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The blood–brain barrier (BBB) plays important roles in the maintenance of brain 
homeostasis. Its main role includes three kinds of functions: (1) to protect the 
central nervous system from blood-borne toxins and pathogens; (2) to regulate the 
exchange of substances between the brain parenchyma and capillaries; and (3) to 
clear metabolic waste and other neurotoxic compounds from the central nervous 
system into meningeal lymphatics and systemic circulation. Physiologically, the BBB 
belongs to the glymphatic system and the intramural periarterial drainage pathway, 
both of which are involved in clearing interstitial solutes such as β-amyloid proteins. 
Thus, the BBB is believed to contribute to preventing the onset and progression for 
Alzheimer’s disease. Measurements of BBB function are essential toward a better 
understanding of Alzheimer’s pathophysiology to establish novel imaging biomarkers 
and open new avenues of interventions for Alzheimer’s disease and related 
dementias. The visualization techniques for capillary, cerebrospinal, and interstitial 
fluid dynamics around the neurovascular unit in living human brains have been 
enthusiastically developed. The purpose of this review is to summarize recent BBB 
imaging developments using advanced magnetic resonance imaging technologies in 
relation to Alzheimer’s disease and related dementias. First, we give an overview of 
the relationship between Alzheimer’s pathophysiology and BBB dysfunction. Second, 
we provide a brief description about the principles of non-contrast agent-based and 
contrast agent-based BBB imaging methodologies. Third, we  summarize previous 
studies that have reported the findings of each BBB imaging method in individuals 
with the Alzheimer’s disease continuum. Fourth, we  introduce a wide range of 
Alzheimer’s pathophysiology in relation to BBB imaging technologies to advance our 
understanding of the fluid dynamics around the BBB in both clinical and preclinical 
settings. Finally, we discuss the challenges of BBB imaging techniques and suggest 
future directions toward clinically useful imaging biomarkers for Alzheimer’s disease 
and related dementias.
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1. Introduction

The blood–brain barrier (BBB) maintains brain homeostasis 
through sophisticated anatomical and physiological systems. The BBB 
is composed of endothelial cells of the capillary wall, pericytes embedded 
in the endothelial basement membrane, and astrocytic end-feet that 
surround the parenchymal basement membrane, known overall as the 
glia limitans (Engelhardt and Sorokin, 2009). Tight junction proteins 
seal the endothelial cells together and restrict the intrusion of 
bloodstream substances into the central nervous system (Ballabh et al., 
2004). The BBB is also a highly selective semipermeable border, which 
allows the passive diffusion of some hydrophobic molecules such as 
oxygen, carbon dioxide, and hormones, as well as facilitates the selective 
and active transport of water, ions, organic anions, and hydrophilic 
macromolecules such as glucose and amino acids that are vital nutrients 
to neurons (Obermeier et al., 2013). Any neuron is less than 10–20 μm 
away from a capillary (Tsai et al., 2009), which implies that every neuron 
has its own capillary. This demonstrates the critical relationship between 
the vascular and neuronal compartments, called the neurovascular unit 
(NVU; Montagne et al., 2016; Chagnot et al., 2021).

For imaging analysis of the BBB, the most commonly used 
approaches are to track the uptake of intravenously injected tracers as 
they leak from the bloodstream into the brain through the BBB. In 
rodents, two-photon microscopy can monitor the leakage of fluorescent 
dyes across the BBB, but the field of view is small, and scanning depth 
is limited (Burgess et  al., 2014; Dickie et  al., 2020). Photoacoustic 
imaging enables visualization of dyes or probes with specific absorption 
characteristics at greater depths than fluorescence-based imaging 
systems, but is still unable to provide adequate penetration for human 
brains and is difficult to quantify (Beard, 2011). For human subjects, 
positron emission tomography (PET) can quantitatively measure the 
activity of BBB-specific transporters (Piert et al., 1996; Syvänen and 
Eriksson, 2013), but has lower spatial resolution among the conventional 
imaging modalities and requires blood sampling during the scan. In 
addition, repeat scanning in at-risk healthy populations for longitudinal 
aging and individuals with cognitive decline is difficult to justify due to 
the cumulative dose of ionizing radiation even if it has little effect on the 
participants’ health (Nasrallah et al., 2013).

Hence, non-invasive methods with which to detect BBB function 
for in vivo human subjects are needed to reveal the impact of BBB 
dysfunction on the pathogenesis and progression of Alzheimer’s disease 
(AD) pathological conditions. We  emphasize that in vivo human 
experiments are essential to assess the BBB physiology because the fluid 
dynamics around the BBB would cease in ex vivo human brain tissues. 
In terms of its non-invasiveness and convenience in a clinical setting, 
magnetic resonance imaging (MRI) fits well with clinical research to 
investigate to what extent the BBB functions would be altered along with 
aging and Alzheimer’s pathological processes. Therefore, we focused on 
the magnetic resonance-based BBB imaging methodologies in this 
review. First, we  give an overview of the relationship between 
Alzheimer’s pathophysiology and BBB dysfunction. Second, we provide 
a brief description about the principles of non-contrast agent-based and 
contrast agent-based BBB imaging methodologies. Third, we summarize 
previous studies that have reported the findings of each BBB imaging 
method in individuals with the AD continuum. Fourth, we introduce a 
wide range of AD pathophysiology in relation to BBB imaging 
technologies to advance our understanding of the fluid dynamics 
around the BBB in both clinical and preclinical settings. Finally, 
we discuss the challenges of BBB imaging techniques and suggest future 

directions toward clinically useful imaging biomarkers for AD and 
related dementias.

2. Alzheimr’s pathopyhsiology in 
relation to blood–brain barrier 
dysfunction

There is increasing evidence that supports the involvement of BBB 
dysfunction in the early stages of Alzheimer’s disease (AD; Montagne 
et al., 2015; van de Haar et al., 2016a,b; Montagne et al., 2017, 2020; 
Nation et al., 2019; Sweeney et al., 2019) and related dementias, such as 
cerebral small vessel disease (CSVD; Zhang et al., 2017; Shao et al., 2019; 
Wardlaw et al., 2019; Uchida et al., 2020). The pathological hallmarks of 
AD include the deposition of extracellular β-amyloid (Aβ) aggregates in 
the brain parenchyma as senile plaques and within the cerebral vessel 
walls and leptomeninges as cerebral amyloid angiopathy, along with 
intracellular hyperphosphorylated tau aggregates as neurofibrillary 
tangles, and neuronal cell loss as neurodegeneration (Jack et al., 2018). 
Recent clinicopathological and radiological data suggest that there are 
close relationships between BBB dysfunction and these established 
Alzheimer’s biomarkers (Cockerill et al., 2018; Michalicova et al., 2020; 
Wang et al., 2021; Ishida et al., 2022). Excessive accumulation of toxic 
forms of Aβ and tau proteins is assumed to result from an imbalance 
between its production and clearance (Tarasoff-Conway et al., 2015). 
Physiologically, the BBB belongs to the glymphatic system (Iliff et al., 
2012, 2013; Nedergaard and Goldman, 2020) and the intramural 
periarterial drainage pathway (Carare et al., 2008; Weller et al., 2010; 
Hawkes et al., 2011; Morris et al., 2014), both of which are involved in 
clearing interstitial solutes such as Aβ (Cockerill et al., 2018; Wang et al., 
2021) and tau proteins (Michalicova et al., 2020; Ishida et al., 2022). 
Further, the ε4 allele of APOE gene is the strongest and most validated 
genetic risk factor for sporadic AD (Yamazaki et al., 2019). Emerging 
evidence suggests that APOE ɛ4 directly impairs the BBB: astrocyte-
secreted ApoE4 induces the degeneration of brain capillary pericytes 
that maintain BBB integrity (Bell et al., 2012), and individuals carrying 
APOE ɛ4 are closely linked to the onset and progression of AD 
pathogenesis, independent of pathological Alzheimer’s biomarkers 
(Montagne et al., 2020; Uchida et al., 2022a).

3. Relationship between neurovascular 
unit and blood–brain barrier imaging

3.1. Normal neurovascular unit physiology in 
relation to blood–brain barrier imaging

Due to the existence of capillary endothelial cells with tight 
junctions, trans-endothelial permeability to plasma proteins and 
inorganic solutes is limited (Nitta et al., 2003; Wardlaw et al., 2003). In 
addition, the regulation of brain water transport is essential to brain 
homeostasis and its dysfunction is associated with several neurological 
conditions. Trans-endothelium water exchanges are through both 
passive (i.e., diffusion) and active (i.e., co-transport by ion pumps, 
carrier proteins, and transcytosis) pathways between the capillary and 
interstitial fluids (Oresković and Klarica, 2010). The key BBB-related 
water exchange pathway operates through a set of perivascular trans-
membrane proteins, which are called aquaporin-4 (AQP4) channels. 
AQP4 channels were well-regulated and localized to perivascular 
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astrocytic end-feet, known as AQP4 polarization, and form a central 
pathway for the glymphatic system, facilitating water transport across 
the basement membrane (Ibata et al., 2011; Papadopoulos and Verkman, 
2013; Ohene et al., 2019). The BBB water exchange flow through AQP4 
channels plays a role in the drainage of brain metabolites and other 
neurotoxic compounds from the central nervous system into meningeal 
lymphatics and systemic circulation as a part of the glymphatic system 
(Iliff et al., 2012; Figure 1A).

3.2. Alzheimer’s neurovascular unit 
pathophysiology in relation to blood–brain 
barrier imaging

Alzheimer’s pathological changes include NVU pathophysiology, 
which can be detected by BBB imaging (Figure 1B). There are mainly 
two key mathematical MRI models for BBB imaging, which will 
be discussed in this review: those that utilize contrast agents to enhance 
relaxation rate differences between the intravascular and extravascular 
compartments (Joseph and Novel, 2020); and those that utilize the 
dynamic properties of arterial spin labeling (ASL) to first isolate signals 
from intravascular spins and then estimate the water exchange rate on 
the evolving signals around the BBB (Dickie et al., 2020). The former 

model is called dynamic contrast-enhanced MRI (DCE-MRI), which 
requires the injection of gadolinium-based contrast agents into the vein 
and has been widely used to measure BBB permeability (Heye and 
Culling, 2014). Subtle BBB leakage, triggered by loosened endothelial 
tight junctions (Laurent et al., 2006; Wang et al., 2011) and injured 
pericytes (Montagne et al., 2015), can be detected using DCE-MRI. The 
latter model is called ASL-based BBB imaging, which utilizes water as 
an endogenous tracer alternative to contrast agents. Among ASL-based 
BBB imaging, a diffusion-prepared pseudo-continuous arterial spin 
labeling (DP-pCASL) technique has been developed to measure the 
water exchange rate across the BBB (St Lawrence et al., 2012; Lin et al., 
2019; Shao et  al., 2019). Aberrant AQP4 expression is linked with 
decreased efficiency of the BBB water exchange rate (Ohene et al., 2019) 
and results in excessive Aβ brain deposition (Figure 2; Uchida et al., 
2022a). In addition to these direct mathematical BBB models, 
measurement of several toxic substances from blood can be regarded as 
an indirect biomarker for BBB dysfunction. Blood-derived substances 
include fibrinogen, thrombin, hemoglobin, iron-containing 
hemosiderin, free iron, plasmin, environmental toxins and metals, and 
possibly, microbial pathogens, which can have toxic neuronal effects and 
lead to oxidative stress and activation of the proinflammatory microglial 
response, resulting in the pathological changes seen in AD (Zlokovic, 
2011). Quantitative susceptibility mapping (QSM) has been available as 

A B

FIGURE 1

Schematic representation of the neurovascular unit (NVU) in normal physiology (A) and Alzheimer’s pathophysiology (B). (A) The capillary lumen is formed 
by endothelial cells (EC), pericytes embedded in the basement membrane (BM), and astrocytic end-feet. Tight junction (TJ) proteins seal the ECs together 
and restrict the passage of solutes into the brain. The BM are separated into two layers, which are attached to the ECs and astrocytic feet, forming the 
perivascular space (PVS). Aquaporin-4 (AQP4) water channels expressed in the astrocytic end-feet membranes facilitate bidirectional water flow between 
the capillary, PVS, and interstitial tissues, resulting in the glymphatic flow. (B) In Alzheimer’s pathophysiology, the damaged TJ proteins loosen the seal of 
the ECs and provide a route for passive diffusion of toxic substances into the extravascular space, which can further damage or downregulate the NVU 
system. As a consequence of the injured pericyte that normally anchors the AQP4 water channels to astrocytic end-feet, the retraction of AQP4 from 
astrocytic end-feet membranes occurs with a reduction of bidirectional water flow, resulting in an enlarged PVS. Based on these pathophysiological 
changes, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can measure the blood–brain barrier (BBB) leakage, pseudo-continuous 
diffusion-prepared arterial spin labeling (DP-pCASL) can estimate the BBB water exchange rate, and quantitative susceptibility mapping (QSM) can detect 
the brain iron concentration, respectively.
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an auxiliary biomarker that reflects disease severity in AD to measure 
brain tissue iron concentration, which is partly due to the BBB leakage 
caused by the damaged NVU (Cogswell et al., 2021; Uchida et al., 2022b; 
Figure 3).

4. Modeling for blood–brain barrier 
imaging

4.1. Modeling for blood–brain barrier water 
exchange rate (kw)

The BBB water exchange rate, kw, can be calculated based on the 
capillary permeability surface-area product of water (PSw) per unit-mass 
tissue according to the Renkin-Crone equation (Renkin, 1959; 
Crone, 1963):

 
PS E CBFw w= − −( )×ln 1

where Ew is the water extraction ratio between the capillary and 
brain tissue compartments and CBF is the cerebral blood flow. To 
estimate Ew, a long post-labeling delay (PLD) is required for complete 
extraction of labeled water in the brain tissue space (Lin et al., 2018; 
Shao et al., 2018; Uchida et al., 2022a). A single-pass approximation 
(SPA) model for ASL signals has been proposed to estimate the exchange 
rate of labeled water from the capillary into the brain tissue space, which 
does not account for labeled water signal contributions from the brain 
tissue into the capillary space during the image acquisition (St Lawrence 
et al., 2012). The BBB water exchange rate, kw, is defined as PSw divided 
by the distribution volume of water tracer in the capillary space. In a 
pCASL sequence with prepared diffusion sensitizing gradients of low 
strength, known as DP-pCASL, signals from the intravascular spins can 
be nulled, leaving only signals from the extravascular spins. By applying 

a bi-exponential diffusion signal model to utilize the difference in signal 
decay between the capillary and brain tissue compartments, the 
proportion of signals in each compartment can be determined as a 
function of PLD (St Lawrence et al., 2012; Shao et al., 2019):
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where ΔM(t) is the ASL signal at any b values, t is the PLD, A1 and 
A2 are intravascular and extravascular labeled water fractions, 
A1(t) + A2(t) = 1, and D1 and D2 are the corresponding apparent diffusion 
coefficients, respectively. Then, we can estimate the capillary fraction, 
A1(t), at only two b values, which are zero and a large b value (bDW) 
sufficient to suppress the vascular signal, but with minimum effect on 
the tissue signal:
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The BBB water exchange rate, kw, can be extracted based on the 
look-up table approach between the capillary fraction, A1(t), and kw 
values (Figure 4), incorporating the arterial transit time (ATT), the T1 
of arterial blood and gray matter, the labeling efficiency, and the brain–
blood partition coefficient as additional inputs for the SPA model 
(Uchida et  al., 2022a). The representative kw maps are shown in 
Figure 2A.

4.2. Modeling for blood–brain barrier 
permeability (Ktrans)

The BBB permeability, Ktrans, is the rate at which contrast agent is 
delivered to the extravascular space per volume of tissue and contrast 
agent concentration in the blood plasma. Various pharmacokinetic 

A

B

FIGURE 2

Representative BBB kw map (A) and [11C]PiB-PET SUVR (B) from an 
APOE ɛ4 noncarrier (ε3/ε3), a heterozygote (ε3/ε4), and a homozygote 
(ε4/ε4). The kw map from the homozygote (ε4/ε4) displays the lowest 
kw values, which are associated with the highest SUVRs of [11C]PiB-PET. 
APOE: apolipoprotein E; BBB, blood–brain barrier; PiB, Pittsburgh 
compound B; SUVR, standard uptake value ratio [adapted with 
permission from Uchida et al. (2022a)].

A

B

FIGURE 3

Representative BBB permeability Ktrans map (A) and QSM (B) from 
normal, mild CSVD, and severe CSVD. The Ktrans map from the severe 
CSVD displays the highest Ktrans values, which are associated with the 
highest susceptibility values. BBB, blood–brain barrier; CSVD, cerebral 
small vascular disease; QSM, quantitative susceptibility mapping 
[adapted with permission from Uchida et al., 2020].
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models have been applied to analyze DCE-MRI data, ranging from 
relatively simple visual assessment of gadolinium enhancement curves 
to more complex fitting to pharmacokinetic models, mainly based on 
the Tofts and Patlak models (Heye and Culling, 2014). The conventional 
Tofts model assumes a bidirectional flux of tracer between the intra-and 
extravascular compartments with the volume transfer constant, Ktrans, 
and negligible blood volume (Tofts and Kermode, 1991). This model was 
extended by introducing the non-negligible blood plasma compartment 
as a well-mixed and highly perfused compartment (Tofts et al., 1999). 
The conventional Tofts model and the extended Tofts model are used for 
the aggressive alterations of the Ktrans values, such as are found in brain 
tumors. Meanwhile, the Patlak model assumes a unidirectional flux 
from the intravascular compartment into the extravascular compartment 
to estimate subtle BBB leakage of contrast agent to the extravascular 
space (Patlak et  al., 1983). This two-compartment unidirectional 
transport model ignores the flux from the extravascular space to the 
intravascular space and provides Ktrans values as the most sensitive 
modeling with which to detect subtle BBB permeability, which could 

be  applied to the Alzheimer’s NVU pathophysiology (Barnes et  al., 
2016). In the Patlak model, target parameters are the fractional plasma 
volume (Vp) and the BBB permeability Ktrans values:

 
C t K C d C t Vtissue trans

t

p p p( ) = ( ) + ( ) ∗∫
0

τ τ

where Ctissue(t) is the contrast agent concentration of the tissue and 
Cp(t) is determined in the arterial input function (AIF). To obtain the 
dynamic tracer concentration of plasma as AIF, the dynamic tracer 
concentration in Cb(t) is converted into dynamic plasma 
concentration, Cp(t):

 
C t C t Hctp b( ) = ( ) −( )/ 1

where Hct is the hematocrit in the arterial blood plasma. The 
representative Ktrans maps are shown in Figure 3A.

4.3. Comparison between arterial spin 
labeling-based blood–brain barrier imaging 
and dynamic contrast-enhanced MRI

A number of clinicoradiological studies using the BBB water 
exchange rate measured by ASL-based BBB imaging, BBB permeability 
measured by DCE-MRI, or both have been conducted in subjects with 
the AD continuum. A direct comparative analysis of these methodologies 
found only few correlations between the BBB water exchange rate kw and 
BBB permeability Ktrans (Shao et  al., 2020), suggesting that the 
mechanisms that regulate water exchange rate across the BBB and the 
BBB permeability of contrast agents are different (Table 1). In DCE-MRI, 
the Ktrans values can measure the paracellular leakage of contrast agent 
through the damaged endothelium and tight junctions. Meanwhile, the 
kw values can represent the trans-endothelium water exchange rate as 
both passive diffusion and active transport through ion pumps and 
AQP4 channels. DCE-MRI becomes more increasingly permeable to 
large molecules with aging (Montagne et  al., 2015), particularly in 
patients with AD and CSVD (Farrall and Wardlaw, 2009; Zhang et al., 
2017; Montagne et al., 2019). In contrast, the water exchange rate across 

FIGURE 4

The capillary fraction of labeled water (A1) plotted as a function of the 
BBB water-exchange rate kw (min−1). Simulated data was generated 
using the arterial transit time, the T1 of arterial blood (1.66 s) and gray 
matter (1.82 s), the labeling efficiency (85%), the brain–blood partition 
coefficient (0.9 ml/g), and the b values (0 and 50 s/mm2) at a long post 
labeling delay (1.80 s) as inputs for the look-up table algorithm. BBB, 
blood–brain barrier [adapted with permission from Uchida et al. 
(2022a)].

TABLE 1 Comparison between ASL-based BBB imaging and DCE-MRI.

ASL-based BBB imaging DCE-MRI

Main MRI sequence pCASL Dynamic GRE

Spatial resolution (maximum) Lower (1.9 mm × 1.9 mm × 4 mm) Higher (0.55 mm × 0.55 mm × 5 mm)

Total scan time (minimum) Shorter (5.53 min) Longer (16 min)

Tracer (size) Endogenous labelled proton (≈ 18 Da) Exogenous gadolinium (550 Da)

Measured object Water exchange rate across BBB Gadolinium permeability across BBB

Mathematical model (recommended model) Water exchange model (regularized SPA) Pharmacokinetic model (Patlak model)

Output parameter kw Ktrans

Normal reference value among studies Constant Random

Intra-patient reproducibility Good (ICC ≈ 0.75) Good (ICC ≈ 0.75)

Pathological status (Alzheimer’s disease) Lower kw values Higher Ktrans values

ASL, arterial spin labeling; BBB, blood–brain barrier; DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; GRE, gradient echo; ICC, intra-class correlation coefficient; pCASL, 
pseudo-continuous arterial spin labeling; SPA, single-pass approximation.
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the BBB shows a reverse trend and declines with aging (Li et al., 2005; 
Anderson et al., 2020). The following sections provide an overview of 
the relationships between each BBB imaging method and established 
Alzheimer’s biomarkers, as well as cognitive performance from 
previous reports.

5. Findings of blood–brain barrier 
imaging in Alzheimer’s disease subjects

5.1. Overview of dynamic 
contrast-enhanced MRI in subjects with the 
Alzheimer’s disease continuum

Dynamic contrast-enhanced MRI has been proven valuable in the 
assessment of many brain pathologies that cause BBB breakdown, such 
as tumors (Harrer et al., 2004; Provenzale et al., 2006; Singh et al., 
2007; Mills et al., 2009; Bagher-Ebadian et al., 2012; Li et al., 2012; 
Zhang et al., 2012; Larsson et al., 2013), multiple sclerosis (Gaitán 
et al., 2011; Jelescu et al., 2011; Shinohara et al., 2011; Ingrisch et al., 
2012; Cramer et al., 2014), and ischemic strokes (Kassner et al., 2009; 
Vidarsson et al., 2009; Thornhill et al., 2010; Topakian et al., 2010; 
Taheri et  al., 2011). While these diseases show significant BBB 
breakdown, there has been growing interest in the application of 
DCE-MRI to pathologies associated with more subtle and chronic BBB 
disruption, such as CSVD (Wardlaw et al., 2008, 2009; Uchida et al., 
2020), diabetes (Starr et al., 2003), and AD (Starr et al., 2009; Montagne 
et al., 2017). As a matter of fact, widely varying estimates of the BBB 
permeability Ktrans values were reported in each study, for each image 
acquisition parameter and postprocessing technique. For instance, the 
selection of pharmacokinetic model directly reflects Ktrans values: if the 
acquisition duration is short and the rate of BBB leakage estimates are 
slow, the Patlak model that does not allow back-flow into the capillary 
will be suitable, while the conventional Tofts and the extended Tofts 
models can result in increased uncertainty in the fitted parameters 
(Heye and Culling, 2014). Since contrast agents have relatively large 
molecular weights (Gd-DTPA 550 Da), BBB permeability necessarily 
reaches beyond a physiological level before extravasation occurs (Shao 
et al., 2020). Hence, DCE-MRI with the Patlak model analysis has been 
increasingly used to quantify low-level BBB permeability in patients 
with AD pathological changes. An overview of DCE-MRI studies for 
subjects with the AD continuum is summarized in Table 2 (Starr et al., 
2009; Anderson et al., 2011; Montagne et al., 2015; van de Haar et al., 
2016a,b, 2017; Montagne et al., 2019; Nation et al., 2019; Dickie et al., 
2020; Freeze et al., 2020; Montagne et al., 2020; Chagnot et al., 2021; 
Li et  al., 2021; Choi et  al., 2022). As mentioned above, there are 
considerable differences in Ktrans values among the studies. Note that 
measuring BBB permeability with DCE-MRI would be confounded by 
several factors that should be  considered when acquiring or 
interpreting such data. Especially in studies of AD that involve subtle 
BBB permeability, the modifications implemented to improve the 
accuracy of Ktrans values must be considered (Manning et al., 2021). As 
another matter of note, the invasiveness of the injection of gadolinium-
based contrast agents and the contraindication for patients with renal 
insufficiency who might possibly develop nephrogenic systemic 
fibrosis should be  noted. To err on the safe side, the DCE-MRI 
methodology must be guided by the risk–benefit ratio (Montagne 
et al., 2016).

5.2. Overview of arterial spin labeling-based 
blood–brain barrier imaging in subjects with 
the Alzheimer’s disease continuum

In ASL-based BBB imaging, water is an endogenous tracer 
alternative to contrast agents, and has a much smaller molecular weight 
(≈ 18 Da). Therefore, assessing the BBB water exchange rate using the 
ASL-based BBB imaging can provide a more sensitive assessment of BBB 
dysfunction at the earliest stages of AD. A recent review has 
comprehensively summarized the mechanisms of water exchange rate 
across the BBB, acquisition methods, and mathematical models (Dickie 
et al., 2020). ASL is a non-invasive technique with which to measure 
cerebral blood flow, and kinetic models have been proposed to map the 
transvascular water exchange rate based on the T2 (Ohene et al., 2019) 
or diffusion coefficient (Shao et  al., 2019) differences between the 
intra-and extravascular compartments. Regional water exchange rate 
across the BBB can be quantified based on the kinetic modeling of ASL 
signals in the two compartments. Clinical studies have shown that an 
altered BBB water exchange rate is associated with aging (Li et al., 2005; 
Anderson et al., 2020), multiple sclerosis (Rooney et al., 2015), and 
obstructive sleep apnea (Palomares et al., 2015). In a cohort of early-
stage AD subjects who were categorized into apolipoprotein E 
genotyping, an apolipoprotein E ɛ4 dose was associated with a decreased 
BBB water exchange rate, resulting in brain Aβ accumulations and 
cognitive disturbances (Uchida et al., 2022a). An overview of ASL-based 
BBB imaging studies for subjects with the AD continuum is summarized 
in Table 3 (Shao et al., 2019; Joseph and Novel, 2020; Shao et al., 2020; 
Gold et al., 2021; Ford et al., 2022; Uchida et al., 2022a).

6. Other Alzheimer’s disease 
pathophysiology in relation to blood–
brain barrier imaging

6.1. Aging

Aging is the most common cause of AD pathogenesis, and BBB 
dysfunction is a hallmark of aging and aging-related disorders, including 
AD and CSVD (Ford et al., 2022). Converging evidence suggests that 
BBB dysfunction plays a central role in the aging brain (Weiss et al., 
2009; Banks et al., 2021). BBB permeability Ktrans values were increased 
with normal aging (Montagne et  al., 2015) and associated with 
age-related cognitive dysfunction (Bowman et al., 2018; Nation et al., 
2019), which was the most prominent in the hippocampus (Montagne 
et al., 2015; Ivanidze et al., 2019). These Ktrans values measured by the 
DCE-MRI analysis primarily reflect the paracellular leakage of the 
relatively large gadolinium contrast agents through injured endothelial 
tight junctions (Laurent et al., 2006; Wang et al., 2011). Meanwhile, 
ASL-based BBB imaging can capture the transcellular transport of the 
much smaller water molecules through AQP4 channels on astrocytic 
end-feet. Decreased AQP4 polarization was associated with aging and 
Aβ brain deposition in animal models (Yang et al., 2011; Kress et al., 
2014; Ishida et al., 2020) and in human brain tissues (Zeppenfeld et al., 
2017). In accordance with these basic experiments, a recent paper found 
that BBB water exchange rate kw values, measured by DP-pCASL with 
Quantitative Permeability Mapping analysis in vivo, demonstrated a 
negative correlation with aging, with adjustments for gender and the 
number of vascular risk factors as covariates (Ford et al., 2022).
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TABLE 2 Overview of DCE-MRI studies in subjects with the AD continuum.

Study Subjects: 
sample size/
age/diagnosis

Image acquisition 
parameters

Pharmacokinetic 
model

Ktrans (× 
10−3 min−1)

Main findings

Wang et al. (2011) 11/74 ± 7/MCI Philips, 1.5 T, GRE, axial, 8 mm 

thickness

Signal enhancement ratio NA The first reported DCE-

MRI study in MCI. BBB 

leakage is increased in 

MCI

Starr et al. (2009) 15/73.7/AD GE, 1.5 T, FSPGR, axial, 3 mm 

thickness, 30 min

Signal enhancement ratio NA The first reported DCE-

MRI study in AD. 

Temporal signal 

intensity pattern differed

Anderson et al. 

(2011)

1/71/early AD Siemens, 7 T, TurboFLASH, axial Two-compartment exchange 

model

NA BBB water regulation is 

disturbed in AD and 

results in abnormal BBB 

permeability

Montagne et al. 

(2015)

20/55–85/MCI GE, 3 T, FSPGR coronal, voxel 

size = 0.625 × 0.625 × 5 mm3, 16 min

Patlak model 1.49 ± 0.31 (SFG) BBB permeability 

contributes to cognitive 

impairment in aging 

and MCI

1.27 ± 0.25 (ITG)

2.30 ± 0.36 (WM)

van de Haar et al. 

(2016a)

16/59–85/early AD Philips, 3 T, Dual-time SRGRE, 

axial, voxel size = 1 × 1 × 5 mm3, 

25 min

Patlak model 0.089 ± 0.112 (GM) BBB permeability is 

associated with 

cognitive decline in 

patients with early AD

0.066 ± 0.044 (WM)

van de Haar et al. 

(2016b)

16/65–85/early AD Philips, 3 T, Dual-time SRGRE, 

axial, voxel size = 1 × 1 × 5 mm3, 

25 min

Patlak model 0.27 ± 0.14 (GM) BBB permeability is 

increased in early AD 

patients, which is linked 

to reduced CBF

van de Haar et al. 

(2017)

16/73.6 ±7.9/early AD Philips, 3 T, Dual-time SRGRE, 

axial, voxel size = 1 × 1 × 5 mm3, 

25 min

Patlak model 0.104 ± 0.124 (GM) BBB permeability is 

higher in patients with 

early AD
0.075 ± 0.046 (WM)

Montagne et al. 

(2019)

12/75/MCI GE, 3 T, FSPGR Patlak model NA BBB permeability is 

increased in MCIcoronal, voxel 

size = 0.625 × 0.625 × 5 mm3, 16 min

Nation et al. (2019) 20/73/MCI GE, 3 T, FSPGR Patlak model 1.35 (GM) BBB permeability is 

increased in MCI, 

independent of Aβ and 

tau pathology

coronal, voxel 

size = 0.625 × 0.625 × 5 mm3, 16 min

2.39 (WM)

Freeze et al. (2020) 34/71.6 ± 6.7/AD Philips, 3 T, Dual-time SRGRE, 

axial, voxel size = 1 × 1 × 2 mm3, 

25 min

Patlak model 7.4 × 10−4 (GM) BBB permeability is 

related to CSVD severity 

in AD patients
8.1 × 10−4 (WM)

Montagne et al. 

(2020)

39/72/MCI Philips or Siemens, 3 T, VIBE with 

variable flip angle, coronal, voxel 

size = 0.55 × 0.55 × 5 mm3, 16 min

Patlak model 1.42 (GM) BBB permeability is 

increased in APOE4 

carriers
2.13 (WM)

Li et al. (2021) 26/71.04 ± 8.99/MCI Siemens, 3 T, SPGR with variable 

flip angle, axial, voxel 

size = 1.2 × 1.2 × 3 mm3

Patlak model 0.157 ± 0.07 (GM) BBB permeability is 

increased in patients 

with vascular cognitive 

impairment

0.031 ± 0.014 (WM)

Choi et al. (2022) 147/76 ± 8/AD Siemens, 3 T, GRE, coronal, voxel 

size = 1.25 × 1.25 × 3 mm3

Patlak model 0.37 (Choroid Plexus) BBB permeability is 

inversely correlated with 

the volume of choroid 

plexus

Aβ, β-amyloid; AD, Alzheimer’s disease; APOE4, apolipoprotein E ɛ4; BBB, blood–brain barrier; CSVD, cerebral small vessel disease; DCE-MRI, dynamic contrast-enhanced magnetic resonance 
imaging; FLASH, fast low-angle shot; FSPGR, fast spoiled gradient-echo; IFG, inferior frontal gyrus; GM, gray matter; GRE, gradient echo; MCI, mild cognitive impairment; NA, not applicable; 
SFG, superior frontal gyrus; SPGR, spoiled gradient; SRGRE, saturation recovery gradient echo; VIBE, volumetric interpolated breath-hold; WM, white matter.
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6.2. Vascular risk factors

A close relationship between AD pathogenesis and vascular risk 
factors, such as hypertension, diabetes, hyperlipidemia, smoking, and 
lack of exercise, is supported by cumulative evidence (Viswanathan 
et al., 2009). These vascular risk factors lead to BBB dysfunctions that 
are associated with AD and vascular cognitive impairments (Yang et al., 
2022). BBB imaging is useful for estimating to what extent the BBB 
function would be damaged at the individual level (Thrippleton et al., 
2019), and is part of the design of a therapeutic trial to control vascular 
risk factors for the prevention of cognitive decline (Chagnot et al., 2021). 
BBB permeability Ktrans values, using DCE-MRI in patients with diabetes, 
were increased in white matter, which is reflective of cerebral 
microangiopathy, before CSVD features, such as lacunes, microbleeds, 
and white matter hyperintensities, could be visualized on conventional 
MRI (Chen et  al., 2021). BBB water exchange rate kw values using 
DP-pCASL in patients with vascular risk factors were positively 
correlated with white matter hyperintensity severity and negatively with 
executive/episodic memory scores (Shao et al., 2019).

6.3. White matter hyperintensity

White matter hyperintensities are common findings in the elderly 
population and generally considered ischemic lesions related to CSVD 
(Yamanaka et  al., 2019). CSVD covers a wide array of pathologies 
involving the dysfunction of the cerebral small vessels. Clinical 
manifestations include recurrent stroke, cognitive impairment, and gait 
disturbance. CSVD is a common cause of dementia, with characteristic 
broadened white matter hyperintensities. While the pathogenesis of 
white matter hyperintensity remains unclear, BBB leakage is one of the 

most accepted hypotheses due to its strong association with white matter 
hyperintensity (Wardlaw et al., 2016; Li et al., 2017; Kerkhofs et al., 
2021). Notably, normal-appearing white matter tissues surrounding 
white matter hyperintensities presented increased BBB permeability, 
suggesting that an abnormality on BBB imaging could precede further 
extensions of these white matter lesions (Shao et al., 2020). Because 
DCE-MRI-based differences in BBB leakage due to white matter lesions 
is very subtle (Zhang et al., 2017), the Patlak model is recommended to 
elucidate these differences (Thrippleton et al., 2019). Several reviews 
have summarized the mechanism of BBB disruption, offered 
recommendations for BBB imaging analyses, and interpretations of BBB 
abnormalities, particularly in the white matter, in patients with CSVD 
(Heye and Culling, 2014; Thrippleton et al., 2019; Dickie et al., 2020; 
Chagnot et al., 2021).

6.4. Cerebrospinal fluid

Cerebrospinal fluid, predominantly produced in the ventricles and 
circulating throughout the brain, fills the perivascular space and 
interacts closely with BBB function (Nakada and Kwee, 2019). The 
production, circulation, and clearance of cerebrospinal fluid have crucial 
pathophysiological implications for brain diseases. It also plays a role in 
the clearance of Aβ and tau proteins to protect from AD pathogenesis 
(Selkoe and Hardy, 2016). To support this protective function, reduced 
cerebrospinal fluid production and clearance caused exacerbated AD 
pathologies (Silverberg et  al., 2001; Tarasoff-Conway et  al., 2015). 
Several neuroimaging modalities have been developed to measure 
cerebrospinal fluid dynamics (Mehta et al., 2022). MR cisternography 
and MR myelography were conventionally used for the diagnosis of 
anatomical cerebrospinal fluid disorders (Mokri, 2014). Extending 

TABLE 3 Overview of ASL-based BBB imaging in subjects with the AD continuum.

Study Subjects: 
Sample Size/
Age/Diagnosis

Image acquisition 
parameters

Water 
exchange 
model

kw (min−1) Main findings

Shao et al. (2019) 19/68.8 ± 7.6/

Cognitively normal and 

MCI

Siemens, 3 T, DP-pCASL with 3D 

GRASE, axial, voxel 

size = 3.5 × 3.5 × 8 mm3, 6 min

Regularized SPA 98.3 ± 20.8 (Frontal lobe) BBB water exchange rate is 

associated with vascular risk 

factors and cognitive scores
97.8 ± 17.3 (Temporal lobe)

100.6 ± 22.2 (Parietal lobe)

Shao et al. (2020) 16/62–86/Cognitively 

normal and MCI

Siemens, 3 T, DP-pCASL with 3D 

GRASE, axial, voxel 

size = 3.5 × 3.5 × 8 mm3, 5.53 min

Regularized SPA 122.3 ± 16.5 (Whole brain) Only three brain regions have 

correlations between BBB 

water exchange kw and BBB 

permeability Ktrans

122.6 ± 15.6 (Gray matter)

121.9 ± 17.2 (White matter)

Joseph and Novel 

(2020)

3/65–85/mild AD Siemens, 3 T, TGSE PASL, axial, voxel 

size = 3.9 × 3.9 × 4 mm3, 20 min

NA NA Reduced paravascular 

clearance in mild AD

Gold et al. (2021) 39/72.7/preclinical AD Siemens, 3 T, DP-pCASL with 3D 

GRASE, axial, voxel 

size = 3.5 × 3.5 × 8 mm3, 5.53 min

Regularized SPA 104.4 ± 22.2 (Frontal lobe) Low BBB water exchange rate 

is associated with low CSF 

Aβ42 concentration
94.8 ± 26.1 (Temporal lobe)

83.2 ± 28.3 (Parietal lobe)

Ford et al. (2022) 30/25–65+/Cognitively 

normal and MCI

GE, 3 T, DP-pCASL with QPM, axial, 

voxel size = 1.9 × 1.9 × 4 mm3, 27 min

Regularized SPA 81.5 ± 15.4 (GM) BBB water exchange rate is 

inversely correlated with age75.2 ± 13.9 (WM)

Uchida et al. (2022a) 66/72.2 ± 5.8/early AD Philips, 3 T, DP-pCASL with 3D 

GRASE, axial, voxel 

size = 3.5 × 3.5 × 7 mm3, 14 min

Regularized SPA 95.1 ± 7.32 (Frontal lobe) BBB water exchange rate is 

decreased in APOE4 carriers, 

resulting Aβ accumulations
91.3 ± 7.05 (Temporal lobe)

94.5 ± 7.19 (Parietal lobe)

CSF, cerebrospinal fluid; DP-pCASL, diffusion-prepared pseudo-continuous arterial spin labeling; GRASE, gradient and spin-echo; PASL, pulsed arterial spin labeling; QPM, quantitative 
permeability mapping; SPA, single-pass approximation; TGSE, turbo gradient spin echo.
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beyond the leakage, phase-contrast cine MRI is the most widely used 
imaging modality for cerebrospinal fluid dynamics, which is a 
non-invasive technique without the need for contrast administration or 
catheterization (Barkhof et al., 1994). Decreased cerebrospinal fluid flow 
using phase-contrast cine MRI analysis was associated with cognitive 
deficits in elderly individuals (Attier-Zmudka et al., 2019).

6.5. Oxygen extraction fraction

In addition to the interstitial and cerebrospinal fluid dynamics, 
pre-and post-capillary vessels in the brain are also key factors in AD 
pathogenesis. Close monitoring of arterial and venous blood 
oxygenation serves as a novel biomarker for the study of cerebral 
hemodynamics (Lu and Ge, 2008), which can aid in understanding the 
NVU pathophysiology. Oxygen extraction fraction is a physiologic 
marker that reflects the percentage of oxygen extracted from the blood 
supply of the brain, which is directly associated with brain oxygen 
metabolism (Buxton et al., 2004). The oxygen extraction fraction shows 
a pronounced increase with aging in cognitively healthy individuals 
(Peng et al., 2014). Meanwhile, oxygen extraction fraction in cognitively 
impaired individuals has shown various results due to the etiology-
based diagnosis of cognitive impairment. For instance, AD 
pathophysiology led to diminished neural activities, and thereby, 
decreased oxygen extraction fraction in patients with AD (Butterfield 
and Halliwell, 2019). Conversely, CSVD pathophysiology caused a 
reduction in blood supply and resulted in an elevated oxygen extraction 
fraction (Jann et al., 2021). Thus, these findings were useful in the 
differential diagnosis for AD and vascular cognitive impairment (Jiang 
et al., 2020). Longitudinal changes in an elevated oxygen extraction 
fraction in older adults were associated with the progression of vascular 
risk factors and white matter hyperintensity volumes, independent of 
the AD pathologies (Lin et al., 2022).

6.6. Brain iron

The homeostasis and physiological role of brain iron in AD and 
CSVD has been debated for decades (Tao et al., 2014). QSM has been 
used to detect the abnormal iron deposition in each specific region as a 
clinical application and quantify the iron concentration for 
clinicoradiological research (Acosta-Cabronero et al., 2013; Ayton et al., 
2017; Kim et al., 2017; Tiepolt et al., 2018; Gong et al., 2019; Uchida 
et al., 2020, 2022a,b; Cogswell et al., 2021). Although abnormally high 
levels of iron are thought to induce free radicals, resulting in neuronal 
loss and cognitive dysfunction, whether iron deposition is a cause or a 
result of Alzheimer’s pathogenesis remains elusive. The former 
hypothesis that brain iron would play a role in the cause of AD is 
supported by combined QSM and BBB imaging studies, which revealed 
iron leakage owing to BBB disruption in CSVD using DCE-MRI (Mikati 
et  al., 2014; Tariq et  al., 2018; Uchida et  al., 2020), and subtle BBB 
dysfunction in early stages of the AD continuum with the ɛ4 allele of the 
APOE gene using DP-pCASL (Uchida et al., 2022a). Meanwhile, cerebral 
microbleeds are frequently observed as an incidental finding, or in the 
context of an associated Alzheimer’s pathologic finding, such as cerebral 
amyloid angiopathy (Haller et  al., 2018). Consequently, brain iron 
perturbations detected by QSM could be valuable monitoring tools 
during AD pathological processes (Fazlollahi et  al., 2020; Rotta 
et al., 2021).

7. Challenges, expectations, and future 
directions

7.1. Challenges

Challenges and pitfalls exist in the measurement of BBB function to 
capture AD pathophysiology using magnetic resonance-based BBB 
imaging technologies. In the DCE-MRI analysis, paracellular BBB 
leakage of low-molecular-weight gadolinium contrast agents is tracked 
dynamically as these agents pass from the intravascular to the 
extravascular space (Heye and Culling, 2014). This approach can detect 
only major damage to endothelial tight junctions such that gadolinium 
leaks out of the BBB. Therefore, it cannot detect abnormalities in early 
AD where the BBB damage has not yet reached the threshold of 
gadolinium leakage through the endothelium. In addition, it is difficult 
to find specific transporter alterations, such as AQP4, because the 
contrast agents are not specifically designed to trace BBB functions 
(Dickie et al., 2020). In ASL-based BBB imaging, it is difficult to measure 
anatomical details because of its low spatial resolution and signal-to-
noise ratio when acquiring the ASL images (Dickie et al., 2020). Low 
spatial resolution also causes partial volume errors, whereas the AIF 
definition on the superior sagittal sinus with a coronal section in the 
DCE-MRI analysis minimizes these errors (Chagnot et  al., 2021). 
Further technical limitations of these BBB imaging analyses should 
be highlighted: Gibbs ringing; signal drift; patient motion; AIF definition 
errors; and kinetic model inaccuracy can confound measurements due 
to the low amplitude of signal changes (Thrippleton et al., 2019; Chagnot 
et al., 2021).

7.2. Expectations

While it has long been recognized that water does not diffuse freely 
across the BBB (Eichling et  al., 1974; Bolwig and Lassen, 1975; 
Herscovitch et al., 1987; Takagi et al., 1987), the idea that water could 
be  used as an internal tracer for measuring BBB function has only 
recently been proposed (Dickie et al., 2020). In addition to potential 
safety benefits with no concerns for accumulation of gadolinium in the 
brain, the use of water to probe BBB function in AD pathophysiology 
has the following expectations: 1) due to the small size of a water 
molecule, subtle BBB alterations are likely to be detectable at an earlier 
stage during the AD pathogenesis; 2) water is physiologically transported 
across the BBB by both passive and active pathways through 
co-transporters and uniporters (Zeuthen, 2010) between the capillary, 
cerebrospinal, and interstitial fluids, potentially providing a wide range 
of BBB pathophysiology; 3) water has its own transport protein (AQP4) 
within the NVU system, which closely correlates with the glymphatic 
flow involved in clearing interstitial solutes (Iliff et al., 2012).

7.3. Future directions

A number of MRI techniques with which to measure the BBB water 
exchange rate have been developed in addition to DP-pCASL. Recently, 
a motion-compensated diffusion-weighted pCASL was proposed to 
acquire intravascular/extravascular perfusion signals from multiple 
PLDs. Using three-compartment SPA modeling, signal-to-noise ratio 
increased three-fold and spatial resolution achieved 3.5mm3 isotropic 
(Shao et  al., 2023). Additionally, a multi-echo ASL method was 
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developed to improve the ability to distinguish intravascular-and 
extravascular-labeled water (Wells et al., 2009). The principal of this 
method to quantify the BBB water exchange rate depends entirely on 
intrinsic R2 (= 1/T2) differences between the multi-compartmental 
origin of labeled water (Wells et al., 2013). If a reliable estimation of the 
BBB water exchange rate using the multi-echo ASL analysis can 
be achieved, spatial resolution and the signal-to-noise ratio of the kw 
map will be improved (Gregori et al., 2013). Furthermore, the water 
extraction-with-phase-contrast-arterial-spin-tagging (WEPCAST; Lin 
et al., 2018) and magnetization transfer-weighted ASL methods (Silva 
et al., 1997) take unique approaches to the measurement of the BBB 
water exchange rate. The former measures PSw by quantifying the 
transmitted fraction of labeled water that passes into the superior 
sagittal sinus during a single pass (Lin et  al., 2018). The latter can 
separate intravascular and extravascular signals based on their different 
magnetization transfer effects because macromolecular spins interact 
more strongly with extravascular water (Silva et al., 1997). Since there 
has been, as yet, no gold standard model with which to measure the BBB 
water exchange rate, a direct comparison of the kw values among these 
methodologies will be needed.

In addition to the cross-sectional design of much of the BBB 
imaging research, longitudinal clinical and radiological studies for 
individuals who are suspected to be on the AD continuum should 
be performed. Such studies could reveal the onset of BBB dysfunction, 
the relationship between BBB imaging alterations and the Alzheimer’s 
pathology and cognitive decline, and the potential opportunity for 
timely therapeutic and preventive interventions. ASL-based BBB 
imaging, which makes use of water as an internal tracer to estimate the 
BBB function, fits well with these longitudinal clinical and radiological 
studies so that individuals with the AD continuum can undergo 
repeated follow-up examinations without concern about adverse  
effects.

8. Conclusion

Magnetic resonance-based BBB imaging, such as DCE-MRI and 
DP-pCASL, has already contributed significantly to a better 
understanding of AD pathogenesis in relation to NVU pathophysiology. 
Despite being more broadly used, we also highlighted the technical 
limitations of each BBB imaging model. Nevertheless, we conclude that 
these magnetic resonance-based BBB imaging methodologies are 
unique and useful applications that reflect the pathophysiological 

properties between the interstitial, cerebrospinal, and capillary fluids in 
the central nervous system and have the potential to measure the 
efficacy of future BBB-targeted therapeutics in clinical settings for AD 
and related dementias.
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