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Increasing evidence highlights that infection with severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) has long-term effects on cognitive 
function, which may cause neurodegenerative diseases like Alzheimer’s disease 
(AD) in the future. We performed an analysis of a possible link between SARS-
CoV-2 infection and AD risk and proposed several hypotheses for its possible 
mechanism, including systemic inflammation, neuroinflammation, vascular 
endothelial injury, direct viral infection, and abnormal amyloid precursor protein 
metabolism. The purpose of this review is to highlight the impact of infection with 
SASR-CoV-2 on the future risk of AD, to provide recommendations on medical 
strategies during the pandemic, and to propose strategies to address the risk of AD 
induced by SASR-CoV-2. We call for the establishment of a follow-up system for 
survivors to help researchers better understand the occurrence, natural history, 
and optimal management of SARS-CoV-2-related AD and prepare for the future.
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Introduction

Alzheimer’s disease (AD) is a common age-related neurodegenerative disease with clinical 
manifestations that include a gradual decline in memory, language, judgment, and loss of self-
care ability as the disease progresses. The most characteristic pathological manifestations of AD 
are abnormal deposition of amyloid-beta (Aβ) peptide plaques and tau hyperphosphorylation, 
which form senile plaques and neurofibrillary tangles (NFTs) in neurons, respectively (Jia et al., 
2020). This incurable disease is expected to affect approximately 100 million people worldwide 
by 2050 (Alzheimer’s Dementia, 2020). The etiology is multifactorial, with the possible inclusion 
of neuroinflammation, oxidative stress, intestinal flora, synaptic plasticity, vascular abnormalities, 
and infectious agents (Long and Holtzman, 2019). Although approximately 25% of cases are 
familial, approximately 75% of AD cases have an unknown disease background.

Most studies revealed the unique roles of Aβ and tau proteins in AD pathogenesis. Despite 
enormous work, no effective strategies have emerged. It is necessary to explain the pathogenesis 
from another point of view and look for possible treatments. The inflammation-pathogen 
infection hypothesis has been accepted as a substitute for the amyloid hypothesis in the past few 
years. Bacteria and viruses, as well as several other infectious factors, are considered to be related 
to the pathogenesis of AD (Lopatko Lindman et al., 2021; Figure 1). Notably, multiple excellent 
studies have steadily revealed the potential role of several viruses in AD pathology, such as 
herpes simplex virus type 1 (HSV1), herpes simplex virus type 2 (HSV2), measles virus, 
adenoviruses, cytomegalovirus, poliovirus, hepatitis B virus, and influenza virus (Wang et al., 
2022). These works support the virus hypothesis and the potential of antiviral treatment to 
overcome AD.
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The widespread Corona Virus Disease 2019 (COVID-19) 
epidemic pushed the viral hypothesis to neurologists. Patients with 
COVID-19 experience frequent neurological symptoms, such as brain 
fog, headaches, cognitive impairment, and chemosensory disturbances 
(Wang et al., 2022), and survivors have complained of long-lasting 
neurological sequelae. Autopsies of patients who died of COVID-19 
found traces of severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) infection in the brain (Barbieri et al., 2022), which 
suggests that it invades and causes irreversible damage to brain tissue, 
and it may predispose survivors to neurodegenerative diseases. 
Herein, we  focus on the possibility that SARS-CoV-2 infection 
increases the risk of developing AD and highlight several mechanisms. 
Although there is no direct evidence to support the association 
between SARS-CoV-2 and the pathological mechanism of AD, 
we emphasize this possibility because cytokine storms and high levels 
of inflammation inside the brain likely have long-term 
neuropsychiatric consequences.

Viral hypothesis in Alzheimer’s disease

The idea that microbial infections trigger neurodegenerative 
diseases has been around since the 1950s. At the time scientists 
speculated that acute viral infections could lead to progressive 
neurological damage decades later (Ball, 1986). Although evidence for 
this association has been mounting, the mechanism by which the 
virus causes neurodegeneration remains hypothetical. A common 
hypothesis is that viral infection triggers an abnormal immune 
response that persists for years and eventually produces neurological 
damage associated with certain brain diseases (Ball, 1982). Evidence 
that viral infection plays a role in AD has long been investigated. Some 
viruses that cause lifelong persistent infection are upregulated in the 
central nervous system (CNS) of AD patients and are associated with 
pathology (Wang et al., 2022). Studies have found that approximately 
25% of AIDS patients who did not receive combined antiretroviral 
therapy will develop neurological disorders associated with Aβ plaque 
deposition and tau protein aggregation (Hategan et al., 2019). Viral 
gene products are directly neurotoxic or indirectly trigger 
neuroinflammatory processes (Lannuzel et al., 1997; Li et al., 2015). 
Viral infection also affects the processing, deposition, and clearance 
of AD-related proteins (Kodidela et al., 2019).

The herpes virus is one of the most concerned agents in the viral 
infection hypothesis. Numerous studies have shown that individuals 
with a history of herpes virus infection are more likely to develop AD 
in later life than the general population (Steel and Eslick, 2015). 
Herpes simplex virus type 1 (HSV-1) is a neurotropic double-stranded 
DNA virus that infects peripheral sensory neurons and is permanently 
latent in the trigeminal ganglia (Ball et al., 2001). Occasionally, latent 
HSV-1 is reactivated by nonspecific inflammation and migrates to the 
trigeminal nucleus located in the brainstem. It eventually reaches the 
thalamus and sensory cortex and results in devastating viral 
encephalitis or persistent latent infection of the central nervous system 
(Lewandowski et al., 2002; Li Puma et al., 2019). Pioneering research 
by Sequiera et al. (1979) identified the HSV-1 genome in brain samples 
from AD patients. Since then, numerous groups have used different 
techniques to study the relationship between dementia and HSV-1 in 
brain samples and have progressively identified HSV-1 as a potential 
factor associated with sporadic AD. Most of these studies 
demonstrated that repeated HSV-1 reactivation induced Aβ 
accumulation and increased levels of phosphorylated tau in the brain 
(Martin et  al., 2014; de Chiara et  al., 2019). However, not every 
individual with HSV-1 will develop AD, which may be due in part to 
environment, genetics, and comorbidities. Linard et al. (2020) recently 
assessed the impact of HSV-1 infection on AD incidence based on a 
genetic susceptibility factor, apolipoprotein E (APOE). The author 
found that HSV1 reactivation was more frequent in APOE4 carriers 
than in APOE4-negative subjects, which suggests that HSV1 has a 
higher risk of developing AD in subjects with the APOE4 allele 
(Linard et al., 2020).

Human herpesvirus 6 (HHV6) belongs to the β herpesvirus 
subfamily, which includes two distinct species. It infects nerve cells 
and is associated with a variety of neurological diseases. HHV6 uses 
the olfactory pathway as a route to the CNS (Harberts et al., 2011). 
HHV6A infection may be associated with AD (Tang et al., 2022). 
Human herpesvirus 6 is frequently detected in AD and healthy older 
brains. Westman et  al. (2017) showed that AD subjects had 
significantly reduced HHV6 IgG reactivity compared to normal 
controls. Although these data suggest an association of HHV6 with 
AD pathogenesis, these findings may represent a causal relationship 
or reflect an opportunistic passenger in neurodegeneration. To 
address this problem, Readhead et al. (2018) constructed a multiscale 
network of late-onset AD-associated viromes and integrated genomic, 
transcriptomic, proteomic, and histopathological data from four brain 
regions in human post-mortem tissue. They observed increases in 
HHV6A and human herpesvirus 7  in AD patients compared to 
controls. These results were replicated in two additional, independent, 
geographically dispersed cohorts. Notably, they observed a regulatory 
relationship between viral abundance and regulators of APP 
metabolism, including HHV6A-induced expression of APBB2, 
APPBP2, BIN1, BACE1, CLU, PICALM, and PSEN1. This study 
provides compelling evidence that specific viral species contribute to 
the development of neuropathology and AD. However, the current 
evidence is conflicting. A recent study using RNA-sequencing datasets 
and DNA samples from AD and non-AD control brains did not show 
an association between HHV6 and AD (Allnutt et al., 2020). There 
were no statistically significant differences in HHV6 seroprevalence, 
antibody titres or affinity between the three groups (Agostini et al., 
2016). These inconsistent views may be due to differences in assay 
methods and sample sizes used. Despite the controversy, HHV6 is 

FIGURE 1

Several viruses associated with Alzheimer’s disease.
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detected in a substantial proportion of AD patients. However, it does 
not appear to be  an independent cause of AD but may act in 
conjunction with other risk factors, such as the APOE4 allele.

Picornaviridae are the most widespread disease of all viral 
families. Infections may be  asymptomatic or lead to clinical 
syndromes, such as the common cold, febrile rash illness, 
conjunctivitis, hepatitis, myositis, and myocarditis. Picornaviruses 
infect the CNS, destroy pyramidal neurons in the hippocampus and 
cause various neurological symptoms, such as meningoencephalitis 
and myelitis. Animal models infected with picornaviruses exhibit 
memory impairment, which is associated with hippocampal damage 
(Buenz et al., 2006). They found LV viral infection in AD patients but 
not in controls. Notably, numerous amyloid plaques were detected at 
the site of LV-infected limbic cortical tissue damage (Niklasson 
et al., 2020).

These studies are the most discussed viruses related to AD 
pathology. Other candidates, such as Borna disease virus, HIV type 1 
and JC virus, are reported sporadically. These works provide some 
information about the pathogenic role of viral infection. The 
underlying mechanisms primarily involve long-term immune system 
activation and persistent neuroinflammation caused by viral infection. 
However, most correlation studies were largely indeterminate of 
causality. Collectively, previous studies have highlighted (1) Aβ may 
act as a protective mechanism to capture viruses, (2) viruses trigger 
AD risk through a series of signaling pathways in human brain tissue, 
and (3) APOE4 increases the effect of viral reactivation on AD risk. 
Although the viral infection hypothesis is largely correlated rather 
than causation, we  cannot ignore this possibility, especially when 
COVID-19 survivors complain of persistent memory problems.

Neurological manifestations of 
SARS-CoV-2

The novel coronavirus disease, which broke out at the end of 2019, 
was caused by SARS-CoV-2 and has been raging worldwide for 2 years 
(Liu et al., 2021). Unfortunately, there is still no suitable strategy to 
stop the viral spread. The world’s attention initially focused on lung 
function as the most vulnerable organ. Over time, an extremely wide 
range of neurological symptoms has been reported in patients and 
survivors. While much remains to be  learned about the effects of 
COVID-19 on the brain, it is worth considering that infection may 
increase the risk of neurological disease based on the overlap of 
neurological and immunological alterations. Mao and colleagues 
recently performed a retrospective observational case series focusing 
on neurological manifestations in hospitalized patients with 
COVID-19 (Mao et  al., 2020; Zhou et  al., 2020). Neurological 
manifestations were present in approximately 36.4% of the 214 
patients, which was the starting point for evidence of neurological 
complications following infection with COVID-19. An increasing 
number of studies subsequently reported neurological complications 
of COVID-19, including chemosensory disturbances, seizures, 
dizziness, and headaches (Ellul et al., 2020; Heming et al., 2021; Patone 
et  al., 2021). A meta-analysis of 20 primary studies reported that 
among patients with COVID-19, headache, insanity, and fatigue are 
the most nonspecific neurological features (Mahdizade Ari et  al., 
2022). The pooled prevalence of neurological manifestations and 
mortality rate of COVID-19 patients with neurological features were 

estimated to be 23.0% (95% CI: 17.8–29.2) and 29.1% (95% CI: 20.3–
39.8), respectively. Another meta-analysis of 19 primary studies found 
that the neurological symptoms of patients infected with COVID-19 
mainly include fatigue, brain fog, and memory problems. Notably, the 
prevalence of neuropsychiatric symptoms increased significantly 
during medium- and long-term follow-ups. Hospitalized patients had 
a reduced frequency of olfactory disturbances, anxiety, depression, 
dysgeusia, fatigue, headache, myalgia, and sleep disturbances at 
3 months (or longer) post-infection compared to non-hospitalized 
patients (Premraj et al., 2022).

Some patients also experienced progressive cognitive impairment, 
worsening of pre-existing cognitive deficits, and persistent disruptions 
in comprehension, reasoning, and memory (Mahase, 2021). An 
observational clinical study reported long-term cognitive 
abnormalities in nearly 50% of COVID-19 survivors (Mazza et al., 
2021). A survey of 3,762 COVID-19 participants from 56 countries 
suggested that the most common symptoms included fatigue (98.3%), 
discomfort after exertion (89.1%), and cognitive impairment (85.1%) 
after 7 months of follow-up. Among patients whose symptoms 
persisted for longer than 6 months, greater than 50% developed fatigue 
(80%), discomfort after exertion (73.3%), and cognitive impairment 
(58.4%) (Davis et  al., 2021). A recent meta-analysis of 27 studies 
showed that patients with COVID-19 had worse general cognitive 
function than people without COVID-19 during the acute 
exacerbation and assessment period 6 months after infection. 
Cognitive impairment is positively associated with increasing age 
(Readhead et  al., 2018). Another meta-analysis indicated that 
cognitive impairments, such as brain fog, memory problems, and 
attention deficits, were key features of post-COVID-19 syndrome 
(Crivelli et al., 2022). Because AD primarily manifests as cognitive 
decline, whether SARS-CoV-2 increases the risk of AD has aroused 
widespread concern. Recent work has tried to find some clues. A study 
evaluating newly diagnosed dementia in the COVID-19 population 
found that COVID-19-positive patients had a higher incidence of 
dementia diagnoses and new-onset mild cognitive impairment than 
the general population (Kim et al., 2022). These lines of evidence 
support the hypothesis that brain infection with SARS-CoV-2 
promotes AD-like symptoms in COVID-19 patients. Although direct 
evidence has not emerged, the mechanisms involved may include 
shared genes, systemic inflammation, neuroinflammation, vascular 
endothelial injury, direct viral infection, abnormal amyloid precursor 
protein metabolism, and phosphorylated tau (Figure 2).

Potential mechanisms of 
SARS-CoV-2-induced AD

Shared genetics
There is growing evidence that several genetic loci are shared 

between AD and COVID-19, with similar directions of impact on the 
risk of both diseases. Magusali et al. (2021) suggested that the OAS1 
rs1131454 variant was associated with increased AD risk via the 
genetic analysis of 1,313 sporadic AD patients and 1,234 controls. 
Notably, OAS1 was recently implicated in COVID-19 outcomes as a 
link for the risk of both diseases at the genetic level. Wang et al. (2022) 
developed a risk diagnostic model based on a common hub gene in 
patients with COVID-19 and AD and suggested that patients with 
COVID-19 are more likely to develop AD. They found four central 
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genes (RAPGEF3, ITPKB, ITPR1, and ITPR3) as biomarkers for 
predicting AD in COVID-19 patients. COVID-19-mediated AD risk 
may be related to innate and adaptive immune responses to the virus, 
as demonstrated in Quincozes-Santos et  al. (2021). Using 
SARSCOVIDB platform analysis, they found that a protease that may 
be involved in immune system responses, CTSL, was upregulated in 
brain tissue samples from 18 AD patients. The ApoE4 allele may 
be  another risk gene for subsequent dementia risk in COVID-19 
becauseApoE4 allele carriers are at high risk for AD, and it affects the 
severity and prognosis of COVID-19 clinical manifestations. Manzo 
et  al. (2021) suggested that SARS-CoV-2-induced olfactory and 
olfactory dysfunction may confer a higher risk of dementia 
(specifically LOAD, DLB, and LB-variant AD) in ApoE4 carriers than 
in non-SARS-CoV-2-induced ApoE4 carriers. Follow-up of 
COVID-19 patients with ApoE4 may help identify early stages of 
dementia to take full advantage of any available therapy. A recent 
study identified differentially expressed genes associated with AD, 
including PSEN2, CTSD, and LGALS3, from a clinical dataset of 
COVID-19 patients. Notably, these genes are involved in AD 
pathological progression (Qiu et al., 2022). However, gene sharing 
only indicates the common inherited genes of the two diseases but not 
the direction of causality. Most of the published work is based on 
information from genetic databases, and data from the tissue of 
COVID-19 patients are lacking. Therefore, further research is needed 
to fill this gap.

Systemic inflammation
Patients with COVID-19 often exhibit severe innate immune 

responses and persistently elevated systemic cytokine levels. 
Inflammatory cytokines, such as IL-1β, IL-6, IL-12, and TNF-α, were 
significantly elevated in the peripheral blood of COVID-19 patients 
compared to healthy individuals (De Felice et al., 2020). Sun et al. 
(2021) found that IL-4 was elevated in the plasma cytokines of 

COVID-19 participants. In comparison with COVID-19 individuals 
without neurological manifestations, IL-6 was positively associated 
with sequelae severity in COVID-19 individuals with neurological 
manifestations (Sun et  al., 2021). Systemic inflammation affects 
cognitive function and promotes neurodegenerative disease 
progression. For instance, human cognitive function is negatively 
correlated with the chronic peripheral elevation of IL-6 (Cojocaru 
et al., 2011). The increase of IL-1 in rodent brains causes long-term 
cognitive impairment and increased Aβ and NFT production (Rachal 
et al., 2001). Knockout or blocking of pro-inflammatory cytokines, 
such as IL-1 and IL-6 in model mice can improve their spatial memory 
ability and make them have better cognitive performance (Bialuk 
et al., 2018). Systemic inflammation may be the pathophysiological 
mechanism of AD pathogenesis (Akiyama et al., 2000). Compared to 
healthy subjects, the levels of peripheral IL-1β, IL-2, IL-6, IL-18, and 
high-sensitivity CRP in AD patients were up-regulated. A meta-
analysis evaluating the association between peripheral IL-6 and CRP 
in healthy adults found that higher concentrations of inflammatory 
markers increased the risk of AD. TNF-α converting enzyme, soluble 
TNF receptors 1 and 2, α1-antichymotrypsin were increased, and IL-1 
receptor antagonism in the peripheral blood decreased. Systemic 
inflammation characterized by a ‘cytokine storm’ in severe cases of 
COVID-19 disrupts the blood–brain barrier and induces neuronal 
and glial cell damage (Mohammadi et  al., 2020). Virus-induced 
systemic inflammatory storms, coupled with increased blood–brain 
barrier (BBB) permeability, lead to the entry of a large number of 
mediators into the central nervous system, which amplifies 
neuroinflammation and promotes neurodegenerative processes (Maes 
et  al., 2022). Astrocytes can also be  infected by SARS-CoV-2. 
Astrocytes exist in the brain. They make and transport food for 
neurons. The spike protein on SARS-CoV-2 virus has different 
receptors for astrocytes and lung cells, which enables them to bind to 
astrocytes. Because the infected astrocytes could not provide food for 

FIGURE 2

How severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might cause Alzheimer’s disease (AD). Some database-based studies have 
revealed that SARS-CoV-2 and AD may share common genetic genes. Additionally, SARS-CoV-2-induced inflammatory storms lead to systemic 
inflammation. Entry of pro-inflammatory factors into the central nervous system through a dysfunctional blood–brain barrier induces 
neuroinflammation. Excessive viral replication may also penetrate the blood–brain barrier and interfere with hippocampal function leading to 
neurological damage and neurodegeneration. Furthermore, SARS-CoV-2 may affect amyloid precursor protein processing and phosphorylated tau 
leading to abnormal amyloid beta metabolism and neurofibrillary tangles.
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neurons, eventually leading to neuron death (Crunfli et  al., 2022; 
Figure 3A). Peripheral inflammatory factors also circulate to the brain 
and activate cerebral microglia and astrocytes, which secrete 
pro-inflammatory cytokines that amplify the effects of 
neuroinflammation (Wang et al., 2019; Kucia et al., 2021).

Neuroinflammation
Increasing evidence emphasizes the contribution of 

neuroinflammation to AD, which likely plays a vital role in the early 
stages of the disease where intervention may be  most beneficial. 
Although Aβ deposition is the initiating step of AD pathology, 
neuroinflammation may be  the main driving force of 
neurodegeneration (Park et  al., 2018; Desforges et  al., 2020). 
Neuroinflammation may be the entry of proinflammatory factors into 
the brain through the damaged BBB or the direct intrusion of SARS-
CoV-2 to induce an inflammatory response (Figure 3B). COVID-19-
mediated neuroinflammation is manifested by the activation of 
microglia and astrocytes. SARS-CoV-2 reaches the olfactory bulb of 
the hypothalamus through the neuroepithelium of the olfactory 
mucosa (Steardo et al., 2020). The presence of SARS-CoV-2 in the 
olfactory bulb may lead to the activation of mast cells, microglia, and 
astrocytes, which leads to the tissue release of pro-inflammatory 

cytokines (Rutkai et  al., 2022). Brains infected with SARS-CoV-2 
exhibited a marked inflammatory response and extensive activation 
of microglia and astrocytes compared to brains without SARS-CoV-2 
(Rutkai et al., 2022). Data from an in vitro study highlighted that the 
SARS-CoV-2 spike protein S1 increased the release of TNF-α, IL-6, 
IL-1β, and iNOS/NO by stimulating BV-2 microglia (Olajide et al., 
2022). Evidence from in vitro and in vivo studies is complemented by 
clinical samples. Ziff et  al. (2022) found that pro-inflammatory 
cytokines, such as TNFα, IL6, IL1β, and IL8, were significantly 
increased in the cerebrospinal fluid of patients with COVID-19 
neurological syndrome. Poloni et  al. (2021) found that microglial 
activation in the brainstem was significantly increased in COVID-19 
cases, and abnormal microglial activation in the frontal cortex and 
hippocampus was associated with AD pathology. Notably, 
hippocampal microglia was significantly enhanced in COVID-19 
patients with delirium (all patients with neurocognitive impairment). 
However, no traces of SARS-CoV-2 colonization were found in brain 
tissue. Schwabenland et  al. (2021) detected profound immune 
activation in the brain tissue of deceased patients with COVID-19, 
which was manifested by specific CD8 T-cell clusters affecting the 
vasculature and prominent CD8 T-cell-microglia crosstalk in the 
parenchyma. This study highlights that SARS-CoV-2 is recognized in 

A B

FIGURE 3

(A) Systemic inflammation induced by SARS-CoV-2 infection. Early unresolved viral replication may be responsible for the infiltration of infected 
alveolar epithelial cells, macrophages, and leukocytes into the lung tissue for overproduction of cytokines and chemokines. Therefore, 
we hypothesized that the neurological complications of COVID-19 may result from systemic cytokine storm and subsequent endothelial and blood–
brain barrier dysfunction. (B) Neuroinflammation triggered by SARS-CoV-2 infection. On the one hand, peripheral pro-inflammatory factors enter the 
central nervous system through the damaged blood–brain barrier, prompting the hyperactivation of microglia. On the other hand, SARS-CoV-2 enters 
the central nervous system and binds to ACE2 receptors on the surface of glial cells to activate microglia, followed by the release of IL-1α, TNF, and the 
complement component C1q. Furthermore, exposure to the virus or its components promotes the expression and activation of Toll-like receptors in 
glial cells. This signal promotes the production and release of pro-inflammatory mediators and induces an inflammatory response in the CNS. 
Astrocytes can also be infected by SARS-CoV-2. The spike protein on SARS-CoV-2 virus has different receptors for astrocytes and lung cells, which 
enables them to bind to astrocytes. Because the infected astrocytes could not provide food for neurons, eventually leading to neuron death.
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cerebrovascular structures and provides a possible basis for broad 
immune activation. This severe neuroinflammation may partially 
explain the underlying mechanism of SARS-CoV-2 infection-induced 
AD development. As innate immune cells in the brain, microglia have 
long been considered to be  related to the pathology of 
neurodegenerative diseases. More and more shreds of evidence show 
that activated microglia can produce a variety of neurotoxic factors 
including pro-inflammatory mediators and reactive oxygen species for 
a long time, thus causing persistent damage to neuronal. Microglia can 
be activated for a long time due to single stimulation (e.g., pathogen 
infection) or multiple stimulations, to aggravate the damage of 
neurons over time. Brain-targeted SARS-CoV-2 infection can induce 
microglia activation, then cause chronic inflammation and eventually 
lead to neurodegeneration (Figure 4). Moreover, neuroinflammation 
is associated with intense oxidative stress that exacerbates 
neurodegenerative diseases, such as AD. COVID-19 patients with 
advanced age and comorbidities with an inflammatory basis (e.g., 
diabetes, atherosclerosis, and subclinical dementia) may be  at 
increased risk of AD. Therefore, neuroinflammation caused by 
COVID-19 may be unmanageable, especially in older adults, because 
their immune system responds less efficiently (Kritas et  al., 2020; 
Schirinzi et al., 2021).

Viral infection
Angiotensin-converting enzyme 2 (ACE2) receptor is the primary 

mediator of SARS-CoV-2 entry into cells. Some studies suggest that 
SARS-CoV-2 may be “neuroinvasive” and directly infect neurons or 

glial cells in the central nervous system (Figure 4). These studies, 
without exception, found ACE2 expressed in neurons of the brain. 
SARS-CoV-2 was identified throughout the brain parenchyma in one 
autopsy sample using antigen staining (Xu et  al., 2005). Two 
dissertations demonstrated ACE2 staining of astrocytes present in the 
cerebellum and brainstem of rats (Gallagher et al., 2006; Gowrisankar 
and Clark, 2016). According to a meta-analysis of single single-cell 
sequencing data sets, ACE2 is expressed at low levels in the human 
posterior cingulate cortex and middle temporal gyrus (Chen et al., 
2020). It is worth noting that SARS-CoV-2 may infect cortical neurons 
in human brain organoids (which express ACE2) (Bilinska et  al., 
2020). Knock human ACE2 gene into mouse ACE2 locus, and then 
intranasal drip of SARS-CoV-2 causes neuronal infection in the brain, 
but the specific number and distribution of these infected cells have 
not been determined (Sun et al., 2020). These studies highlight that 
the expression of ACE2 receptors in brain neurons facilitates SARS-
CoV-2 invasion. The presence of SARS-CoV-2  in the brains of 
COVID-19 patients supports this hypothesis (Matschke et al., 2020; 
Puelles et al., 2020). Serrano et al. (2021) performed RT-PCR of 16 
brain regions in 20 subjects who died of COVID-19 and found that 
most subjects had non-specific histopathology, including focal 
β-amyloid precursor protein immunoreactivity and sparse 
perivascular mononuclear cell cuffs. SARS-CoV-2 RNA was detected 
in one or more brain regions of four subjects, including the olfactory 
bulb, amygdala, intra-olfactory region, temporal and frontal 
neocortex, dorsal medulla, and pia mater (Serrano et al., 2021). An 
autopsy report on 44 patients who died of COVID-19 has attracted 

FIGURE 4

SARS-CoV-2 can enter the central nervous system through the damaged blood–brain barrier and bind to ACE2 receptors on the surface of microglia 
to activate the immune function. The large-scale replication of the virus over-activates microglia or induces chronic stimulation by long-term latency, 
which eventually leads to neuronal incapacitation and damage.
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attention. These researchers systematically examined viral load in 
multiple organs throughout the body, including the brain. The spread 
characteristics and different damage to various organs after virus 
infection were studied. A total of 85 anatomical locations and 79 types 
of body fluid samples were involved, and SARS-CoV-2 RNA detected 
was detected in all samples. After detection, SARS-CoV-2 RNA was 
found in 90.9% of brain tissues, second only to lung tissue. This study 
is the first report to directly demonstrate that SARS-CoV-2 spread in 
multiple organs and the brain early in infection, and multiple 
extrapulmonary replication sites were preserved during the first week 
after symptom onset. These extrapulmonary tissues are likely to 
prolong the replication time of the virus and lay the foundation for 
future complications, especially in the nervous system. A recent large 
study comparing brain scans of the same person before and after 
infection with SARS-CoV-2 found that brain changes may be  an 
inevitable outcome of SARS-CoV-2 invasion (Douaud et al., 2022). 
This study also found that participants had more gray matter loss and 
tissue abnormalities a few months after SARS-CoV-2 infection, 
primarily in brain regions involved in smell than participants who 
were not infected with SARS-CoV-2. Some of the altered areas of the 
brain identified in the study are also involved in memory-
related functions.

Once SARS-CoV-2 enters the brain, it binds to ACE2 receptors on 
neurons, astrocytes, oligodendrocytes, and microglia. Their 
interactions may lead to astrogliosis and microgliosis, increase BBB 
permeability, and allow monocytes and leukocytes to infiltrate 
multiple brain regions of the central nervous system (Vargas et al., 
2020), including the olfactory bulb, choroid plexus, cerebral cortex, 
and middle temporal gyrus (Chen R. et al., 2020; Chen L. et al., 2020; 
Figure 4). Due to viral neurotropism, SARS-CoV-2 spreads through 
neuroanatomically interconnected pathways and causes neuronal 
dysfunction and neurodegeneration in the central nervous system.

Damaged blood–brain barrier
The systemic inflammation induced by COVID-19 may lead to 

rupture of the BBB, which promotes immune cell infiltration (Hascup 
and Hascup, 2020; Figure 3A). Cytokine storms in the brain also cause 
rupture of the BBB, which leads to a vicious cycle of increased 
pathology (Najjar et  al., 2020). Therefore, we  hypothesized that 
systemic cytokine storms and subsequent endothelial and BBB 
dysfunction in COVID-19 patients will increase the risk of AD in 
subsequent decades, especially in elderly individuals, because the 
gradual loss of blood–brain barrier integrity is an aging characteristic. 
However, the length of SARS-CoV-2-mediated disruption of the 
vascular endothelium and BBB persists is not clear but is the focus of 
future research.

Amyloid precursor protein metabolism 
abnormality

The major event in AD is the uncontrolled accumulation of toxic 
Aβ due to an imbalance in production and removal. The core pathway 
leading to the accumulation of Aβ involves cleavage of the amyloid 
precursor protein (APP) by γ-secretase. Notably, the multi-group 
analysis of COVID-19 patient samples shows that there is a potential 
relationship between the metabolic process of APP and COVID-19 
infection. Caradonna et al. (2022) found that the expression of APP 
was up-regulated after the SARS-CoV-2 virus was bound to the ACE2 
receptor. This result is consistent with Camacho et al. (2021) who 

identified 6 upstream regulators that increased APP production in a 
COVID-19 patient dataset. RNA-seq analysis highlighted that patients 
with COVID-19 had significantly increased APP transcripts in blood 
samples compared to those without COVID-19 (Overmyer et  al., 
2021). Derived from a study on single-cell RNA-seq by Yang et al., 
oligodendrocytes were isolated from the brain tissue of dead 
COVID-19 patients. It was found that APP was one of the most 
up-regulated genes (Yang et al., 2021). IFITM3 is a viral restriction 
protein that sequesters viral particles and subsequently transports 
them to lysosomes. Vavougios et al. (2021) demonstrated dysregulation 
of IFITM3-dependent pathways in neurons and peripheral immune 
cells donated from AD patients and this perturbation may be induced 
by a variety of viruses, including SARS-CoV-2. Notably, IFITM3 
upregulation induced γ-secretase activity, which increased amyloid 
production (Idrees and Kumar, 2021). The heparin-binding site on the 
S1 protein may help amyloid protein bind to the virus surface, which 
triggers the aggregation of these proteins and ultimately led to 
neurodegeneration in the brain. However, there are some inconsistent 
arguments. For example, multiple transcriptome sequencing of whole 
blood with red blood cells removed failed to identify differences in the 
expression levels of APP and PSEN1/2 between COVID-19-infected 
and uninfected individuals (Tang et al., 2020). There was no significant 
difference in the transcriptional levels of APP and PSEN1/2 in brain 
organs derived from pluripotent stem cells between SARS-CoV-2 
infected and uninfected persons (Jacob et al., 2020). Therefore, the 
effect of COVID-19 on APP metabolism still needs further exploration.

Phosphorylated tau
Neurofibrillary tangles formed by hyperphosphorylated tau 

protein are another important neuropathological marker of 
AD. Recent study suggested that the plasma T-tau concentration of 
COVID-19 patients without obvious neurological symptoms is 
significantly higher than that of COVID-19 negative patients, 
indicating that SARS-CoV-2 may cause tau protein 
hyperphosphorylation (Lennol et  al., 2023). Although there is no 
evidence to prove the causal relationship, the highly expressed ACE2 
receptor in the brain provides a potential mechanism, because the 
high expression of ACE2 receptor in the brain was inversely 
proportional to the cognitive decline of AD patients, and was 
positively correlated with insoluble phosphorylated tau (Louise 
et al., 2023).

Discussion

Infectious agents, especially viruses, are likely to be involved in the 
pathogenesis of AD. According to this hypothesis, these viral particles 
evade the host immune system and lead to chronic infection and the 
subsequent deposition of Aβ and phosphorylated tau in the brain. 
Although several AD-related candidate viruses were identified in 
previous studies, the specific mechanisms remain obscure. These 
studies are also only correlational rather than causative. The validation 
of this hypothesis has not stopped because therapeutic strategies 
targeting Aβ are being questioned. The frequent neurological 
manifestations of SARS-CoV-2 have forced researchers to consider the 
explosion of neurodegenerative diseases in the ensuing decades. 
Several studies have observed cognitive impairment in COVID-19-
infected people, which suggests that COVID-19 plays a role in the 
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development of AD. However, there is currently no direct evidence 
that the neuropathology of COVID-19 is caused by the direct viral 
infection of the central nervous system or the accompanying immune 
response and the resulting hypercoagulable state.

Some researchers suggest a more reserved response. They 
concluded that although viral RNA is detected in approximately 50% 
of cases, only small amounts of viral protein are present in isolated 
neurons and endothelial cells in the medulla oblongata of the central 
nervous system (Matschke et al., 2020; Meinhardt et al., 2021). These 
low levels of expression are not sufficient to cause neurodegeneration. 
The severity of neuropathy also did not correlate with the presence of 
viral proteins or RNA in the brain (Matschke et al., 2020). SARS-
CoV-2 may not possess neuro-invasive activity because the ACE2 
receptor is only rarely expressed or almost absent from neuronal cells 
(Brann et  al., 2020). However, the presence of the virus may 
be influenced by the time interval between initial infection, death, 
autopsy, and subsequent brain processing. Notably, the expression of 
ACE2 is closely related to the specific detection method used. For 
example, single-cell sequencing techniques have low sensitivity, and 
immunohistochemistry depends on the anti-ACE2 antibody. 
Conclusions based on animal and cellular models of SARS-CoV-2 
infection depend on the expression pattern of the ACE2 protein and 
S protein affinity in each model, which may affect the necropsy results 
(Cooper et al., 2020).

Directions for future research

Addressing these issues may require further research. First, 
preclinical studies may be  performed immediately. Various AD 
animal models were used to examine key pathological outcomes of 
SARS-CoV-2 infection, including amyloid plaques, cognitive 
function, and activation of immune cells in the brain. Second, there 
are few studies on AD-related pathological changes in post-mortem 
tissue, especially brain tissue, of COVID-19 patients, and the sample 
size is limited. This hinders our exploration of the potential link 
between COVID-19 and AD. Thus, more detailed classification and 
larger sample size research are necessary, such as focusing on patients 
who have a longer infection or are more ill. Third, long-term 
complications of COVID-19 are expected to emerge over the next 
10–20 years. Therefore, assessing the risk of long-term neurological 
sequelae of COVID-19 will be  critical, especially in elderly and 
severely ill patients. With the increasing number of COVID-19-
infected people, it is necessary to establish a long-term follow-up 
system for them because many important retrospective studies will 
prove whether COVID-19 survivors have a greater risk of AD. Notably, 
the prospective cohort study design will help us better understand the 
subsequent AD risk of COVID-19. Fourth, a global registry system is 
urgently needed to collect clinical data regularly and help researchers 

analyze participants’ cognitive functions to better understand the 
occurrence, natural history, and optimal management of COVID-19-
related AD. By creating a global registry, scientists around the world 
are called to work together to quickly share relevant clinical 
observations and help answer the above questions.

Conclusion

Extensive research over the past few decades suggests that viral 
infections are involved in the etiology of AD. Antiviral therapy may 
be a promising target for modulating AD. The SARS-CoV-2 virus that 
has infected hundreds of millions of people seems to show no signs of 
stopping after 3 years of rage. Neuroscientists must consider long-term 
sequelae. Despite growing knowledge about the potential of SARS-
CoV-2 in causing AD, there is no consensus on specific contributions. 
However, it is important to highlight this possibility and act now to 
prepare for an unknown future.
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