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1. Introduction

Stroke has been a leading cause of permanent motor disability worldwide (World

Health Organization, 2013). Long-term neurorehabilitation is required for post-stroke

motor functional restoration to increase independence in performing activities of daily living

(ADLs) (Mohd Nordin et al., 2014). Given the expanding population of stroke survivors,

the long-term neurorehabilitation after stroke has been challenging in the traditional

manual-physical therapies, which rely heavily on professional manpower for diagnosis and

treatment in a face-to-facemanner throughout the rehabilitation process, particularly during

a pandemic with tight regulations regarding social distancing, e.g., during the COVID-

19 outbreak (Dworzynski et al., 2015; Chen et al., 2022). Self-help telerehabilitation, e.g.,

at home, through automatic diagnosis and treatment technologies is expected to be an

alternative for long-term neurorehabilitation as it provides flexibility to both the therapist

and patient by minimizing the close physical contact when necessary and the professional

manpower demand in a post-pandemic future (Hosseiniravandi et al., 2020; Nam et al.,

2021). Effective theranostics after stroke requires quantitative measurements for efficient

evaluation, intensive and regular treatment delivery, and rehabilitative management in long

term. However, theranostic automation for stroke rehabilitation, i.e., diagnosis, treatment,

follow-up, and prognosis, has not been well-developed yet. This article provided opinions

on recent advances and future directions in the automation of long-term neurorehabilitation

services after stroke. We examined the existing gaps in available technologies that

have the potential to support automatic theranostics at the upper layer of application.

First, we discussed quantitative measurements using neuroimaging and kinematic/kinetic

technologies for post-stroke neurobehavioral evaluations. Second, we discussed automation

of rehabilitation treatments with coordination between the patient and therapist in terms

of advances in home-based telerehabilitation and its related robotic technologies to support
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the self-help physical training under unconventional environments.

The fundamental requirements of the robotic technologies in

digitalized physical and cyber networks for telerehabilitation

are also noted. Finally, we discussed the integration of social

interactions into the physical and cyber worlds for smart poststroke

rehabilitation management in the Industry 4.0 era.

2. Automation of neuro-behavioral
measurements and their correlations
with clinical assessments

Longitudinal evaluation is important for monitoring

rehabilitative progress and adjusting the interventions for optimal

clinical outcomes in neurorehabilitation after stroke (Porciuncula

et al., 2018; Mehrholz, 2019). Multimodal measurements of

the hemodynamics, neurodynamics, and kinematics/kinetics in

neuro-behavioral impairments have been advocated for effective

post-stroke evaluation; this is because behavioral outcomes with

substantial heterogeneities across patients were found to be a result

of the synergistic effects from the central (e.g., inter-hemispheric

asymmetry and corticospinal tract integrity) to peripheral nerves

systems (e.g., muscle synergy and range of motion) (O’Dwyer et al.,

1996; Wegrzyk et al., 2017; Thrane et al., 2020). Traditional clinical

assessments with total reliance on individual experience-based

diagnoses, e.g., Fugl–Meyer Assessment (FMA) for sensorimotor

evaluation, were widely accepted by clinical practitioners because

of the operational simplicity of manual evaluation as well as the

holistic and intuitive scales on multifunctional impairments,

including sensorimotor, cognitive, and emotional deficits after

stroke (Cheung et al., 2018; Zhou et al., 2021a). However, clinical

assessments were rarely performed frequently or even irregularly

in long-term rehabilitation programs, which was constrained by

short-handed rehabilitation services (Pumpa et al., 2015). The

evaluation accuracy may be affected by the low inter-assessor

repeatability when changing assessors inevitably in long-term

programs because of the subjectivity and insensitivity to subtle

behavioral changes and the indirect neurological assessments

under clinical conditions (Pumpa et al., 2015; Zhou et al.,

2021b). In contrast to the traditional assessments, quantitative

measurements of the neuro-behavioral changes via neuroimaging

and kinematics/kinetics technologies, e.g., magnetic resonance

imaging (MRI) and motion capture systems, provided objective

and sensitive solutions for post-stroke functional evaluation

(Hu et al., 2022). However, one of the challenges regarding the

application of quantitative measurements to automatic assessments

is the operational complexity of the measurement system that

relies heavily on professionals, particularly for multimodal

measurements that employ various standalone systems (Nazarova

et al., 2020). The operational complexity also poses considerable

challenges to self-help rehabilitation, which requires easily

operable and compact devices for operation by nonprofessionals

such as caregivers and the patients themselves, with quantitative

measurement systems in unconventional home-based or even

outdoor settings (Nam et al., 2020). For example, neurological

measurements on cerebrovascular activities with high spatial

resolution in clinical practice, such as computed tomography

(CT) and MRI, required professional operation of large and

expensive equipment, resulting in limited availability for long-term

service (Shahrestani et al., 2021). Similar complex operations were

required for visual marker-based optoelectronic motion capture

systems as the gold standard in kinematics/kinetics measurements,

which was impractical even in a clinical setting owing to the

large setup volume and high cost (Mesquita et al., 2019). Among

the next-generation technologies that can be potentially used in

point-of-care neurological diagnoses, including functional near-

infrared spectroscopy (fNIRS), electroencephalography (EEG),

and portable MRI devices, EEG has been reported as the most

promising approach for automatic long-term neurorehabilitation

assessments because of its high temporal resolution, low cost,

and safe operation (Shahrestani et al., 2021; Guo et al., 2022).

Nonetheless, multichannel EEG systems used to evaluate post-

stroke cortical reorganization typically required professionals for

setting up the massive systems to ensure adequate signal quality,

including mounting the headset onto the corresponding cortical

areas and preparing the electrodes for appropriate electrode–skin

impedance (e.g., <5 k�) (Shahrestani et al., 2021; Zhou et al.,

2021a,b). Higher operational complexities with extensive setup

were common in multimodal measurements for simultaneous

data acquisition from different systems, e.g., >30min of system

setup for capturing corticomuscular coupling based on EEG and

electromyography (EMG) (Guo et al., 2022). Bimodal integration

of measurement systems has also emerged for simplifying the

standalone system setup and leveraging the complementary

strengths of different measurement modalities, e.g., EEG-fNIRS

system for high spatial–temporal resolution neuroimaging

(Sangtae and Jun, 2017). Encouraging preliminary results have

been achieved for functional independence assessment after stroke

using the bimodal EMG and inertial measurement unit (IMU)

system with highly integrated and wireless sensors for monitoring

the ADLs in a well-controlled lab environment (Mouawad et al.,

2011). Despite the progress achieved in bimodal integration,

the target users of most measurement systems are still limited

to professionals in either clinical or lab environments rather

than nonprofessionals in self-help rehabilitation (Shahrestani

et al., 2021). Hence, further research, such as translational study

and commercialization, is needed on hybrid neuro-behavioral

evaluation systems with highly integrated and easily operable

multimodal measurements from both the central and peripheral

nervous systems for automatic poststroke assessments in the future.

In addition to simplifying the operational complexities of

the measurement facilities, straightforward diagnostic metrics are

required from quantitative measurements for early identification

of deviations from the desired progressive changes in long-

term rehabilitation (Sarmento et al., 2019). Compared to the

clinical scales, neurological and kinematic/kinetic metrics from

quantitative measurements provided detailed information on

the neurobehavioral changes with novel biomarkers as the

therapeutic targets for potential precise rehabilitation (Cheung

et al., 2012). However, challenges remain with respect to the

low acceptance of most metrics containing technical details by

clinical practitioners, such as neuroimages and mathematical

parameters, which typically rely on experienced specialists with

engineering backgrounds for interpretation (Sarmento et al.,

2019). For example, the manual interpretation of neuroimages
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for feature extraction of the post-stroke impairments required

cross-disciplinary collaborations among specialists for accurate

evaluation, leading to substantial time delays in intervention

planning by the therapists (Sarmento et al., 2019). There are

inconsistencies in the bio-signal processing pipelines among

specialists for neural decoding, particularly for visual inspection

and manual rejection of artifacts in the preprocessing of raw

signals, such as the blood oxygen level dependent (BOLD)-

fMRI and EEG recordings (Rajkumar et al., 2018; Sarmento

et al., 2019). In addition, the most sensitive metrics that have

high responsiveness to rehabilitative progress for monitoring and

predicting rehabilitation outcomes in long-term programs remain

uncertain despite the validities of various metrics from quantitative

measurements were demonstrated by their correlations with

clinical scores (Cheung et al., 2012). This has also hindered the

translation of the metrics from quantitative measurements to

precise therapeutic targets for automatic intervention planning

(Cheung et al., 2012). A variety of feature integration and

dimension reduction algorithms has been employed to improve

the readability of various metrics from quantitative measurements

(Xie et al., 2018; Cheung and Seki, 2021), such as the neurovascular

and corticomuscular coupling metrics for bimodal integration of

the respective fNIRS-EEG and EEG-EMG signals (Lou et al., 2013;

Zhou et al., 2018; Shahrestani et al., 2021). Promising results

have been achieved with the corticomuscular coupling metric

for monitoring the post-stroke evolutions of integrated central-

and-peripheral voluntary motor efforts in the target muscles

in a 20-session rehabilitation program, which demonstrated its

potential responsiveness in longitudinal evaluations (Guo et al.,

2022). Despite the progress made to date, large amounts of data

from multimodal measurements have posed challenges to clinical

practitioners in long-term rehabilitation programs (Ye et al., 2021).

Further investigations of the straightforward diagnostic metrics

with high responsiveness to rehabilitative progress are thus needed

for multimodal measurements in future longitudinal studies.

As large amounts of data are generated during measurements

for automated evaluation during self-help poststroke rehabilitation,

machine learning (ML) methods have emerged as promising

assistive techniques to healthcare providers who wish to rapidly

analyze batches of data as well as project the neuro-behavioral

metrics onto clinical assessment scores for readable results

(Abraham et al., 2014; Kabade et al., 2021). Using the neuro-

behavioral metrics and neuroimages as input features, the

pretrained ML-based models can automatically distinguish

differences between stroke patients and unimpaired participants.

It has been proven that compared to the readings of human

professionals, ML-based models could significantly reduce the

evaluation time required to determine symptom onset related to

stroke (Chae et al., 2020). In addition, the output predictions of

the trained models with ML algorithms, such as random forest,

support vector machine (SVM), and convolutional neural network

(CNN), have been observed to correlate with clinical scores

(Moghadam et al., 2022; Sung et al., 2022; Zhang et al., 2022).

There were significant correlations between the outputs of the

ML-based models and the manual results by human professionals,

which has increased the readability of performance of the ML-

based models (Ye et al., 2021). Although ML has advantages in

speeding up the process with batches of data, one of the main

obstacles is the robustness of the ML-based model (Cui et al.,

2020). Robust predictions byMLmodels require high homogeneity

of the input data. However, individual stroke patients often have

multimodal input data, e.g., text, images, and voice, collected over

long-term evaluations, and such data heterogeneity may affect the

model robustness (Lum et al., 2002). Meanwhile, it is difficult for

individuals who have suffered a stroke to independently operate

complex equipment for collecting and processing raw data before

applying to ML-based models. These obstacles could be addressed

by designing easy-to-operate diagnosis equipment with one-touch

operation or automatic device calibration before they are operated

by stroke patients. Additionally, several algorithms and software

were integrated into the equipment to automatically coordinate

and analyze raw multimodal data, thereby promoting robust

prediction by the ML-based model (Park et al., 2019; Pedroni et al.,

2019; Rosero-Rodríguez and Alfonso-Morales, 2021).

3. Automation in rehabilitation
treatments with coordination between
patient and therapist

Effective motor restoration after stroke requires intensive

physical training of the paralyzed limb with maximized voluntary

motor effort (VME) and minimized compensatory motions,

in addition to the updated intervention plans with precise

therapeutic targets from neurobehavioral monitoring in long-term

neurorehabilitation (Hu et al., 2006; Guo et al., 2022). Conventional

center-based rehabilitation treatments constrained the availability

and accessibility of rehabilitation services to discharged patients

who required regular and intensive physical therapy due to

patients’ transportation difficulties with the reduced mobility and

the rehabilitation centers’ resource constraints even in developed

countries (Sarfo et al., 2018). Home-based telerehabilitation with

remote supervision by professionals has thus emerged as an

alternative mode of regular physical treatment after discharge

in the long term, particularly post the COVID-19 outbreak

and its restrictions on social distancing (Hosseiniravandi et al.,

2020; Nam et al., 2021). However, there are also challenges

with respect to limited or uncertain rehabilitation effectiveness

in most self-help rehabilitation technologies, such as the Kinect

and tablets with rehabilitative games, virtual reality (VR), and

self-help rehabilitation robots, for assistance with home-based

telerehabilitation (Chen et al., 2013; Hosseiniravandi et al., 2020).

Despite the convenience and high accessibility of the Kinect, tablets,

and VR technologies for decentralized rehabilitation training, they

were lacking the necessary physical assistance for patients to

relearn the desired movements, resulting in limited rehabilitation

effectiveness (Nam et al., 2021). Several self-help rehabilitation

robots, e.g., HandSOME (Chen et al., 2017), MyoPro (Mccabe

et al., 2019), and the EMG-driven exoneuromusculoskeleton (Nam

et al., 2021), have emerged in recent works to provide physical

assistance and alleviate the labor-intensive process in repetitive

limb practice after stroke; these systems offered advantages of high

intensity and low cost for long-term home-based telerehabilitation

(Nam et al., 2021). Promising rehabilitation effectiveness was
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achieved for upper limb voluntary motor function with the EMG-

driven exoneuromusculoskeleton in pilot clinical trials, which

could be attributed to the recruitment of VME in the target

muscles based on the EMG signals compared to the continuous

passive movement mode in most self-help rehabilitation robots

(Nam et al., 2021). Despite the progress achieved with self-help

rehabilitation robots, challenges remain regarding the lack of

rehabilitative monitoring on neurobehavioral changes in home-

based telerehabilitation (Shahrestani et al., 2021). Little was known

about the anticipated dosage and rehabilitative plateau in treatment

planning with the self-help rehabilitation robots (Abduallah et al.,

2007), where compensation from the unaffected hemisphere and

proximal muscles (e.g., elbow, shoulder, and body trunk) could

be possibly induced without precise therapeutic targets from

the rehabilitative monitoring (Zhou et al., 2021a). In future

home-based telerehabilitation, multimodal measurements on the

neurobehavioral changes should be incorporated into the self-help

rehabilitation robots for optimal clinical outcomes.

In addition to the self-help rehabilitation devices, effective

remote management is important for coordination between

the patient and therapist so as to guarantee constant and

regular physical training with sufficient intensity in home-

based telerehabilitation (Hosseiniravandi et al., 2020). Despite

the promising outcomes of home-based telerehabilitation from

well-controlled clinical trial studies (Gregory et al., 2011), their

feasibility of translation into clinical routine remains a question

given the difficulties of remotely implementing technical guidance

and support for using self-help rehabilitation devices as well

as supervising the training progress, which could bias the

rehabilitation effectiveness achieved in the original clinical trials

(Hosseiniravandi et al., 2020; Podury et al., 2021). For example,

professional guidance was still needed in the clinic to help

patients grasp device operation before self-help training with

the rehabilitation robots; for instance, a total of three and 12

supervised tutorial sessions (60 to 90min per session) were

delivered to the stroke patients in previous studies with the

EMG-driven exoneuromusculoskeleton and MyoPro, respectively

(Gregory et al., 2011; Nam et al., 2021). Meanwhile, time-

consuming technical support to restore malfunctioning devices

in home-based rehabilitation could reduce patient engagement,

leading to a high drop-out rate in long-term training programs

(Sarfo et al., 2018). Furthermore, a lack of adherence to the

prescribed rehabilitative protocol with varied training durations

and frequencies among individuals could occur because of the

lenient supervision of training progress, such as the training

duration ranging from 2 to 60min per day (Nijenhuis et al.,

2016). In this regard, the Internet of Things (IoT) technology

has been employed for remote management of the rehabilitative

progress by bridging the gap between the patients and therapists

via interconnected telerehabilitation devices with embedded

sensors, which could potentially promote patients’ engagement

in home-based physical training (Hosseiniravandi et al., 2020).

Promising rehabilitation effectiveness of the IoT-assisted home-

based telerehabilitation has been reported in recent randomized

controlled clinical trials, where augmented improvements in the

upper limb motor functions, e.g., range of motion (ROM) of the

wrist joint, were found with the IoT-assisted tenodesis-induced-

grip exoskeleton robot compared to conventional task-specific

motor training (Hsu et al., 2021). Despite the promising outcomes

achieved so far, challenges still remain for the low efficiency of

coordination between patients and professionals in IoT-assisted

telerehabilitation, where substantial time delays for intervention

planning could occur in data management and analytics that

rely on professionals (Sarmento et al., 2019). In this respect,

AIoT has emerged for more efficient IoT operations via enhanced

data management and analytics with artificial intelligence (AI)

algorithms (Lai et al., 2021). Despite the wide application of AIoT

in smart cities, smart retail, and smart appliances, little has been

done for implementing AIoT in telerehabilitation management,

possibly owing to the immaturity of current theranostic systems

for self-help rehabilitation (Lai et al., 2021). For future automation

in rehabilitation treatment, AIoT could be incorporated with novel

point-of-care diagnostics and treatment devices to augment the

efficiency of telerehabilitation management for real-time decision

making in intervention planning.

4. Automation in coordination of
healthcare resources in long-term
rehabilitation services

Besides the automation in stroke diagnosis and treatment

discussed earlier, long-term rehabilitation services after stroke

also require automatic management of the healthcare resources,

including human resources, medical devices, and information

from the theranostic process (Dworzynski et al., 2015; Zelenák

et al., 2021). An automation platform for coordinating the

healthcare resources could thus help alleviate the workload of

human professionals, optimize the use of medical devices, and

facilitate theranostic effectiveness (Jadczyk et al., 2021; Poonsuph,

2022). Conventional management of poststroke rehabilitation

services relies heavily on manpower and manual interactions,

where cross-disciplinary professionals (therapists, nursing staff,

psychologists, etc.) interact with the stroke patients regularly via

hands-on or face-to-face interventions to support the patients

in the rehabilitative program through a center-based service

(Dusenbury and Alexandrov, 2020; Jain and Chatterjee, 2020;

Saverino et al., 2021). However, given the anticipated increase in

medical needs for stroke rehabilitation, current poststroke human

resources and medical devices are limited by challenges such as

shortage and uneven physical distribution in local institutions

(Yuehong et al., 2016). Meanwhile, vast amounts of information

obtained from long-term rehabilitation services are always dynamic

and heterogeneous, relevant to the diversity of individual patient

status and progress, which makes the current management system

a bottleneck for achieving timely, individualized, and optimized

treatment (Frontera et al., 2017).

With the development of modern mobile communication

and data technologies, IoT-based cyber-physical system (CPS) has

been proposed in various domains to realize real-time, safe, and

dynamic collaborations with physical systems (Liu et al., 2017). CPS

could seamlessly connect devices between the physical and virtual

worlds by identifying, sensing, computing, and actuating physical

systems (Reine et al., 2021; Yilma et al., 2021). This architecture

has been used for various scenarios, such as energy resource
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FIGURE 1

CPSS platform for coordinating healthcare resources in long-term rehabilitation services after stroke.

distribution, smart manufacturing, and intelligent transportation

(Xiong et al., 2015; Yin et al., 2020; Wang et al., 2022). There

was also a report of an attempt to apply this architecture to

manage healthcare resources in post-stroke rehabilitation, e.g.,

a wearable measurement system for monitoring cardiovascular

activity in a stroke patient’s daily life setting, called as Big-

ECG, which was capable of tracking cardiac signals, analyzing

data on a cloud platform, and providing health suggestions and

messages to assist the patients (Hussain and Park, 2021). However,

most of these applications were still immature for poststroke

rehabilitation management in individual stroke patients, e.g., no

integrated IoT sensors for multimodal evaluation as mentioned

earlier, scarcity of social interactions either among the stroke

peers for competition and collaboration or between the patients

and therapists for professional guidance during physical training

(Ventura et al., 2019). Findings on CPS adaptation have shown

an emerging trend of adding an additional social layer to the

CPS architecture to address both human and social factors, which

showed the growing importance of involving social interactions

in the CPS (Musil et al., 2017; Sabou et al., 2018). In this

regard, a cyber-physical social system (CPSS) was introduced

to provide a new paradigm for automatic operation of real-

world systems in which the cyber, physical, and social factors are

comprehensively considered for decision making in application

scenarios (Wang et al., 2022). However, in current healthcare

management systems on long-term poststroke rehabilitation,

very few studies focus on the influence of social interactions.

A possible CPSS platform for automation maximization in

coordinating healthcare resources is illustrated as an example in

Figure 1.

CPSS platforms will be composed of interactions among the

three spaces, i.e., cyber, physical, and social spaces, of which

the first is cyber-physical space coupling. The large amounts

of theranostic data on stroke patients, e.g., EEG, kinematic,

and kinetic parameters, can be dynamically transferred to a

distributed medical data cloud integrating various technologies,

such as blockchain (Xie et al., 2021), to improve the transparency,

immutability, and anonymity of data. Based on the encrypted

data, edge-AI-based big data analytics (Himeur et al., 2022) can

be performed in the cyberspace to extract interpreted patterns to

timely monitor and control the statuses of medical devices and

instruments, i.e., dissemination of feedback and physical actuation.

The second coupling is that of the social-physical space; this

will concentrate on social communications between humans and

machines, e.g., incorporating socially assistive robots into the

poststroke rehabilitation process, which offers interactive tasks

(competitive and/or cooperative) to increase the motivation and

training intensities of stroke patients in the long term. The third

coupling is of the cyber-social space. The human and social

information representing thinking, cognition, and knowledge from

social relations, such as therapist–patient, nurse–patient, and

therapist–nurse, will be integrated into and exchanged in the

cyberspace, similar to the cyber-physical coupling process. After

automating big data analytics, the cyberspace will disseminate
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TABLE 1 Existing techniques, limitations and knowledge gaps, and future directions on automatic theranostics for long-term neurorehabilitation after

stroke.

Automation of long-term
neurorehabilitation services after stroke

Current
techniques

Limitations and
knowledge gaps

Future direction

Neuro-behavioral evaluation Quantitative measurements Neuroimaging and

kinematics/kinetics

technologies

(Shahrestani et al.,

2021):

• CT

• MRI

• Motion capture

systems

• EEG

• fNIRS

Complex operations

Inapplicable for self-help

evaluation (Shahrestani et al.,

2021)

Hybrid

neuro-behavioral

evaluation systems

• High integration

• Easy operation

• Multimodalmeasurements

Diagnostic metrics Neurological and

kinematic/kinetic

metrics, e.g.,

neuroimages and

mathematical

parameters (Cheung

et al., 2012)

Low acceptance by clinical

practitioners with (Sarmento

et al., 2019)

• Manual interpretation by

engineering specialists

• Inconsistency in the bio-signal

processing pipelines

• Uncertain sensitivity to

rehabilitative progress

• Large dataset from

multimodal measurements

Straightforward

diagnostic metrics with

high responsiveness to

rehabilitative progress

Correlations with clinical

assessments

ML algorithm

prediction with

pre-trained model

(Abraham et al., 2014)

Low model robustness due to

high inhomogeneity of the input

multimodal data (Lum et al.,

2002)

Easy-to-operate

diagnosis equipment

with one-touch operation

Integrating algorithms

and software into the

equipment to

coordinate raw

multimodal data

Rehabilitation treatment Self-help rehabilitation

technologies

Self-help rehabilitation

robots, Kinect and

tablets with

rehabilitative games,

and VR . . . .

(Hosseiniravandi et al.,

2020)

Limited or uncertain

rehabilitation effectiveness

(Hosseiniravandi et al., 2020)

Unknown anticipated dosage

and rehabilitative plateau

(Shahrestani et al., 2021)

Incorporating

multimodal

neuro-behavioral

measurements into

self-help rehabilitation

technologies

Coordination between

patients and therapists

Home-based

telerehabilitation

(Gregory et al., 2011)

Difficulties of remote

management in training

supervision, guidance, and

technical support

Inefficient coordination between

patients and professionals

(Hosseiniravandi et al., 2020;

Podury et al., 2021)

Incorporating AIoT

with novel

point-of-care

diagnostics and

treatment devices for

telerehabilitation

management

Healthcare resources

management

Coordinating the human

resources, medical devices,

and information

Conventional

management with

manpower and manual

interactions (Zelenák

et al., 2021)

IoT-based CPS

platform (Liu et al.,

2017)

Resources shortage and uneven

physical distribution

(Hosseiniravandi et al., 2020)

Dynamic and heterogeneous

information (Frontera et al.,

2017)

No integrated IoT sensors for

multimodal evaluation (Ventura

et al., 2019)

Scarcity of social interactions

(Liu et al., 2017)

Highlighting social

interaction with novel

CPSS platform, e.g.,

peer competition

training, coordination

of interdisciplinary

team approach,

guidance of healthcare

givers to embrace the

new technologies

VR, virtual reality; CT, computed tomography; MRI, magnetic resonance imaging; EEG, electroencephalography; fNIRS, functional near-infrared spectroscopy; ML, machine learning; AIoT,

artificial intelligence of things; CPS, cyber-physical system; CPSS, cyber-physical social system.
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feedback and social actuation to the social components, e.g.,

therapists, nurses, and individual stroke patients, via social sensors

(e.g., smartphones, smart mobile devices).

5. Conclusions and future perspectives

This article provided opinions on the future directions of

automatic theranostics for long-term neurorehabilitation after

stroke, which mainly depends on the technological breakthroughs

in the following aspects, as summarized in Table 1. (1) Evaluation:

a hybrid neuro-behavioral evaluation system with multimodal

measurements, straightforward diagnostic metrics, and robust

prediction of ML-based models is required for future self-help

evaluations in unconventional environments. (2) Treatment: an

AIoT-assisted home-based telerehabilitation system integrating

novel point-of-care diagnostics and self-help robotic devices

is required to augment intervention planning, rehabilitation

effectiveness, and management efficiency. (3) Healthcare resource

management: a modern digitized CPSS platform integrating IoT

sensors for multimodal evaluations and social interactions is

required to maximize automation in the future coordination

of healthcare resources. In conclusion, it is time to implement

poststroke rehabilitation theories and expertise from clinical

practice into automation infrastructures based onmultidisciplinary

advances for better long-term neurorehabilitation in the Industry

4.0 era.

In addition to the technical automation in neuro-behavioral

measurements, rehabilitation treatments and coordination of

healthcare resources mentioned above, further advances in the

following social aspects are parallelly important to facilitate

the automatic theranostics for long-term neurorehabilitation

after stroke:

1) Cross-disciplinary education to clinical practitioners on

using the automatic theranostic technologies will improve

efficiency by enabling a seamless connection between patients

and therapists in the long-term service. Current theranostic

processes rely heavily on cross-disciplinary collaboration

among experienced specialists with distinct clinical and

engineering backgrounds, leading to substantial time delays

and high costs in not only the provision of healthcare

resources but also the clinical translation of cutting-

edge theranostic technologies, e.g., the low acceptance

of neurobehavioral metrics and self-help rehabilitation

technologies by clinical practitioners. When the technical

barriers among different disciplines can finally be crossed

by automations in the future, the service providers at the

frontier, i.e., the practitioners, need to prepare well for the

new paradigm.

2) Facilitation of telerehabilitation to rural and under-developed

areas with needed quality is an advantage of the automatic

theranostics after stroke for achieving equity in receiving long-

term services by different populations. The infrastructures

of telerehabilitation can provide cost-effective and timely

connections between the professional and patient in diagnosis,

treatment, and follow up without the constraint of their

physical locations, interfaced mainly with the point-of-care

IoT systems, e.g., a self-help rehabilitation robot. There will

be no significant differences in the quality of the tele-service

provided by the same professional and received by patients in

different cities.
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