction) are evaluated using our 

defined four patterns. The four patterns are defined based on the mean 
FNC strength at group49, the T-values from the between-group 
two-sample t-tests, and the correlation rFNCT Age_ . As such, for the 
second analysis using T-values, the four patterns include the 
age-positively-related positive FNC (APRP-T), the age-negatively-
related positive FNC (ANRP-T), the age-positively-related negative 
FNC (APRN-T), and the age-negatively-related negative FNC 
(ANRN-T). In particular, an FNC is considered to belong to the 
APRP-T pattern if the mean FNC strength of group49 is positive, more 
than 80% T-values are positive, and the T-values have a positive 
correlation with the ages (rFNCT Age_  > 0). For the ANRP-T pattern, 
the mean strength of FNC of group49 is positive, more than 80% 
T-values are negative, and the T-values have a negative correlation 
with the ages (rFNCT Age_  < 0). Regarding the APRN-T pattern, the 
mean FNC strength of group49 is negative, more than 80% T-values 
are positive, and the T-values have a positive correlation with the ages 
(rFNCT Age_  > 0). Regarding the APRN-T pattern, similarly, the mean 
FNC strength of group49 is negative, more than 80% T-values are 
negative, and the T-values have a negative correlation with the ages 
(rFNCT Age_  < 0). Moreover, we summarize the number of FNCs that 
significantly show group difference (p < 0.01) in two-sample t-tests 
between groupother-age and group49 to investigate whether the difference 
increases along with the increasing age gap.

Based on the above-mentioned two-level analyses, we summarize 
the results to obtain reliable age-related FNCs (Figure 1C). Here, each 
FNC’s pattern is determined only if it belongs to the same pattern in 
both analyses. For example, if one FNC belongs to both APRP-M and 
APRP-T, it is regarded as belonging to the APRP pattern. So, four 
patterns of age-related FNC are finally summarized including the 
age-positively-related positive (APRP) FNC, the age-negatively-
related positive (ANRP) FNC, the age-positively-related negative 
(APRN) FNC, and the age-negatively-related negative (ANRN) 
FNC. Then, its mean correlation from the two analyses is computed 
by averaging rFNCMean Age_  and rFNCT Age_  to reflect its association 
with aging, and its statistical significance is obtained by averaging 
pFNCMean Age_  and pFNCT Age_ .

Furthermore, we summarize the properties of reliable age-related 
FNCs for each pattern. Since each FNC links two functional networks 
and each functional network is assigned to one functional domain, 
we investigate FNC-linked functional domains to assess if different 
changing patterns show different within-domain and between-domain 
connectivity properties. Here, one FNC is taken as the within-domain 
only when two functional networks belong to the same functional 
domain (e.g., DM), or it is taken as the between-domain (e.g., one 
network belongs to the DM and the other one belongs to the VI). For 
this goal, we sum up the number of FNCs that each functional domain 
involves for each changing pattern separately in order to study which 
brain functional domains are more apt to show what changing patterns.

2.4.2. Investigating aging effect on brain 
functional networks

In a similar manner, we  apply a two-level statistical analysis 
framework (shown in Figure 2) to identify the reliable aging-related 
brain regions within functional networks. In brief, for each voxel’s 
Z-score value in each functional network, two types of statistical 
analysis are performed separately to evaluate its association with the 
aging and determine its changing pattern, and then the voxel is 
regarded as being aging-related in case that it shows a significant 
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association with the aging in both analyses, finally its changing pattern 
is judged accordingly and its property is summarized. After extracting 
voxels with each changing pattern in each functional network, 
we further analyze the brain regions each of which includes voxels 
with the same changing pattern and their related functional domains.

Regarding the first analysis (Figure 2A), since the voxels with 
positive Z-scores have more important information than that with 
negative Z-scores in the functional networks obtained from ICA (Du 
et al., 2015), we only focus on studying the voxels which have positive 
mean Z-scores across all subjects. For each such voxel in each network, 
we  first average the voxel’s Z-score values in network across the 
subjects in each age group, and then compute Pearson correlation 
(denoted by rVoxelMean Age_ ) between the mean Z-scores of different 
age groups (i.e., group49 to group73) and the ages (i.e., 49–73) to 

evaluate its relation with aging. For the voxels that are significantly 
associated with aging, measured by rVoxelMean Age_  after the BF 
correction (p < 0.01), we further investigate its aging pattern. Here, 
each voxel is assessed based on the mean Z-score of group49 as well as 
the correlation between mean Z-score and age (i.e., rVoxelMean Age_ ). 
As such, in the first analysis using the mean Z-score, the defined two 
changing patterns include the age-positively-related voxel (APRV-M) 
and the age-negatively-related voxel (ANRV-M). For the APRV-M 
pattern, the mean Z-score of group49 is positive, and the voxel’s mean 
Z-score across different ages has a positive correlation with age (i.e., 
rVoxelMean Age_  > 0). Regarding the ANRV-M pattern, the mean 
Z-score of group49 is positive, and the voxel’s mean Z-score across 
different ages has a negative correlation with age 
(i.e., rVoxelMean Age_  < 0).

FIGURE 1

The whole two-level analysis framework of functional network connectivity (FNC). (A) The first analysis. For each FNC, we compute mean FNC 
strength in each age group and then compute Pearson correlation between the mean FNC strengths of all age groups and the ages. After that, each 
significant age-related FNC passing the correction [p < 0.001, Bonferroni (BF) correction] is assessed to judge if it belongs to one of four patterns. The 
defined four patterns include the age-positively-related positive FNC (APRP-M), the age-negatively-related positive FNC (ANRP-M), the age-positively-
related negative FNC (APRN-M), and the age-negatively-related negative FNC (ANRN-M). (B) The second analysis. For each FNC, we perform two-
tailed two-sample t-test analysis on FNC between each other age group and the group of age 49, and then compute Pearson correlation between the 
resulting T-values and corresponding ages. After that, each significant age-related FNC passing the correction [p < 0.001, Bonferroni (BF) correction] is 
assessed to judge if it belongs to one of four patterns including the age-positively-related positive FNC (APRP-T), the age-negatively-related positive 
FNC (ANRP-T), the age-positively-related negative FNC (APRN-T), and the age-negatively-related negative FNC (ANRN-T). (C) The combination of 
results of two statistical analyses. Reliable age-related FNC are identified only if it is significantly associated with age and belongs to the same pattern in 
both analyses. So, four patterns of age-related FNC are finally summarized, including the APRP, ANRP, APRN, and ANRN patterns.
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In the second analysis (Figure 2B), for each functional network, 
we first perform a right-tailed one-sample t-test to select the voxels 
that show significant positive Z-scores (p < 0.05). For each selected 
voxel, a two-tailed two-sample t-test is performed between its Z-score 
value in groupother-age and that in group49, and then we  utilize 
24 T-values of all two-sample t-tests to calculate its Pearson correlation 
(denoted by rVoxelT Age_ ) with the ages (i.e., from 50 to 73). Next, the 
voxels, which are significantly aging-related measured by rVoxelT Age_  
(p < 0.01, BF correction), are evaluated using our defined two patterns 
based on the mean Z-score in group49, the T-values from the inter-
group two-sample t-tests, and the correlation rVoxelT Age_ . As such, 
for the second analysis using T-values, the two changing patterns are 
defined as the age-positively-related voxel (APRV-T) and the 

age-negatively-related voxel (ANRV-T) patterns. In detail, one voxel 
is regarded as belonging to the APRV-T pattern if its mean Z-score in 
group49 is positive, more than 80% T-values are positive, and the 
T-values have a positive correlation with the ages (i.e., rVoxelT Age_  > 0). 
Regarding ANRV-T pattern, the voxel’s mean Z-score of group49 is 
positive, more than 80% T-values are negative, and the T-values have 
a negative correlation with the ages (i.e., rVoxelT Age_  < 0). Moreover, 
we  calculate the number of voxels that significantly show group 
difference (p < 0.01) in the two-sample t-tests between groupother-age and 
group49 in each functional network, and then sum up such voxel 
numbers across all networks to investigate whether the within-
network connectivity differences increase along with the increasing 
age gap.

FIGURE 2

The two-level analysis framework of brain functional network. (A) The first analysis. For each voxel of each network that shows positive mean Z-score, 
we compute voxel’ mean Z-score value in each age group and then compute Pearson correlation between mean values of all groups and ages. After 
that, each significant age-related voxel passing the correction [p < 0.01, Bonferroni (BF) correction] is assessed to judge if it belongs to one of two 
patterns including the age-positively-related voxel (APRV-M) and the age-negatively-related voxel (ANRV-M). (B) The second analysis. For each voxel 
of each network that significantly shows positive Z-score, we perform two-tailed two-sample t-test analysis on its value between each other group 
and the group of age 49, and then compute Pearson correlation between T-values and corresponding ages. After that, each significant age-related 
voxel passing the correction [p < 0.01, Bonferroni (BF) correction] is assessed to judge if it belongs to one of two patterns including the age-positively-
related voxel (APRV-T) and the age-negatively-related voxel (ANRV-T). (C) The combination of results of two statistical analyses. Reliable age-related 
voxels are identified only if one voxel is significantly associated with age and belongs to the same pattern in both analyses. So, age-related voxels 
belonging to the APRV and ANRV patterns are identified, and then the voxels that show the same changing pattern are combined into brain regions.
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Based on the results from the above-mentioned two statistical 
analyses, we identify reliable age-related brain regions in functional 
networks (Figure 2C). Here, different from the FNC analysis that 
investigates each FNC, we extract brain regions each of which contains 
abundant voxels with the same changing pattern for the subsequent 
study, because obviously single voxel’s connectivity in networks is 
meaningless. In particular, if one significant age-related voxel belongs 
to the APRV-M/ANRV-M pattern in the first analysis and the 
APRV-T/ANRV-T pattern in the second analysis, it is regarded as the 
APRV/ANRV pattern and its correlation with aging is computed as 
the mean of rVoxelMean Age_  and rVoxelT Age_ . In this way, for each 
functional network, we  preserve the voxels that are significantly 
related to aging after the BF correction in both analyses, and then 
combine the voxels that show the same changing pattern in both 
analyses into brain regions. Thus, for each functional network, the 
brain regions showing the APRV pattern and the brain regions 
showing the ANRV pattern are extracted, respectively. It is worth 
pointing out that one network can compose of both brain region in 
the APRV pattern and brain region in the ANPV pattern, which 
means that different parts of one network may change in a disparate 
way. Also, due to different networks could result in brain regions with 
various sizes, in this study we only maintain brain regions with more 
than 100 voxels for a further investigation. Finally, within each 
network, we evaluate each pattern related brain region in terms of its 
association degree with aging by averaging rVoxelMean Age_  and 
rVoxelTAge  correlations across all included voxels as well as its statistical 
significance by averaging pVoxelMean Age_  and pVoxelTAge  across all 
included voxels. Furthermore, for each pattern, we sum up the voxel 
numbers in brain regions that belong to each functional domain.

2.4.3. Investigating joint aging effect on 
functional network connectivity and functional 
networks

In addition to investigating the aging effects on the spatial 
functional networks (i.e., the within-network connectivity) as well as 
their interactions (i.e., between-network connectivity) separately, 
we also explore whether the within-network connectivity and the 
between-network connectivity systematically change during the aging 
process. Our basic idea is to measure the joint change between each 
reliable aging-related FNC and the connectivities within the two 
networks linked by the FNC. For each reliable aging-related FNC, 
since its changing pattern is already determined, the brain regions that 
have a consistent changing trend with the FNC in two linked networks 
are used to evaluate their synergistic aging effect. In our study, three 
age associations that are from one FNC and two brain regions showing 
a synergistic change with the FNC in the linked two networks are 
combined to reflect the synergistic aging degree. Similarly, in order to 
measure the paradoxical changes between one FNC and its linked two 
networks, the brain regions that have an opposite changing trend with 
the FNC in two linked networks are used for computing the mean 
correlation. As there are in total four changing patterns for one FNC 
and two changing patterns for one brain region in network, 
we  carefully design the synergistic/paradoxical change measures, 
formulated in the Equations (1)–(4). Although there are various 
formulations, the rules are consistent in that if the strengths in both 
the within-network connectivity and the between-network 
connectivity consistently increase or decrease along the aging, their 
changes are considered as synergistic changes, otherwise their changes 

are taken as paradoxical changes. All these measures are positive 
values, and the greater synergistic/paradoxical change measure 
supports the stronger synergistic/paradoxical changes between the 
FNC and its associated two networks.

In detail, for the APRP FNC and APRV/ANRV regions in 
functional network (FN), a synergistic/paradoxical change degree is 
computed as

 
r r r rFNC andFN FNC FN FN
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| | |
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For the ANRP FNC and ANRV/APRV regions in functional 
network, a synergistic/paradoxical change degree is computed as
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For the APRN FNC and ANRV/APRV regions in functional 
network, a synergistic/paradoxical change degree is computed as
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For the ANRN FNC and APRV/ANRV regions in functional 
network, a synergistic/paradoxical change degree is computed as
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Here, the r values represent the correlations between FNC (or 
brain regions in functional network) and age. If no age-related region 
exists for some specific pattern in the linked functional networks, 
we  set the region’s r value to 0 for the calculation. As such, two 
matrices are obtained to reflect the synergistic and paradoxical 
changes between reliable aging-related FNCs and brain regions in 
their linked functional networks, respectively. Since we are mostly 
interested in what FNCs have strong synergistic or paradoxical 
changes with networks’ own connectivities, we further summarize the 
FNCs which linked two networks include brain regions with the 
similar synergistic/paradoxical change trend. After that, we  also 
investigate the FNCs which linked one of the two networks has the 
brain region showing the synergistic/paradoxical change with them.

3. Results

3.1. Aging effect on brain functional 
network connectivity

As shown in Figure 3, we found that the significant age-related 
FNCs and their belonged changing patterns were quite consistent 
between the two types of statistical analysis. Furthermore, Figure 4A 
shows the number of FNCs that were statistically significant (p < 0.01) 
in comparing each other age group and the group of 49 years using 
two-sample t-tests. It is observed that the inter-group differences 
increased while the age gap became big. Since the two-level statistical 
analysis resulted in reliable age-related FNCs for four changing 
patterns, we  show those FNCs of each pattern in Figure  4B.  
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The detailed information of those FNCs can be  found in the 
Supplementary Tables S1–S4. Regarding the APRP FNCs, they were 
distributed in different brain networks, and included 48 FNCs 
accounting for 3.96% of all positive FNCs, with a mean FNC-age 
correlation as 0.89. Regarding the ANRP FNC, they included 48 FNCs 
accounting for 3.96% of all positive FNCs, with a mean FNC-age 
correlation as −0.89. Regarding the APRN FNC, they included 49 
FNCs accounting for 3.07% of all negative FNCs, with a mean 
FNC-age correlation as 0.88. Regarding the ANRN FNC, they 
included 51 FNCs accounting for 3.20% of all negative FNCs, with a 
mean FNC-age correlation as −0.89.

For each of the four changing patterns, we  summarized the 
age-related FNCs each of which linked different functional domains 
in Figure 4C, and the age-related FNCs each of which linked the same 
functional domain in Figure 4D, respectively. Among the 48 APRP 
FNCs, most of them linked different functional domains. In detail, 
there were 43 APRP FNCs linking different domains, wherein 29 
FNCs of them linked with the DM, and 21 FNCs linked with the 
CC. For each of the remaining 5 APRP FNCs, it linked the networks 
within the same domain, wherein 3 FNCs of them linked within the 
DM. For the ANRP pattern, among 48 FNCs, 26 FNCs linked different 
domains while the remaining 22 FNCs linked the networks within the 
same domain. Among the 26 FNCs linking different domains, 19 
FNCs of them linked with the CB; among the other 22 FNCs linking 
the same domain, 8 FNCs linked within the CC and 6 FNCs linked 
within the VI. For the 49 APRN FNCs, almost all of them (48 FNCs) 
linked different domains, wherein 31 FNCs of them linked with the 
VI, and 27 FNCs linked with the CC, while only one 1 FNC linked the 
networks within the CC domain. For the 51 ANRN FNCs, most of 
them also mainly involved different domains. In detail, there were 45 
FNCs linking different domains, wherein 23 FNCs of them linked 
with the SC, 23 FNCs of them linked with the CC, and 23 FNCs of 
them linked with the DM, while other 6 FNCs linked within domains, 
wherein 4 FNCs of them linked within the CC, and 2 FNCs linked 
within the DM.

From those reliable age-related FNCs, we  further selected the 
most important FNCs with absolute mean correlation greater than 
0.90 for an investigation. Figure 5 displays the mean FNC strength of 
the 49-year-age group for each of those important FNCs in each 
pattern. In summary, the APRP pattern comprised 18 FNCs 12 of 
which linked between the DM and the other domain (CC, VI, or SC); 
the ANRP pattern comprised 21 FNCs 10 of which linked the same 
domain (CC, SM, DM, VI, or CB), and 7 of which linked the CB and 
other domain (SC, CC, or DM); the APRN pattern comprised 15 
FNCs, 8 of which linked the VI and the other domain (CC, CB, or 
DM), and 7 of which linked the CC and the other domain (VI or SM); 
the ANRN pattern comprised 16 FNCs, 11 of which linked the DM 
and the other domain (CC, SM, or SC). From the above results, 
we found that different brain functions could be aging in different 
changing paths or patterns. Moreover, the aging more affects the FNCs 
that linked networks belonging to different functional domains 
compared to the FNCs linking the same domain for each changing 
pattern, although for the ANRP pattern, many FNCs also came from 
the same domain.

3.2. Aging effect on brain functional 
networks

We observed statistically significant associations between the 
voxels’ Z-scores in functional networks and the aging in both analyses, 
and as expected the results were consistent to each other. As 
mentioned above, the results from two statistical analyses were then 
combined to identify reliable aging-related brain regions that belong 
to two changing patterns, respectively, in each functional network. 
Regarding each of the defined two changing patterns, for each 
network, we summarized the network’s index, the mean correlation 
(with age) in the two analyses, the mean value of p in the two analyses, 
the correlation and value of p in each type of analyses, the voxel 
number of brain regions in the network, its functional domain, and 

FIGURE 3

FNC-age correlation of the significant age-related FNCs (p < 0.001, BF correction) for (A) the first and (B) the second analyses. Here, the orange, blue, 
green, and purple colors represent patterns of APRP-M/T FNC, ANRP-M/T FNC, APRN-M/T FNC, and ANRN-M/T FNC, respectively.
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brain region names according to the automated anatomical labeling 
(AAL) atlas (Tzourio-mazoyer et al., 2002). Please find the detailed 
information in Tables 2, 3.

To further investigate what brain regions in what networks belong 
to what changing pattern, we demonstrate the identified brain regions 
for the APRV and ANRV patterns in Figures 6A,B, respectively. For 
the APRV pattern, 11 functional networks spreading across different 
domains included brain regions in this pattern, and these regions were 
all highly correlated with age, with a mean correlation of 0.87. From 
15 functional networks, we identified brain regions belonging to the 
ANRV pattern, with a mean correlation of −0.87. As summarized in 
the Table 2; Figure 6A, the enhanced within-network connectivity 
changes primally involved: the caudate nucleus in the SC; superior 
temporal gyrus and insula in the AU; precuneus, postcentral gyrus, 
supramarginal gyrus, and inferior parietal region in the SM; middle 
occipital gyrus in the VI; postcentral gyrus, inferior parietal and 
supramarginal gyrus in the CC; thalamus, caudate nucleus in the DM; 
cerebellum inferior in the CB. As displayed in Table 3; Figure 6B, the 
diminished network within-network connectivity included: the 
lenticular nucleus putamen and lenticular nucleus pallidum in the SC; 
rolandic operculum, insula and median cingulate (and paracingulate 

gyri) in the AU; supplementary motor area, paracentral lobule, 
precentral gyrus, and superior frontal gyrus dorsolateral in the SM; 
inferior occipital gyrus in the VI; middle temporal gyrus, insula and 
median cingulate (and paracingulate gyri) in the CC; precuneus, 
anterior cingulate (and paracingulate gyri), median cingulate (and 
paracingulate gyri), precuneus and posterior cingulate gyrus in the 
DM; cerebellum inferior in the CB. Interestingly, among those 
functional networks, 6 functional networks from the SC, AU, SM, and 
DM domains included brain regions in both patterns, and those 
functional networks involved the caudate (IC69), middle temporal 
gyrus [MTG] (IC56), paracentral lobule [ParaCL] (IC2), right 
postcentral gyrus [R PoCG] (IC11), anterior cingulate cortex [ACC] 
(IC23) and posterior cingulate cortex [PCC] (IC71).

Using two-sample t-tests on the voxels’ Z-scores in networks 
between groupother-age and group49, the results (shown in Figure 7A) 
demonstrate that the number of statistically significant voxels 
increased greatly while the age gap increased. For each pattern, 
we  calculated age-related voxels in brain regions in functional 
networks for each functional domain (see Figure 7B). According to 
the results, the APRV pattern contained a lot of voxels in the SM, DM, 
and CC networks, with the SM networks showing the most changes 

FIGURE 4

(A) Number of significant FNCs of each comparison for the group of other age vs. the group of 49  years old. (B) Mean correlation of age-related FNCs 
for two-level analysis; (C) number of age-related FNCs each of which links different functional domains in each of the four changing patterns; 
(D) number of age-related FNCs each of which links the same functional domain in each of four patterns. The orange, blue, green, and purple 
represent patterns of the age-positively-related positive (APRP) FNC, the age-negatively-related positive (ANRP) FNC, the age-positively-related 
negative (APRN) FNC, and the age-negatively-related negative (ANRN) FNC, respectively.
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in this pattern. The ANRV pattern included many voxels in the DM, 
SC, and SM networks, while the DM networks showed the most voxels 
in this pattern. Moreover, although the AU domain only contains two 
functional networks, both had significant age-related changes.

3.3. Joint changes between functional 
network connectivity and functional 
networks

More importantly, we explored the joint changes including the 
synergistic and paradoxical changes between reliable aging-related 
FNCs and their linked functional networks, and show the results in 
Figure 8; Table 4. For the 48 APRP FNCs, 2 FNCs had a synergistic 
change with their linked both functional networks, 18 FNCs had a 
synergistic change with their linked one network, 5 FNCs had a 
paradoxical change with their linked two networks, and 22 FNCs had 

a paradoxical change with their linked one network. Regarding the 48 
ANRP FNCs, 6 FNCs had a synergistic change with their linked both 
functional networks, 22 FNCs had a synergistic change with their 
linked one functional network, 1 FNC had a paradoxical change with 
their linked both functional networks, and 15 FNCs had a paradoxical 
change with their linked one functional network. For the 49 APRN 
FNCs, 3 FNCs had a synergistic change with their linked both 
functional networks, 17 FNCs had a synergistic change with their 
linked one functional network, and 18 FNCs had a paradoxical change 
with their linked one functional network. For the 51 ANRN FNCs, 1 
FNC had a synergistic change with its linked both functional 
networks, 14 FNCs had a synergistic change with their linked one 
functional network, 7 FNCs had a paradoxical change with their 
linked both functional networks, and 22 FNCs had a paradoxical 
change with their linked one functional network. Furthermore, it can 
be  seen from Table  4 that most synergistic changes were present 
between the reduced FNCs (i.e., the ANRP and APRN patterns 

FIGURE 5

Reliable age-related FNCs each of which has a >0.90 absolute value of the mean correlation (computed by averaging rFNCMean Age_  and rFNCT Age_  
correlations in the two statistical analyses). Here, we separately show these FNCs in four patterns in four subfigures. For each FNC, its mean strength of 
subjects in the 49-year-age group is shown.
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showing decreased magnitude in the FNC strengths) and their 
associated functional networks, and most paradoxical changes were 
present between the enhanced FNCs (i.e., the APRP and ANRN 
patterns showing increased magnitude in the FNC strengths) and 
their associated functional networks.

The upper triangular part of the matrix in Figure 8A demonstrates 
the joint change measures (computed by Equations 1–4) for all reliable 
age-related FNCs, and the lower triangular part demonstrates the 
results of the FNCs which had a significant joint change with one or 
both linked functional networks. It’s observed that not all reliable 
age-related FNCs had synergistic or paradoxical changes with their 
associated functional networks. Furthermore, we summarized the 
most important joint changes where FNCs had strong synergistic or 
paradoxical changes with their linked both networks in Figure 8B that 
includes the FNC-age correlation value, the region-age correlation 
value in each of the two networks, and the joint change measure for 
each significant synergistic or paradoxical change. Combined with 
Table 4, we found that the joint changes manifest in different brain 
functional domains. For the APRP FNCs, the synergistic changes 
between them and linked functional networks were mainly related to 
the DM, and paradoxical changes were significantly associated with 
the DM and SC. It is seen that the positive FNCs linking the DM and 
SC showed paradoxical changes with their linked functional networks. 
While the DM and SC networks’ within-network connectivity showed 
decreases, their mutual positive connectivity was enhanced along with 
the aging. Regarding joint changes between the ANRP FNCs and their 
linked functional networks, synergistic changes were mainly related 
to the DM and CB, and paradoxical changes mainly involved the 
DM. In particular, the positive FNCs between the DM and CB that 
were weakened due to the aging tended to show synergistic changes 
with their linked functional networks that showed decreased within-
network connectivity. Interestingly, from Figure 8B, we also observed 
that the positive FNCs within both DM and CC showed a synergistic 
decrease with the DM and CC networks’ within-network connectivity. 
The synergistic changes of the APRN FNCs and their linked functional 
networks were mostly related to the CB, while paradoxical changes 

were scattered across all domains of the brain except the AU. For joint 
changes of the ANRN FNCs and their linked functional networks, 
synergistic changes were principally related to the CC, and paradoxical 
changes are principally related to the DM and SC. Going further to 
explain the paradoxical changes, the negative FNCs between the DM 
and SC became stronger (i.e., more negative), while the DM and SC 
networks’ within-network connectivity were decreased along with the 
aging. Taken together, the DM networks and the FNCs linking with 
them were greatly involved into the joint changes. Moreover, the 
relation between DM and SC networks was heavily affected by the 
aging process, represented by their enhanced interaction magnitude 
in both positive and negative connectivity while their own within-
network connectivities were decreased.

4. Discussion and conclusion

In this paper, we took advantage of a large sample size of fMRI 
data combined with a priori-based ICA method called NeuroMark to 
explore the significant aging-related changes in both the brain 
functional networks and their interactions, and more importantly 
we  investigated the joint changes between the within-network 
connectivity and the between-network connectivity during the aging. 
Using strict quality control, the subjects in our study had the exactly 
same sample numbers between genders as well as between different 
ages, which helped improve the robustness of our findings. In our 
work, a two-level statistical analysis method was proposed to ensure 
revealing the reliable aging-related brain changes. In addition, 
we carefully explored different aging patterns for the within-network 
and the between-network connectivities, respectively. More 
importantly, we proposed an effective method to quantify the joint 
synergistic or paradoxical changes between the within-network and 
the between-network connectivities. In summary, our work provides 
new insights into the brain aging of healthy individuals based on a 
large sample size of data with a strict quality control and advanced 
analysis methods.

TABLE 2 Information of brain regions in the APRV pattern.

FN ID Mean 
corr

Mean p The first 
analysis

The second 
analysis

VN Domain Region name

corr p corr p

69 0.89 5.52e-08 0.89 2.52e-08 0.89 8.52e-08 163 SC Caudate_L and Caudate_R

56 0.90 5.58e-08 0.90 2.07e-08 0.90 9.08e-08 333 AU Temporal_Sup_L and Insula_R

2 0.86 1.87e-07 0.86 8.36e-08 0.85 2.90e-07 146 SM Precuneus_L and Precuneus_R

11 0.86 1.77e-07 0.87 7.77e-08 0.86 2.76e-07 173 SM Postcentral_R and SupraMarginal_R

27 0.87 1.74e-07 0.88 1.65e-07 0.87 1.84e-07 341 SM Parietal_Inf_L and Parietal_Inf_R

15 0.86 2.26e-07 0.86 1.21e-07 0.86 3.32e-07 100 VI Occipital_Mid_L

79 0.87 1.00e-07 0.88 4.49e-08 0.87 1.56e-07 238 CC Postcentral_R, Parietal_Inf_R and 

SupraMarginal_R

81 0.87 1.03e-07 0.87 4.09e-08 0.87 1.65e-07 115 CC Parietal_Inf_L

23 0.86 1.32e-07 0.87 6.18e-08 0.86 2.03e-07 113 DM Caudate_L and Caudate_R

71 0.88 7.10e-08 0.89 2.03e-08 0.88 1.22e-07 298 DM Thalamus_L

7 0.88 8.32e-08 0.88 3.43e-08 0.87 1.32e-07 152 CB Cerebelum_8_R

FN ID, functional network ID in NeuroMark; corr, correlation value; VN, voxel number.
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Our study supports that brain aging has a progressive effect on the 
between-network connectivity (i.e., FNC). By separating the positive 
and negative connectivity for the analyses, we found that different 
FNCs present different changing patterns along with the aging, but 
primary changes involved the DM, CC, VI, and CB domains. 
Regarding the enhanced connectivities (from the APRP and ANRN 
patterns), we found that they mainly come from the between-domain 
and are mainly related to the DM and CC. Specifically, our results 
support that the positive FNCs which strengths increase (i.e., the 
APRP pattern) largely involve the DM, and they mainly occur between 
the DM and other networks such as the CC and SC. On the other 
hand, for the negative FNCs which strength magnitudes become 
greater along with aging (i.e., the ANRN pattern), we found that most 
of them link different domains including the CC, DM, and 
SC. Although some previous studies have also found enhanced 
connectivity strengths between the DM and other domains (Betzel 
et al., 2014; Geerligs et al., 2015; Staffaroni et al., 2018; Zhai and Li, 
2019; Zonneveld et  al., 2019), our work specifically separates the 
positive and negative connectivity, thus providing more elaborate 
information. In addition, numerous studies have shown that as aging, 
there is an enhancement phenomenon of connectivity among brain 
networks of different brain domains, and it is mainly embodied in the 
DM and higher-order brain networks (Jockwitz and Caspers, 2021). 
As previous studies indicate, the reason why older adults exhibit 
enhanced functional connectivity of the brain may is a compensatory 
effect (Cabeza et  al., 2002; Grady et  al., 2005; Davis et  al., 2008; 
Morcom and Henson, 2018). In addition, we found that weakening of 
connectivities (from the ANRP and APRN patterns) is primarily 
associated with the CC, VI, and CB. For the positive FNCs which 
strengths become weaker along with aging (i.e., the ANRP pattern), 
they occur not only between different domains, but also within the 

same domain. Furthermore, the FNCs between the CB and other 
networks show decreases, while lots of decreased positive FNCs occur 
within the CC and VI. The findings are supported by some work that 
also found decreased within-network connectivity in the dorsal 
attention network and VI (Varangis et al., 2019; Edde et al., 2020; 
Stumme et  al., 2020). For the negative FNCs which strength 
magnitudes become weaker along with aging (i.e., the APRN pattern), 
our results suggest that they mainly link the CC and VI with other 
domains, which is consistent to previous studies (Varangis et al., 2019; 
Stumme et al., 2020) that found the connections between the VI and 
SM, CC and other domains are negatively correlated with age. In 
summary, by analyzing the FNCs, our findings support that the 
enhancement of FNCs mainly occurs between different domains 
relating to the DM and CC, while the weakening of FNCs occurs not 
only between different networks but also within the network, 
primarily involving the VI, CC and CB. Although some studies have 
shown that connectivity within the same domain decreases and 
connectivity between different domains increases (Damoiseaux, 
2017), we  provide more detailed evidence for aging changes by 
distinguishing the positive and negative connectivity. Our findings 
point to a tendency of brain functional networks to become 
dedifferentiation along with aging, a combined result of increased 
connectivity between different domains and decreased connectivity 
within the same domain (Grady et al., 2016), and might also imply 
that the loss of functional specialization of specific brain networks as 
the brain ages (Hughes et al., 2020).

In addition to the interaction between networks, we found that 
many functional networks’ within-network connectivities change 
gradually with aging. Our results support that the networks with 
increased within-network connectivity are primarily from the SM and 
DM, and that with decreased within-network connectivity are mainly 

TABLE 3 Information of brain regions in the ANRV pattern.

FN ID Mean 
corr

Mean p The first analysis The second 
analysis

VN Domain Region name

corr p corr p

69 −0.88 8.01e-08 −0.88 3.09e-08 −0.87 1.29e-07 149 SC Putamen_L and Putamen_R

98 −0.89 6.50e-08 −0.90 2.14e-08 −0.88 1.09e-07 151 SC Putamen_L and Putamen_R

99 −0.88 9.26e-08 −0.88 3.47e-08 −0.87 1.51e-07 186 SC Pallidum_L and Pallidum_R

21 −0.87 1.65e-07 −0.87 5.88e-08 −0.86 2.72e-07 111 AU Polandic_Oper_L

56 −0.86 1.64e-07 −0.87 6.70e-08 −0.86 2.62e-07 243 AU Insula_L and Cingulum_Mid_R

2 −0.87 1.25e-07 −0.88 4.01e-08 −0.87 2.09e-07 185 SM Supp_Motor_Area_R, Paracentral_Lobule_L 

and Precentral_R

11 −0.87 1.40e-07 −0.88 5.35e-08 −0.86 2.26e-07 190 SM Precentral_L

54 −0.88 8.89e-08 −0.88 3.40e-08 −0.87 1.44e-07 104 SM Frontal_Sup_R and Frontal_Sup_L

20 −0.85 2.35e-07 −0.86 8.89e-08 −0.85 3.80e-07 103 VI Occipital_Inf_R

33 −0.87 1.27e-07 −0.88 3.79e-08 −0.86 2.15e-07 104 CC Insula_L and Cingulum_Mid_R

61 −0.86 1.37e-07 −0.87 4.81e-08 −0.85 2.25e-07 138 CC Temporal_Mid_R

32 −0.90 7.97e-08 −0.91 2.81e-08 −0.89 1.31e-07 155 DM Precuneus_R

23 −0.88 8.67e-08 −0.89 3.97e-08 −0.88 1.34e-07 163 DM Cingulum_Ant_L and Cingulum_Mid_L

71 −0.88 8.95e-08 −0.88 3.45e-08 −0.87 1.45e-07 230 DM Precuneus_R and Cingulum_Post_R

18 −0.88 1.05e-07 −0.89 3.35e-08 −0.87 1.76e-07 170 CB Celebelum_Crus2_L and Celebelum_Crus2_R

FN ID, functional network ID in NeuroMark; corr, correlation value; VN, voxel number.
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in the DM, SC, and SM. We  found that the within-network 
connectivity of the inferior parietal region in the SM and CC gradually 
increases with aging, which may be supported by previous studies 

reporting it may affect the ability of the elderly people in implementing 
sequential behavior (Giller and Beste, 2019). And we also found that 
the within-network connectivity of caudate in the DM and SC are 

FIGURE 6

Visualization of functional networks’ regions for (A) the APRV pattern and (B) the ANRV pattern. In each subfigure, we show the network ID, its 
functional domain, the mean correlation with age in the brain region, and the correlations with age of all aging-related voxels in the brain region. Note: 
for a clear display, we multiply the correlation in each voxel by 100.
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enhanced with the progressive brain aging, while the damage of the 
region’s volume is significantly associated with the aging (Verstynen 
et al., 2012; Bauer et al., 2015) and its function is impaired in common 
neurodegenerative diseases of older adulthood such as Parkinson’s 
disease (Pasquini et al., 2019). In our work, the cingulate in the DM, 
AU, and CC shows an attenuated within-network connectivity, which 
is relevant to declining cognitive function in the aging population 
(Pardo et al., 2007). Interestingly, it also often exhibits impairments in 
receiving and transmitting information in patients with Alzheimer’s 
disease (Yu et al., 2017). Our study also found a decreased putamen 
within-network connectivity in the SC, which is consistent with 
previous work that shows an age association with reduction in 
putamen volume that is frequently affected by neuropsychiatric and 
neurodegenerative disorders (Luo et al., 2019). In addition, we found 
that the frontal gyrus in SM has a decreased within-network 

connectivity during brain aging, which can be understood as a reason 
becoming difficult for the attainment of complex behaviors in the 
elderly (Dippel and Beste, 2015). Besides, we have a unique finding in 
terms of the within-network connectivity change of insula in aging, 
while previous studies suggest that self-discrimination in the elderly 
is linked to insula (Menon and Uddin, 2010; Han et  al., 2020). 
Interestingly, we found that all functional networks in the AU exist 
significantly aging-related regions, indicating that hearing loss is more 
common in the elderly (Jayakody et  al., 2018; Parthasarathy and 
Kujawa, 2018; Jafari et al., 2020). Taken together, we found that the 
aging changes of within-network connectivity are not only related to 
the DM, SC, and SM, but also involve the AU.

Our study disclosed that there are important joint changes 
between the within-network connectivity and the between-network 
connectivity, mostly relating to the DM and SC. Regarding the 

FIGURE 7

(A) Number of significant voxels across all networks in each comparison between the group of other age vs. the group of 49 years old. (B) Number of 
age-related voxels each of which belongs to functional domain in each of two patterns. The red and blue represent the patterns of the age-positively-
related positive voxel (APRV) and the age-negatively-related positive voxel (ANRV).
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FIGURE 8

(A) Joint change between functional network connectivity (FNC) and functional network (FN). The left and right matrices show the synergistic and 
paradoxical changes between FNC and FN, respectively. In each matrix, the upper triangular part demonstrates the joint change measures (computed by 
Equations 1–4) for all reliable age-related FNCs, and the lower triangular part demonstrates the results of the FNCs which had a significant joint change 
with one or both linked functional networks. The four colors represent the joint change between the FNCs in four patterns and their linked FNs, here the 
orange, blue, green, and purple represent the FNC patterns of the age-positively-related positive (APRP) FNC, the age-negatively-related positive (ANRP) 
FNC, the age-positively-related negative (APRN) FNC, and the age-negatively-related negative (ANRN) FNC, respectively. (B) Joint changes including the 
synergistic and paradoxical changes between reliable aging-related FNCs and their linked two functional networks. In each subfigure, we show the FNC-
age correlation value, the region-age correlation value in each of the two networks, and the joint change measure computed by Equations (1)–(4).
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enhanced positive connectivities (i.e., the APRP FNCs), our research 
shows that paradoxical changes account for a larger proportion and 
mainly manifest in the DM and SC, while the synergistic changes are 
also mainly related to the DM. It is noteworthy that the FNCs linked 
them gradually increase communication when the within-network 
connectivity in the DM and SC slowly decreases. Regarding the 
ANRP FNCs, the difference form enhanced connectivity is that there 
are more synergistic changes, which are mainly associated with the 
DM and CB, although the paradoxical changes are likewise mostly 
associated with the DM. Among the synergistic changes, the 
connectivity between DM and CB is evident. Their communication 
is gradually weakened while the within-network connectivity in the 
DM and CB networks themselves decrease. More interestingly, some 
FNCs linked within the DM and CC exhibited significant synergistic 
changes, with the weakened within-network connectivity occurring 
in both associated functional networks. For the joint changes in the 
APRN FNCs, there are more synergistic changes, mainly relating to 
the CB. However, the distribution of the paradoxical change is more 
various, which almost are present in all brain domains. For the joint 
changes in the ANRN FNCs, the paradoxical changes show more 
occupation than the synergistic changes, and they mainly occur in 
the connectivity with the DM and SC. Interestingly, while the 
functional networks in the DM and SC showed gradually weakened 
within-network connectivity during aging, their connectivities with 
other brain domains become stronger and stronger. In summary, our 
study clearly highlights that the importance of the DM in brain aging 
is most evident for joint changes, while the SC is also greatly involved 
in the joint changes. While some within-network connectivities in 
the DM are obviously decreased, the connectivity between the DM 
and other domains are jointly changed but in varied manner. 
Furthermore, most synergistic changes are present between the 
FNCs with reduced amplitude and their linked functional networks, 
and most paradoxical changes are present in the FNCs with 
enhanced amplitude and their linked functional networks. Our 
findings may imply that the brain becomes more integrated and 
functions gradually dedifferentiate in aging, which can further 
explain the reorganization of the brain with aging (Edde et al., 2020; 
Jockwitz and Caspers, 2021).

Our study discloses that normal aging even in the absence of 
neurodegenerative diseases has an important effect on both the 
whole-brain functional networks (i.e., the within-network 
connectivity) and the interactions between networks (i.e., the 
between-network connectivity). More interestingly, the significant 
joint changes between the within-network connectivity and the 
between-network connectivity are uniquely found in our work, 
manifesting the important impairments of default mode networks 
in the aging process. These findings provide comprehensive 
evidence for age-related changes in whole-brain. In future, it may 
be important to identify age-related pathologies in physiological 
brain aging, in order to establish novel strategies to prevent 
accelerated pathological brain aging.

Data availability statement

We used data from the UK Biobank datasets with the 
agreement of project 34175. The datasets presented in this study 
can be found in online repositories. The names of the repository/T
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