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Alzheimer’s disease (AD) is a progressive, neurodegenerative disorder that affects 
memory, thinking, behavior, and other cognitive functions. Although there is no 
cure, detecting AD early is important for the development of a therapeutic plan 
and a care plan that may preserve cognitive function and prevent irreversible 
damage. Neuroimaging, such as magnetic resonance imaging (MRI), computed 
tomography (CT), and positron emission tomography (PET), has served as a 
critical tool in establishing diagnostic indicators of AD during the preclinical stage. 
However, as neuroimaging technology quickly advances, there is a challenge 
in analyzing and interpreting vast amounts of brain imaging data. Given these 
limitations, there is great interest in using artificial Intelligence (AI) to assist in this 
process. AI introduces limitless possibilities in the future diagnosis of AD, yet there 
is still resistance from the healthcare community to incorporate AI in the clinical 
setting. The goal of this review is to answer the question of whether AI should 
be used in conjunction with neuroimaging in the diagnosis of AD. To answer the 
question, the possible benefits and disadvantages of AI are discussed. The main 
advantages of AI are its potential to improve diagnostic accuracy, improve the 
efficiency in analyzing radiographic data, reduce physician burnout, and advance 
precision medicine. The disadvantages include generalization and data shortage, 
lack of in vivo gold standard, skepticism in the medical community, potential 
for physician bias, and concerns over patient information, privacy, and safety. 
Although the challenges present fundamental concerns and must be addressed 
when the time comes, it would be unethical not to use AI if it can improve patient 
health and outcome.
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Introduction

Dementia, or Major Neurocognitive Disorder (MND), is a general term for any disease that 
causes a significant decline in at least one cognitive domain including memory, learning, 
executive function and additionally, impairs an individual’s ability to perform daily tasks 
(Emmady et al., 2022). Alzheimer’s disease (AD) is the most common form of dementia affecting 
an estimated 6.5 million Americans aged 65 years or older (Anonymous, 2022). With 
advancements in medicine, the size of the older U.S. population is continuing to grow and so 
too will the number of people living with the disease. By 2050, it is estimated AD will affect 12.7 
million Americans over the age of 65 (Anonymous, 2022). The symptoms advance and worsen 
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gradually, with changes to the brain occurring years before signs 
appear and often before receiving a clinical diagnosis. Dementia and 
its various forms can be classified and characterized in several ways. 
AD can be divided into three stages: early-stage (mild), middle-stage 
(moderate), and late-stage (severe; Alzheimer’s Association, 2022). 
Each phase serves to categorize the development of mental decline. In 
the mild stage, the person may begin to experience memory loss, poor 
judgment, the repetition of questions, misplacing items, and difficulty 
planning or organizing (Alzheimer’s Association, 2022). Signs of 
moderate stage disease involve increased memory loss and confusion, 
difficulty with language, difficulty organizing thoughts, hallucinations, 
paranoia, problems recognizing loved ones, tendency to wander, and 
mood changes such as anxiety and aggression (Alzheimer’s 
Association, 2022). As the disease progresses to the severe stage, the 
patient will be  completely dependent on others for care and will 
display symptoms such as an inability to communicate, loss of 
awareness of their surroundings, weight loss, increased propensity to 
infections like pneumonia, and changes in physical abilities including 
walking, sitting, bowel control, and eventually swallowing (Alzheimer’s 
Association, 2022). Each person will experience different symptoms 
of the disease and may progress through the stages at a variable rate 
(Anonymous, 2018). The progression pace is influenced by age, 
genetics, biological sex, and other factors (Anonymous, 2022).

There is currently no cure for AD, leaving healthcare professionals 
to focus on slowing the progression of the disease to improve the 
quality of life of the patient. Although there is no cure, detecting AD 
in a timely and accurate manner is important because it allows for the 
development of an earlier treatment plan and care plan that may 
preserve cognitive function and prevent irreversible damage through 
intervention and lifestyle modifications (Crous-Bou et al., 2017). While 
a diagnosis can be made for AD based on clinical symptoms, there is 
currently no clinical standard to diagnose AD in the living that 
professionals agree on. A definitive diagnosis can be made postmortem 
with the identification of neurofibrillary tangles (NFT) or diffuse 
amyloid depositions known to be  closely linked to the disease 
(McKhann et al., 2011). Improvements in blood biomarkers are also 
promising, but still underutilized. It is widely believed that the onset of 
neuropathological hallmarks of AD, such as NFT and abnormal 
amyloid plaques, begin to form years prior to the appearance of clinical 
symptoms (Guzmán-Vélez et al., 2022). Therefore, research has focused 
on the development of biomarkers and imaging to detect early signs in 
those most at risk. Examples include beta-amyloid and tau levels in the 
cerebrospinal fluid (CSF) and brain volume changes detectable by 
imaging (Counts et al., 2017). Neuroimaging has served as a critical 
tool in establishing diagnostic indicators of AD during the preclinical 
stage allowing for earlier diagnosis and intervention (Márquez and 
Yassa, 2019). The diagnostic imaging modalities most widely used in 
the diagnosis of neurodegenerative diseases are magnetic resonance 
imaging (MRI), computed tomography (CT) and positron emission 
tomography (PET; Schwarz, 2021). However, as neuroimaging 
technology quickly advances, there is a challenge in analyzing and 
interpretating vast amounts of brain imaging data (Carrillo et  al., 
2013). Given these limitations, there is great interest in using computer-
aided algorithms for integrative analysis, namely artificial intelligence.

Artificial intelligence (AI) is a field of developing computer 
programs that simulate human functioning. There are two subsets 
that have been used significantly in AD research - machine learning 
(ML) and deep learning (DL). Illustrating a simple definition, 

machine learning uses algorithms to recognize patterns from data 
and applies that knowledge to reach solutions and make predictions 
for new information (Silva-Spínola et al., 2022). The commonly used 
learning processes are supervised and unsupervised learning. 
Supervised learning trains the algorithm using labeled input data 
with known output data until the model can correctly detect 
underlying patterns between the datasets (Choi et al., 2020). The 
trained model is then presented with data it has never seen before, 
known as test data, to assess how accurately the algorithm can make 
future predictions on unlabeled data. In contrast, unsupervised 
learning trains an algorithm using unlabeled data where the correct 
output variable is unknown. Here, the algorithm freely determines 
whether patterns exist within the dataset without human 
intervention (Choi et  al., 2020). Deep learning, a more complex 
subset of ML, uses a convolutional neuronal network architecture to 
analyze data in a logical form similar to how the human brain 
functions (Zaharchuk et al., 2018). Neural networks include nodes 
that work as neurons that can recognize and classify patterns from 
data while continuously learning and improving over time (Choi 
et al., 2020). Deep learning differs from machine learning mainly by 
the use of neural networks, a low need for human intervention, and 
larger data requirements. Most importantly, while raw data is usually 
preprocessed before applying ML, DL can process raw input data 
directly. There are various artificial intelligence techniques in 
Alzheimer’s disease detection that are outlined by Subasi (2020). For 
example, ensemble classifier, support vector machines (SVMs), and 
Random Forest are one of many techniques used in recent studies. 
Research has focused on using ML and DL technology to create 
algorithms that recognize, process, and extract data from 
neuroimaging to detect AD with a high specificity and sensitivity 
(Silva-Spínola et  al., 2022). For instance, Kapadnis et  al. (2023) 
discusses the use of deep feature extraction methods for early AD 
detection. AI introduces limitless possibilities in the future diagnosis 
of AD, yet there is still resistance from the healthcare community to 
incorporate AI in the clinical setting. This is due to fears such as AI 
at some point displacing certain physicians like radiologists (Ahuja, 
2019). The goal of this paper is to answer the question of whether AI 
should be used in conjunction with neuroimaging in the diagnosis 
of AD. To answer this question, we  will examine the current 
modalities used to detect AD and their limitations, current AI 
research in AD, and the pros and challenges of AI.

Current diagnostic imaging and Its 
limitations

Magnetic resonance imaging

Magnetic resonance imaging (MRI) uses powerful magnets to 
align protons along a magnetic field (Magnetic Resonance Imaging 
(MRI), 2022). A radiofrequency current stimulates and spins the 
protons out of equilibrium in the patient. When the current is turned 
off, the protons realign with the magnetic field and release energy 
detected by the MRI sensors. The image produced depends on the 
time it takes for the protons to realign with the field and the energy 
released (Magnetic Resonance Imaging (MRI), 2022). MRI has been 
largely used in the clinical identification of AD due to its ability to 
provide detailed information about brain structure in vivo.
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The diagnostic guidelines of AD created by the National Institute 
on Aging and the Alzheimer’s Association recommend the use of 
structural MRI (sMRI) in its criteria, highlighting its integral role in 
the clinical assessment of patients with suspected AD (Frisoni et al., 
2010; Albert et  al., 2011). sMRI assesses brain atrophy and tissue 
changes with its capability to differentiate between grey matter and 
white matter (Ferreira and Busatto, 2011). Structural MRI studies of 
patients with AD have revealed atrophy in medial temporal lobe 
structures including the hippocampus, amygdala, entorhinal cortex 
(ERC) and parahippocampal gyrus (Ferreira and Busatto, 2011). 
Medial temporal lobe atrophy (MTA) is associated with lower 
executive function, general cognitive function, and episodic memory 
performance (Oosterman et al., 2012). Studies have found ventricular 
enlargement, whole brain atrophy and cortical thickness reduction in 
patients with AD (Lerch et al., 2005; Nestor et al., 2008; Evans et al., 
2010). WMH were initially thought to be associated with small vessel 
cerebrovascular disease. However, recent literature suggests there to 
be an association with neurodegeneration in AD. T2-weighted MRI 
and Fluid-Attenuated Inversion Recovery (FLAIR) MRI have been 
used to detect white matter hyperintensities (WMH) and have 
highlighted larger volume changes in the periventricular and posterior 
regions in patients with AD (Damulina et al., 2019; Garnier-Crussard 
et al., 2022). Although the relation between white matter lesions and 
amyloid accumulation is unclear, a study suggests WMH may 
potentially help identify early amyloid accumulation in patients 
(Moscoso et  al., 2020). Despite its usefulness, there are several 
limitations to structural MRI. First, although brain atrophy is 
correlated with both tau deposition and neuropsychological 
symptoms, structural MRI cannot directly observe the effect of 
amyloid plaques or NFTs in the brain (van Oostveen and de Lange, 
2021). Second, loss of hippocampal volume is not AD specific and is 
found in Parkinson’s disease (Camicioli et al., 2003), schizophrenia 
(Koolschijn et al., 2010), traumatic brain injury (Bigler et al., 1997), 
temporal lobe epilepsy (Duan et al., 2020), and depression (Shamim 
et al., 2009). Third, although there are characteristic patterns of brain 
loss in AD, cerebral atrophy is a nonspecific result of neuronal damage 
(Johnson et  al., 2012). Fourth, an atypical form of AD spares 
hippocampal atrophy; therefore, sMRI may not be useful in detecting 
atypical forms of the disease in the early stages (Ferreira et al., 2017; 
Firth et al., 2019). Lastly, MRI may not be tolerated by claustrophobic 
patients and a CT scan may be needed instead. Although, open MRI 
systems and larger bore sizes may help reduce claustrophobia in some 
individuals (Sammet, 2016).

Other more advanced MR techniques that are not used in routine 
clinical settings but serve an important role in AD research include 
functional magnetic resonance imaging (fMRI) and diffusion tensor 
imaging (DTI). fMRI is based on blood-oxygen level dependent 
(BOLD) changes in the brain that occur during specific tasks 
(Orringer et  al., 2013) and has been widely used to study 
pathophysiologic changes seen in memory loss in AD. A meta-analysis 
of fMRI activation during episodic memory in AD and MCI showed 
hypoactivation of the medial temporal lobe structures in AD and 
hyperactivation in MCI (Terry et al., 2015). Hyperactivation in MCI 
is thought to reflect inefficient compensatory activity early in the 
disease (Dickerson and Sperling, 2008). Although fMRI provides 
insight into pathophysiology, it is not recommended in the clinical 
setting due to its sensitivity to head motion (Hausman et al., 2022) 
which is problematic in older adults, low signal or contrast to noise 

ratio (Chandra et al., 2019), and lack of validity of BOLD signal as a 
measure of neuronal activity (Specht, 2020). DTI is used to assess the 
microstructural integrity of cerebral WM fiber tracts based on water 
diffusion within the brain. Fractional anisotropy (FA) and mean 
diffusivity (MD) are metrics that measure the directionality of water 
diffusion and the mean water diffusion rate, respectively (Okudzhava 
et al., 2022). A meta-analysis of DTI in MCI and AD individuals 
reported MD was increased in AD in all regions tested (frontal lobe 
WM, temporal lobe WM, parietal lobe WM, occipital lobe WM, 
hippocampus, cingulum bindle and cingulate cortex WM, corpus 
callosum, superior longitudinal fasciculus, uncinate fasciculus, and 
the posterior limb of the internal capsule) and FA was decreased in all 
regions except parietal white matter and internal capsule (Sexton 
et al., 2011). Limitations in DTI include the need for more large cohort 
studies to validate the findings, low signal to noise ratio (Ranzenberger 
and Snyder, 2022), and variability of DTI-based diffusion metrics 
between MRI scans which imposes a major restriction in multicenter 
studies (Sheikh-Bahaei et al., 2017).

Computed tomography

Computed tomography is a computerized x-ray imaging 
procedure that generates cross-sectional images or “slices” (Computed 
Tomography (CT), 2022). A narrow beam of x-rays is aimed at a 
patient and quickly rotated around the body to produce signals that 
are processed by the machine’s computer. Several slices can be taken 
consecutively and are then digitally stacked together to form a three-
dimensional image of the patient (Computed Tomography (CT), 
2022). CT is not recommended for first-line imaging as it is less 
sensitive in detecting changes associated with cognitive impairment 
compared to MRI. However, there are still many advantages such as 
lower cost, shorter acquisition time, and wider availability (Pasi et al., 
2011; Health Quality Ontario, 2014).

Under current recommendation and guidelines, structural 
imaging (MRI or CT) is required for evaluation of patients presenting 
with cognitive symptoms in the clinical setting (Sheikh-Bahaei et al., 
2017). CT reveals the anatomic structure of the brain to detect brain 
atrophy and rule out other abnormalities that can be mistaken as AD 
such as tumors, hydrocephalus, and chronic subdural hematoma 
(Frisoni, 2001). Serial CT imaging has been used to track and observe 
changes as the disease progresses. A CT-based longitudinal study on 
veterans tracked the progression of AD over 4–6 years. Absolute brain 
volume loss accelerated 1.5x faster for AD patients versus non-AD 
patients (Bin Zahid et al., 2016). The study highlights the possibility 
of using CT to monitor the progression of cognitive decline and 
dementia however, more recent studies have found modalities such as 
MRI or PET to serve a more vital role in tracking disease progression 
(van Oostveen and de Lange, 2021). A CT study detected enlargement 
of the third and lateral ventricles in AD patients and found a 
correlation between the rate of neuropsychological decline and the 
rate of ventricular enlargement (Luxenberg et al., 1987). A recent 
study tracked the growth of ventricular cerebrospinal fluid (vCSF) to 
assess if ventricular expansion can serve as a reliable indicator of 
neurodegeneration (Adamo et al., 2020). Furthermore, one field of 
medicine that has sparked interest in researchers to potentially treat 
Alzheimer’s is low dose ionizing radiation such as with the use of CT 
scans (Jebelli et  al., 2022). For example, a case study presented a 
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patient with early-stage AD that was treated with low doses of ionizing 
radiation to the brain. After receiving four CT scans, the patient’s 
mental clarity improved and even exhibited restored function of 
clarinet jazz-playing. The treatment was discontinued due to fears of 
adverse events however, further research is needed to assess if CT 
scans could serve a role in temporarily improving the quality of life of 
patients with AD in the future (Cuttler et al., 2022; Jebelli et al., 2022). 
There are various limitations to CT scans when compared to 
MRI. MRI is more sensitive at detecting focal atrophic changes in the 
nuclei (Sheikh and Glick, 2022), more sensitive to white matter 
changes (Johnson et al., 1987) and does not require ionizing radiation 
(Pearce et al., 2012). In addition, comparative analysis suggests MRI 
may be more accurate than CT for distinguishing AD from other 
conditions such as vascular dementia although the study is not 
conclusive (Beynon et al., 2012). MRI remains the preferred first-line 
modality; however, both play a key role in ruling out structural lesions 
of the brain in individuals with dementia (Alzheimer's Association 
et al., 2003; Brisson et al., 2020).

Positron emission tomography

Positron emission tomography (PET) scans work at the molecular 
level to produce three-dimensional images that depict biochemical 
and molecular processes (Herring, 2011). A PET radiotracer attaches 
to the molecular target which then allows for the measurement of 
various processes such as metabolism, blood flow, and regional 
chemical composition in the body (Kapoor and Kasi, 2022). PET 
radiotracers have been developed in the field of AD to meet the 
increasing need for early detection and treatment monitoring of the 
disease. The following section will provide a brief overview of current 
PET scans available for AD imaging, namely FDG-PET, amyloid-PET, 
and tau-PET (Bao et al., 2021).

Fluorodeoxyglucose, an analog of glucose, is introduced to the 
patient intravenously to measure brain metabolism. Glucose is the 
principal source of energy for the human brain. Any changes to neural 
activity in neurodegeneration will be reflected by glucose consumption 
(Minoshima et al., 2022). The term FDG uptake refers to the amount 
of radiotracer uptake. Areas of low radiotracer uptake are associated 
with lower brain activity and produce darker spots (hypometabolism) 
on images. The standardized uptake value (SUV) is a commonly used 
method to assess the degree of FDG uptake in a region of interest in 
PET imaging. SUV is calculated as the ratio of tissue activity 
concentration and administration dose, divided by body weight 
(Nugent et al., 2020). The ratio of SUV data from two different regions 
within the same PET image is referred to as the SUV ratio (SUVr). 
SUVr also serve an important role in quantifying tracer uptake in 
amyloid and tau imaging (Chiao et  al., 2019). The characteristic 
manifestation of AD on FDG-PET is hypometabolism in the posterior 
cingulate cortex (PCC), precuneus (PrC), parietotemporal cortex, and 
in the frontal cortex in advanced stages (Minoshima et  al., 1997; 
Herholz et al., 2002; Bao et al., 2021). FDG-PET has provided clinical 
value in detecting distinct patterns of cortical hypometabolism in AD 
(Dave et al., 2020), differentiating between other neurological diseases 
(Shivamurthy et al., 2015), and in predicting MCI conversion to AD 
(Smailagic et al., 2018). Additionally, the modality has been used to 
identify subtypes of AD based on hypometabolic regions including a 
“typical” subtype, “limbic-predominant” subtype, and a rare 

“cortical-predominant” subtype exhibited in younger individuals with 
more severe executive impairments (Levin et al., 2021). Statistical 
parametric mapping (SPM) is a statistical technique used for 
evaluating brain activity during functional neuroimaging studies such 
as fMRI and PET. SPM allows for comparison of SUV in a region of 
interest of a patient to a normal cohort (Smith et  al., 2022). 
Additionally, it has been shown SPM for FDG-PET can increase 
diagnostic performance in AD (Ford et al., 2021). FDG-PET is widely 
available, has a relatively low cost (Minoshima et al., 2022) and serves 
a vital role in AD research and diagnosis. Despite its usefulness, 
limitations include its requirement of intravenous access and patient 
exposure to radioactivity (Johnson et  al., 2012). Furthermore, 
hypometabolism is a sign of neurodegeneration and therefore it may 
not be useful for detecting early stages of AD before neuronal damage 
has occurred (Drzezga et al., 2018).

Amyloid-PET enables in vivo detection of amyloid deposits in the 
brain, one of the neuropathological hallmarks of AD. Currently, three 
amyloid PET tracers are approved by the FDA for clinical use: 
18F-Florbetaben (Neuraceq), 18F-Florbetapir (Amyvid), and 
18F-Flutemetamol (Vizamyl; Anand and Sabbagh, 2017). Amyloid 
accumulation is commonly assessed with SUVr quantification though 
this technique has been shown to overestimate amyloid burden in 
cognitively normal individuals (Golla et al., 2019; Krishnadas et al., 
2021). The modality has played a major role in diagnosing AD, 
differentiating AD from other neurodegenerative conditions, and 
predicting the risk of progression of MCI to AD dementia (Krishnadas 
et al., 2021). A VA-led research study found amyloid PET scans to 
be useful in ruling out AD in individuals without amyloid buildup and 
served an important role in the clinical care and management of older 
veterans with AD (Turk et al., 2022). Although AD is known to be a 
disease of grey matter pathology, white matter abnormalities play an 
important role in the pathological changes seen in AD (Pietroboni 
et al., 2022). Various studies have used amyloid PET tracers to assess 
myelin changes in cerebral white matter (Moscoso et  al., 2022; 
Pietroboni et al., 2022). A major limitation is the fact that a positive 
amyloid-PET scan is not sufficient to diagnose AD. It serves merely as 
a specific and sensitive tool that can assess the likelihood of a diagnosis 
(Kolanko et al., 2020). Furthermore, a study concluded that FDG-PET 
was better at assessing the progression and severity of MCI and 
Alzheimer’s compared to florbetapir-PET scans (Khosravi et al., 2019). 
The study supports the idea that amyloid plaque deposition and 
cognitive impairment are poorly correlated in AD (Bucci et al., 2021). 
Therefore, amyloid imaging may serve a limited role in the future for 
assessing cognitive decline in patients. The need for a more reliable 
marker has shifted research towards another pathology that may 
better help diagnose and monitor AD progression- tau tangles.

Tau is a protein that accumulates in the brain of individuals with 
AD and other forms of dementias. Recently, the FDA has approved 
Tauvid (flortaucipir F18) for PET imaging of the brain to assess the 
distribution of aggregated tau neurofibrillary tables (NFT), another 
neuropathological hallmark of AD (Jie et al., 2021). The distribution 
of tau proteins deposits has been shown to be more closely associated 
to cognitive decline when compared to amyloid (Hanseeuw et al., 
2019). While amyloid tracers tend to have a wide distribution in the 
neocortex, there tends to be higher levels of tau radiotracer retention 
in the inferior lateral temporal and parietal cortices of AD patients 
(Yousefzadeh-Nowshahr et al., 2022). Tau PET has also been used to 
differentiate AD dementia from other neurodegenerative diseases 
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such as frontotemporal lobar degeneration (FTLD) disorders based 
on the location of tau protein in the brain (Abbasi, 2020). A study 
found cognitively unimpaired individuals positive for tau and amyloid 
were at high risk for cognitive decline in the short term, with tau 
burden in the MTL and neocortex region displaying a substantial 
additional risk (Ossenkoppele et  al., 2022). Despite its utility, 
limitations of tau imaging include reports of in vivo off-target binding 
(Smith et al., 2022), variability of thresholds for tau positivity rates 
between studies (Weigand et al., 2022), and similarly as with amyloid, 
a positive tau marker alone is not sufficient for an AD diagnosis.

Current use of AI in AD research

Brain imaging modalities like MRI, CT, PET, as well as molecular 
biomarkers, such as amyloid plaques and tau in CSF, are used in 
clinical settings to identify a patient’s cognitive status (Gunes et al., 
2022). However, as noted, limitations exist when using neuroimaging 
alone to identify AD. With advancing technology, there is a challenge 
in analyzing and interpretating vast amounts of brain imaging data. 
The use of AI with neuroimaging for the diagnosis of AD is a rapidly 
emerging field and has the potential to solve these problems. AI has 
the ability to integrate complex multimodal data, improve the 
accuracy of biomarker-based testing, and has a promising future of 
providing accurate and widely accessible early diagnosis of AD (Gunes 
et  al., 2022). Below is a review of studies (see Table  1) that have 
developed AI-based algorithms for classifying, monitoring, and 
diagnosing AD as well as studies that have identified non-invasive, 
early AD biomarkers.

Machine learning has been used in the disease classification of 
AD. A study developed a ML algorithm to classify AD based on 
abnormal hippocampal functional connectivity (Zhu et al., 2022). 
One-hundred nineteen subjects aged 60–85 years were assessed with 
functional MRI and assigned to AD, MCI, or normal control groups. 
A SVR model yielded 82.02%, 81.33%, and 81.08% accuracy in 
discriminating AD vs. NC, MCI vs. NC, and AD vs. MCI, respectively, 
(Zhu et  al., 2022). Another study developed a densely connected 
convolutional neural network with a connection-wise attenuation 
mechanism (CAM-CNN) to predict AD diagnosis with higher 
accuracy using MR brain scans (Zhang et  al., 2021). The method 
achieved 97.35%, 87.82%, and 78.79% accuracy for distinguishing 
mild AD patients, MCI converters, and stable MCI subjects versus 
healthy controls (Zhang et al., 2021). An additional study used deep 
learning methods like CNN to develop a model that could detect AD 
from MRI scans, yielding a testing accuracy of 95.70% and a validation 
accuracy of 99.41% (Subasi et al., 2022). Studies have incorporated ML 
to differentiate AD from other diseases such as frontotemporal 
dementia (Kim et al., 2019) and vascular dementia (Castellazzi et al., 
2020). Furthermore, a study created a multimodal deep neural 
network using structural MR and FDG-PET images for the early 
diagnosis of AD (Lu et al., 2018). The method delivered a 94.23% 
sensitivity in classifying individuals with clinical diagnosis of probable 
AD, 86.4% accuracy in identifying MCI individuals who will convert 
to AD within 1 to 3 years, and 86.3% in classifying non-demented 
controls (Lu et al., 2018). Another study aimed to use ML techniques 
to develop a simple and fast model for automatic AD detection. The 
researchers utilized histogram as the feature extractor and Random 
Forest as the classifier. The results yielded a high accuracy rate of 

85.77% in discriminating AD subjects from the control subjects 
(Alickovic, 2020). Lastly, a deep learning-based method was developed 
to predict early MCI (EMCI), late MCI (LMCI) and AD using fMRI 
dataset consisting of 138 subjects (Odusami et al., 2021). The proposed 
model performed better than other known models achieving an 
accuracy of 99.99% in EMCI vs. AD, 99.95% in LMCI vs. AD, and 
99.95% in MCI vs. EMCI (Odusami et al., 2021).

Machine learning can create models from a combination of AD 
biomarkers to make a more accurate diagnosis. One study developed 
and analyzed novel biomarkers to help predict the progression of 
dementia of Alzheimer’s type (DAT; Mirabnahrazam et al., 2022). 
Brain MRI and SNP-based genetic data of a total of 543 patients were 
used in the study. The results showed that the genetic data could better 
detect the DAT progression compared to MRI, while the MRI data 
reflected anatomical changes to the brain and was better able to 
categorize subjects with MCI impairment. By combining the genetic 
and MRI data, the model was better able to predict AD progression 
than using either method alone (Mirabnahrazam et  al., 2022). 
Furthermore, previous studies have shown cognitive decline is 
associated with higher amyloid-PET (Koscik et al., 2020), hippocampal 
atrophy on MRI, hypometabolism on FDG-PET, and greater tau levels 
(Mielke et al., 2017). A study attempted to merge the multimodal data 
by developing a biomarker-based machine learning model to predict 
the progression of cognitive decline in AD (Franzmeier et al., 2020). 
First, a SVR model was trained using amyloid-PET, FDG-PET, sMRI, 
and CSF data from 121 autosomal dominant AD (ADAD) patients to 
predict the estimated years for symptoms to develop. ADAD patients 
were chosen as the training sample because these individuals tend to 
develop AD at an earlier age, thus age-related pathologies would not 
confound the findings of cognitive decline. After model training, the 
model was applied to a sample of 216 patients with sporadic AD 
patients to test if it could predict cognitive decline. The results show 
the model was able to predict with high accuracy the 4-year rate of 
global cognitive and memory decline in sporadic AD individuals 
(Franzmeier et al., 2020). Evidently, the capacity of ML algorithms to 
integrate multimodal data has been essential in AD research.

Not only has AI been used to classify and measure the progression 
of AD, but a recent study has combined neuroimaging with a deep 
learning algorithm to predict a diagnosis of AD in individuals 
presenting with first signs of memory impairment (Ding et al., 2019). 
FDG-PET brain images of 1,002 patients taken from 2005 to 2017 
were collected from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database. The proposed method, a convolutional neural 
network of InceptionV3, was able to predict the final clinical diagnosis 
of AD in an average of 75.8 months prior to the final diagnosis with 
82% specificity at 100% sensitivity. The study demonstrates how a deep 
learning algorithm can improve the accuracy of predicting the 
diagnosis of AD using brain FDG-PET and if used clinically, would 
provide a wider window for earlier therapeutic intervention (Ding 
et  al., 2019). Another study utilized the N-fold cross validation 
approach to detect early signs of AD from a collection of MRI brain 
images. The approach was found to be most effective at classifying AD 
from brain MRI images with minimal error rate when compared to 
other traditional methods, yielding a 99.26% accuracy rate (Sampath 
and Indumathi, 2018). Lastly, a recent study developed a machine 
learning algorithm to predict early-stage AD using MRI data from 150 
patients aged 60 to 96 (Kavitha et  al., 2022). The patients were 
classified as either “non-demented” or “demented” and applied to five 
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TABLE 1 Summary of artificial intelligence research in Alzheimer’s disease.

Name of article Year Modality AI Objective Result

Multimodal and Multiscale 

Deep Neural Networks for the 

Early Diagnosis of 

Alzheimer’s Disease using 

Structural MR and FDG-PET 

Images

2018 MRI and FDG-PET DL Propose a new deep-learning-based 

framework to identify individuals 

with AD using a multimodal and 

multiscale deep neural network

84.4% accuracy in identifying individuals with 

MCI who will convert to AD at 3 years before 

conversion.

94.23% sensitivity in classifying individuals 

with clinical diagnosis of probable AD.

86.3% specificity in classifying non-demented 

controls.

Earlier Detection of 

Alzheimer Disease using 

N-fold Cross Validation 

Approach

2018 MRI ML The early detection of Alzheimer 

Disease detection system using 

N-Fold Cross Validation Approach is 

analyzed

The N-fold cross validation method 

successfully recognized AD disease in brain 

MRI images from ADNI with 99.26% accuracy 

and minimum error rate.

Machine Learning Based 

Hierarchical Classification of 

Frontotemporal Dementia 

and Alzheimer’s Disease

2019 MRI ML Develop a machine learning-based 

automated classifier for differential 

diagnosis of CN, AD, and FTD 

subtypes

75.8% classification accuracy of the entire 

hierarchical classification tree.

Classifier was successful in discriminating 

among CN, AD, and FTD subtypes.

90.8% accuracy in discriminating FTD from 

AD.

A Deep Learning Model to 

Predict a Diagnosis of 

Alzheimer Disease by using 

(18)F-FDG PET of the Brain

2019 FDG-PET DL Develop and validate a deep learning 

algorithm that predicts MCI, final 

diagnosis of AD, or neither

Achieved 82% specificity at 100% sensitivity in 

predicting a AD diagnosis in an average 

75.8 months prior to the final diagnosis

Ultra-Low-Dose (18)

F-Florbetaben Amyloid PET 

Imaging Using Deep Learning 

with Multi-Contrast MRI 

Inputs

2019 Amyloid-PET/MRI DL Reduce radiotracer requirements for 

amyloid PET/MRI without 

worsening diagnostic quality

Using deep learning methods, simultaneously 

acquired MR images and ultralow-dose PET 

data produced high-quality amyloid PET 

images

Automatic Detection of 

Alzheimer Disease Based on 

Histogram and Random 

Forest

2019 MRI ML Obtaining a reliable and fast model 

for automatic AD detection

Using the histogram as a feature extractor and 

Random Forest as the classifier, the model 

yielded an accuracy rate of 85.77% in 

identifying AD.

Predicting Sporadic 

Alzheimer’s Disease 

Progression via Inherited 

Alzheimer’s Disease-Informed 

Machine Learning

2020 sMRI, amyloid-PET, 

FDG-PET

ML Develop cross-validated multi-

biomarker model to predict the rate 

of cognitive decline in AD

Multi-biomarker model predicted 4-year rate 

of decline in global cognition and memory in 

sporadic AD

Linguistic Markers Predict 

Onset of Alzheimer’s Disease

2020 N/A ML Study linguistic performance as an 

early biomarker of AD in CN 

subjects

Future onset of AD was associated with 

telegraphic speech, repetitiveness, and 

misspellings. Study demonstrates it is possible 

to predict future onset of AD using language 

samples obtained from CN individuals.

A Machine Learning 

Approach for the Differential 

Diagnosis of Alzheimer and 

Vascular Dementia Fed by 

MRI Selected Features

2020 fMRI and DTI ML To develop an algorithm to classify 

vascular dementia and AD in 

patients with a “mixed VD-AD 

dementia” clinical profile

Adaptive neuro-fuzzy inference system (ML 

algorithm) achieved an 84% classification 

accuracy and a correct prediction rate of 

77.33%. The study demonstrates high 

discriminative ability in classifying AD and 

VD profiles.

A 3D Densely Connected 

Convolution Neural Network 

with Connection-Wise 

Attention Mechanism for 

Alzheimer’s Disease 

Classification

2021 MRI DL Developed a densely connected 

convolution neural network to 

discriminate AD versus healthy 

subjects, MCI converters versus 

healthy subjects, and MCI converters 

versus non-converters

97.35% accuracy in discriminating AD 

patients from healthy controls.

87.82% accuracy in discriminating MCI 

converters against healthy controls.

78.79% accuracy in distinguishing MCI 

converters against non-converters.

(Continued)
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classifier ML models including decision tree (DT), random forest 
(RF), support vector machine (SVM), XGBoost, and Voting. Four 
performance metrics, including accuracy, precision, recall, and F1 
score, were evaluated for each model. At the end of the study, the 
patients received their result indicating the current stage of AD he or 
she was currently in. According to the results, the study found men 
were more likely to have cognitive decline than females, demented 

patients were less educated, brain volumes were greater in 
non-demented patients, and a greater number of demented patients 
were in the 70 to 80 age group. The authors hope to use new metrics 
in the future to train the ML model to detect early AD with better 
accuracy (Kavitha et al., 2022).

Studies have also used machine learning to test non-invasive, early 
biomarkers of AD. One study aimed to use ML to predict the future 

TABLE 1 (Continued)

Name of article Year Modality AI Objective Result

Analysis of Features of 

Alzheimer’s Disease: 

Detection of Early Stage from 

Functional Brain Changes in 

Magnetic Resonance Images 

using a Finetuned ResNet18 

Network

2021 fMRI DL Proposes a deep learning-based 

method that can predict MCI, early 

MCI, late MCI, and AD

ResNet18 network achieved 99.99% accuracy 

on EMCI vs. AD, 99.95% accuracy on LMCI 

vs. AD, and 99.95% accuracy on MCI vs. 

EMCI classification.

Association of Digital Clock 

Drawing with PET Amyloid 

and Tau Pathology in Normal 

Older Adults

2021 PET ML Determine whether a digital clock-

drawing test can help discriminate 

diagnostic groups and detect amyloid 

and tau pathology in CN older adults

DCTclock was able to differentiate CN from 

MCI and early AD. Additionally, the study 

provides Class II evidence that DCTclock 

results were associated with amyloid and tau 

pathology in CN older adults.

Performance of Machine 

Learning Algorithms for 

Predicting Progression to 

Dementia in Memory Clinic 

Patients

2021 N/A ML Test if ML algorithms accurately 

predict 2-year dementia incidence in 

memory clinic patients

Using only 6 variables, ML algorithms reached 

90% accuracy in predicting incident dementia 

within 2 years compared with 2 existing 

predictive models.

Early-Stage Alzheimer’s 

Disease Prediction Using 

Machine Learning Models

2022 MRI ML Develop a model to distinguish true 

AD affected people from a given 

population

The best validation model in the study 

achieved an average accuracy of 83% on the 

test data of AD.

Classification of Alzheimer’s 

Disease Based on Abnormal 

Hippocampal Functional 

Connectivity and Machine 

Learning

2022 fMRI ML Study the functional connectivity 

(FC) of the hippocampus and other 

brain structures to distinguish MCI, 

AD, and CN subjects

AD and MCI subjects demonstrated reduced 

FCs between the hippocampus and left insula, 

left thalamus, cerebellum, right lingual gyrus, 

posterior cingulate cortex, and precuneus.

ML model achieved discriminative 

performance of 82.02% accuracy in AD vs. 

NC, 81.33% accuracy in MCI vs. NC, and 

81.08% in AD vs. MCI

Machine Learning Based 

Multimodal Neuroimaging 

Genomics Dementia Score for 

Predicting Future Conversion 

to Alzheimer’s Disease

2022 MRI ML Develop and analyze biomarkers that 

can help predict the progression and 

development of AD

Genetic data could better predict future AD 

progression for CN subjects.

MRI can better characterize subjects with 

stable MCI

A Predictive Model Using the 

Mesoscopic Architecture of 

the Living Brain to Detect 

Alzheimer’s Disease

2022 MRI ML Propose a method to characterize 

early and later forms of AD

The model reliably discriminates between 

people with (ADrp) and without (nADrp) AD 

related pathologies with 98% accuracy.

ArtifactID: Identifying 

Artifacts in Low-Field MRI of 

the Brain Using Deep 

Learning

2022 MRI DL Develop a model to identify wrap-

around and Gibbs ringing in low-

field brain MRI

ArtifactID model was able to identify and 

localize wrap-around. Achieved mean 

precision and recall metrics of 97.6 and 

92.83%.

Alzheimer’s Disease Detection 

using Artificial Intelligence

2022 MRI DL Develop an AD detection approach 

using deep learning models

The results show that CNN achieved a testing 

accuracy of 95.70% and a validation accuracy 

of 99.71% for the diagnosis of AD from brain 

MRI scans
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onset of AD through automated linguistic analysis (Eyigoz et  al., 
2020). A study of 270 participants were asked to perform the cookie-
theft picture-description task in which the participants were asked to 
write a description of the picture. All the participants were cognitively 
normal when performing the test and 50% later developed AD 
symptoms before age 85. The results show that the future onset of AD 
is associated with telegraphic speech, repetitiveness, misspellings, and 
lack of punctuation (Eyigoz et al., 2020). The study demonstrates that 
simple, inexpensive speech tests can be used as a future tool for early 
detection and monitoring the progression of AD. Additionally, a study 
tested whether a digital clock-drawing test, DCTclock, can detect AD 
biomarkers in individuals with no symptoms (Rentz et  al., 2021). 
Three-hundred participants were asked to perform the DCTclock test, 
the 30-min pen-and-paper based cognitive tests (PACC) and 
underwent PET brain scans. The results showed that the DCTclock 
test outperformed the PACC and had a significant correlation with 
PET imaging scans at detecting evidence of amyloid plaques in 
asymptomatic individuals. With ML, the researchers could analyze not 
only if the participants were correctly drawing a clockface, but could 
also evaluate features of the drawing process, including their 
movements, to reveal subtle signs of cognitive impairment (Rentz 
et  al., 2021). Lastly, an innovative technological company named 
Canary Speech is using AI and ML to build voice models to identify 
AD and other cognitive diseases in 20 to 30 s samples of speech 
(Canary Speech, 2022). The technology hopes to use language and 
speech biomarkers to provide an accurate assessment and diagnosis 
for individuals in the future.

AI with neuroimaging is a rapidly emerging field and continues 
to be extensively tested in AD research. However, these models are not 
currently available in routine clinical practice, but the progression 
towards use in clinical settings is expected as technology advances. In 
the next section, possible benefits and disadvantages of using AI in the 
clinical setting will be discussed.

Pros of AI

Improving diagnostic accuracy

AI has the potential of improving diagnostic accuracy in the 
clinical setting (Figure  1). A largescale study performed at the 
University of Exeter tested if machine learning algorithms could 
accurately predict the progression of dementia in 2 years (James et al., 
2021). In a sample of 15,307 participants who attended a network of 
30 National Alzheimer Coordinating Center memory clinics across 
the United States between 2005 and 2015, 1,568 received a diagnosis 
of dementia within 2 years of their initial assessment. The population 
was divided into 4 dementia subtypes: Alzheimer’s dementia (1,285 
participants), Lewy Body dementia (82 participants), vascular 
dementia (21 participants), and other dementia subtypes (180 
participants). The ML algorithm had an accuracy of 92% in predicting 
a 2-year incidence of dementia, presenting far more accuracy than 
other existing dementia risk prediction models such as Cardiovascular 
Risk Factors, Aging, and Incidence of Dementia (CAIDE) Risk Score 
and Brief Dementia Screening Indicator (BDSI). Additionally, the 
model identified 84% of individuals who were possibly misdiagnosed 
with dementia who then had their diagnosis reversed to a MCI or 
cognitively unimpaired diagnosis. Thus, not only can the ML 

algorithm accurately tell clinicians who will go on to develop 
dementia, but the algorithm could also help reduce the number of 
people who have been falsely diagnosed. The study demonstrates ML 
algorithms can be helpful in the decision-making process and be used 
as a potential diagnostic and validation tool in clinical settings (James 
et al., 2021). Furthermore, a team led by Dr. Marianna Inglese of the 
Imperial College created an algorithm based on T1-weighted MRI 
data of brain shrinkage to test the effectiveness of diagnosing AD in 
the early stages (Inglese et al., 2022). The current standard to diagnose 
AD involve lengthy brain scans to test for hippocampal atrophy and 
protein deposits as well as cognitive tests. The team used data taken 
from 783 individuals scanned with 1.5 tesla MRI, a common modality 
used in most hospitals, and incorporated AI technology to train the 
model to identify brain features such as size, shape, and texture to 
predict AD at a faster rate. The model was better able to identify 
subclinical brain shrinkage in those with early disease with 98% 
accuracy compared to current clinical practices that used standard 
hippocampal atrophy assessment (26% accuracy) and cerebrospinal 
beta-amyloid measurement (62% accuracy). ML algorithms have the 
potential to cut down diagnostic time, simplifying the diagnosis 
process with the use of a simple brain MRI in this instance, and greatly 
reduce the uncertainty of making an inaccurate diagnosis. By 
incorporating AI, patients could be diagnosed with AD in the early 
stages, allowing more time to test clinical trials of new drugs or to 
implement new lifestyle changes (Inglese et al., 2022). The technology 
demonstrates increased accuracy at diagnosing AD and would be a 
great service to those suffering with the disease if implemented in the 
clinical setting.

Efficient analysis of data

As the number of radiographic images generated rise globally, AI 
has the potential to help radiologists efficiently analyze data more 
quickly. An IMV report on Global Imaging Department Priorities and 
Outlook placed improving department workflow efficiency and 
productivity as a top priority by radiologists (IMV Medical 
Information Division, 2016). Radiology departments are operating at 
100% as they are dealing with COVID-19 cases and the backlog of 
cases that have been postponed during the pandemic. In Canada, 
patients were waiting an average of 50 to 82 days for CT scans and 
89 days for MRI imaging prior to the COVID-19 pandemic (The 
Canadian Press and Germano D, 2022). Now as variants continue to 
overwhelm the health-care system, the problem is exacerbated with 
75% of physicians in the Canadian Association of Radiologists 
reporting they have not reduced their backlog of medical imaging 
(The Canadian Press and Germano D, 2022). One way to clear the 
backlog is called the concept of “triaging” where the AI software 
decides which patients should be at the top of this list and which 
patients should be lowered to the bottom of the list or removed from 
the list (Mohan, 2018). Another study evaluated whether smart 
worklist prioritization by AI could optimize the radiology workflow 
and reduce report turnaround times (RTATs) for critical findings in 
chest radiographs versus the standard worklist processing called “first-
in, first-out” (FIFO; Baltruschat et al., 2021). The findings showed that 
the average RTAT for all critical findings was significantly reduced in 
all prioritization simulations compared to the FIFO simulation with 
pneumothorax diagnostic time reduced from 80.1 min to 35.6 min. By 
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adopting this model in the clinical setting, a worklist prioritization 
would allow critical patients to receive quicker diagnosis and 
treatment while granting more time to radiologists for other duties. 
With more time available, AI would allow radiologists to oversee 
complex imaging studies, consult with physicians, and spend more 
direct patient contact. In a study to determine if patients prefer to 
receive their results from a radiologist immediately after the 
examination or later from their referring physician, 92% of patients 
preferred to hear their results of imaging examinations from the 
radiologist at the time of the procedure (Schreiber et  al., 1995). 
Therefore, with greater workflow efficiency will come greater patient 
satisfaction. Additionally, AI technology can improve image 
acquisition and quality while reducing radiation dose to patients. A 
group of Stanford researchers tested if using deep learning metrics 
with MRI and ultra-low-dose PET data could synthesize full-dose-like 
amyloid PET images (Chen et al., 2019). In this study, 39 patients 
underwent simultaneous amyloid PET/MRI examinations within a 
year timeframe and the data was then retrospectively analyzed. The 
amyloid status was tested, and the image quality was scored on a five-
point scale. The PET-plus-MR images scored 3 or higher in image 
quality and received 89% accuracy for amyloid status compared to 
91% in full-dose images. Therefore, by using deep learning methods, 
the researchers were able to reduce radiotracer requirements without 
sacrificing diagnostic quality. AI technology can also help clinicians 
detect hard to see lesions. At the University of Miami Miller School of 
Medicine, an AI tool named NeuroQuant has proven to be helpful in 
the assessment of dementia (McNamara, 2020). The software can help 
detect atrophy of certain parts of the brain in the early stages of AD 
that are almost impossible to recognize with the naked eye according 
to Dr. Saigal. The AI tool can also accurately recognize subtle changes 
in volume and can assess whether lesions are changing in size or 
number compared to prior scans. Additionally, AI technology can 
help identify artifacts in images and decrease false-positive 
interpretations. For instance, a deep learning-based tool called 
ArtifactID has been developed to help radiologists identify and 
classify artifacts in low resource settings. The researchers have trained 
classification models with greater than 88% accuracy to identify 
artifacts in T1 brain images (Manso Jimeno et al., 2022). Deep learning 
integration would be especially useful in developing countries where 
a lack of skilled physicians results in scan repetition, increased 
operating time, increased costs, and occasional misdiagnosis (Manso 
Jimeno et  al., 2022). Overall, AI would greatly improve the 
productivity and efficiency in clinical settings.

Reduce physician burnout

Worldwide, hospitals are performing 3.6 billion imaging 
procedures and producing 50 petabytes of data annually (Businesswire.
com, 2021). Radiologists are tasked with collecting, reading, and 
processing the extensive volume of data in a timely fashion and are 
struggling to find efficient methods. In 2022, Medscape reported 49% 
of radiologists are experiencing burnout (Medscape.com, 2022). Risk 
factors that may contribute to physician burnout include work factors 
such as excessive workloads, long working hours, frequent call duties; 
personal characteristics associated with burnout include being self-
critical, sleep deprivation, engaging in unhelpful coping strategies; and 
organizational factors such as negative leadership behaviors, limited 

interpersonal collaboration, and limited social support for physicians 
(Patel et al., 2018). Burnout is not only dangerous to the physician, but 
also to the patients. Research suggests that doctors who report signs 
of burnout are twice as likely to have made a medical error in the 
previous 3 months (Motluk, 2018). New technology could serve as a 
potential solution to help combat these issues and reduce burnout. AI 
could help radiologists by taking over tedious tasks such as scheduling 
patients, speeding workflows, and triaging images (Constance, 2021). 
Additionally, with improvement in the quality of imaging, diagnostic 
accuracy and efficiency will improve as well (Hardy and Harvey, 
2020). Concerns about making a medical error is a major contributor 
to burnout and AI can help by reducing the uncertainty of a diagnosis 
(Robertson and Long, 2018). A new company called Rad AI is focused 
on empowering radiologists with AI (1231 Rad AI). Their mission is 
to save radiologists time, reduce burnout and help improve the quality 
of patient care. Rad AI Omni works by tailoring to each radiologist’s 
speech to automatically generate impressions and can also make 
follow-up recommendations for significant findings in radiology 
reports. Only 1 in 10 patients receive appropriate follow-up care, but 
with the device, adherence to follow-up recommendations is tracked 
to improve patient care. According to the site, Rad AI has saved over 
60 min per shift, 84% of radiologists report reduced burnout, a total 
of 3 million impressions have been generated, and less than 220 
million words have been dictated among radiologists (Rad AI, 2022). 
AI has the potential to relieve stress with improved efficiency and 
productivity. There is consensus within the medical community that 
in the short term, AI algorithms will serve as a tool to assist doctors 
rather than replace them. As AI gains popularity, radiologists are 
being trained to adapt to its shortcomings and strengths (Chokshi 
et al., 2019). The technology works optimally in collaboration with a 
radiologist’s extensive training and expertise as there is less 
productivity if either one is working alone (Langlotz, 2019). Curtis 
Langlotz, a radiologist at Stanford, concluded “AI will not replace 
radiologists, but radiologists who use AI will replace radiologists who 
do not”.

Precision medicine

The “one-size-fits-all” approach in medicine is not effective in 
every disease. Precision, or personalized, medicine is a new form of 
medicine that incorporates a person’s genetic makeup, environment, 
and lifestyle to prevent, diagnose, and treat diseases (Ginsburg and 
Phillips, 2018). There have been major advances in precision medicine 
in the field of oncology (Mateo et al., 2022), cardiovascular disease 
(Abdelsayed et  al., 2022) and other inflammatory diseases (Lamb 
et al., 2022). Alzheimer’s research is moving towards the direction of 
precision medicine as drug trials have failed to show success in the 
past decade. The aim of precision medicine in AD is to target the 
heterogeneity of the disease through the identification of specific 
pattern of risk factors and underlying pathology, and ultimately aim 
to form a treatment plan tailored to the individual (Reitz, 2016). 
Apolipoprotein E (APOE), a genetic risk factor for late-onset AD, has 
recently emerged as a potential target for therapeutic drug 
development with the use of precision medicine (Yang et al., 2021). A 
study using precision medicine to target key markers of AD in 25 
patients was the first of its kind to reveal improvement in cognition of 
individuals with Alzheimer’s (Toups et al., 2021). Although a larger 
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clinical trial is warranted, the movement towards treating AD based 
on a personalized approach instead of a single therapy may improve 
the success of drug trials in the future. AI could help precision 
medicine reach its full potential. Various experimental studies are 
attempting to converge AI and precision medicine to improve disease 
diagnose, risk prediction, and treatment response (Johnson et al., 

2021). AI can play a major role in collecting and analyzing vast 
amounts of data on different individuals, help identify risk factors 
from clinical data, determine the effectiveness of different 
interventions, and provide in-depth patient characterization to 
develop strategies for prevention and treatment. A study used AI to 
create a biological sex and APOE specific network model to identify 

Patients present with 
neurocognitive 

symptoms

Modality

Artificial Intelligence 
triage

PACS (picture archiving and communication system)

Moderate priorityLow priority High priority

Radiologists’ review all 
cases, but high priority 

images are read first

AI algorithm 
implementation for 

detection of AD 

Radiologists’ findings are 
compared with AI 

predictions for a definite 
diagnosis
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Patients consult with 
practitioner for treatment 
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FIGURE 1

Legend: Patients present with neurocognitive symptoms ranging from noticeable memory loss, trouble performing routine tasks, confusion, 
personality changes, etc. A brain scan is performed in the clinic using the appropriate modality such as CT, MRI, or PET. The image is stored into the 
picture archiving and communication systems (PACS) database and processed into an artificial intelligence-based system to detect and sort low, 
moderate, and high priority brain scans. High priority cases are reviewed first by the radiologists followed by moderate and low cases. Once a diagnosis 
is made, the findings are compared with the AI database. If the radiologist’s decision does not match with the AI system, a second opinion is needed 
before making a definite diagnosis. Once a definite diagnosis is made, the patients can consult with their practitioner for future treatment 
recommendations.
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patient-specific biomarkers that could help discriminate between AD 
and cognitively normal individuals (Chang et al., 2023). With the 
assistance of AI, researchers identified key metabolic drivers that 
could serve as potential therapeutic targets in the future with the use 
of precision medicine (Chang et al., 2023). Current research raises 
exciting promises of integrating AI into precision medicine for 
personalized prevention and treatment in AD. Despite the growth in 
research, more studies are needed to assess the translatable potential 
to clinical practice and demonstrate clear evidence of real-world value.

Challenges of AI

Generalization and data shortage

A major limitation of AI use in the clinical setting is generalization. 
There are a series of steps that are implemented when creating an 
algorithm. The model must be trained, validated, and tested to evaluate 
its performance. The goal is to develop a model that is able to detect 
seen data and can generalize to make appropriate predictions to unseen 
data. The challenge with generalization arises when the trained 
algorithm loses its performance when applied to different datasets 
(Eche et al., 2021). A major cause of poor generalization is overfitting. 
Overfitting occurs when a model is too dependent on training dataset 
and is therefore not able to generalize well to data it has never seen 
before (Fabrizio et al., 2021). For example, a study developed a brain 
imaging-based classifier to assess the generalizability of machine 
learning for the classification of schizophrenia. The model was able to 
make precise predictions when using samples from a specific hospital 
but applying the classifier to a sample from another hospital displayed 
poor generalization performance (Cai et al., 2020). A possible strategy 
to overcome overfitting is to collect more training data (Eche et al., 
2021). However, there is a lack of sufficient training data in the field of 
Alzheimer’s disease. The shortage of data can partly be attributed to 
lack of awareness or resources to refer patients to research, barriers to 
participation in underrepresented populations, the requirement of a 
study partner to report cognitive changes, participant burden, and the 
use of invasive procedures (Watson et al., 2014). To address this issue, 
data augmentation techniques can be implemented to generate new 
images from existing images although, the effectiveness is still unclear 
(Gao and Lima, 2022). Various studies have attempted to resolve this 
issue. A study with the largest brain MRI samples to date acquired 
85,721 brain MRI samples from more than 217 scanners to build a 
practical AD classifier with high generalizability using deep learning/
transfer leaning (Lu et al., 2022). An additional study proposed a high-
generalizability machine learning framework for predicting the 
progression of MCI to AD using limited data (Wang et al., 2022). 
However, the quantity of data is not the only problem. A study 
evaluated the Alzheimer’s disease data landscape using nine AD 
cohorts including the Alzheimer’s Disease Neuroimaging Initiative 
(Birkenbihl et al., 2020). In addition to the lack of interoperability 
between the cohorts, the study revealed there is a severe 
overrepresentation of Caucasian individuals when compared to other 
ethnicities. It is predicted that by 2030, 40% of Alzheimer’s patients in 
the U.S. will be Latino/Black. The databases used for training are not 
community cohorts and are not an accurate representation of the 
population at large. The lack of data of non-White participants will 
most likely lead to poor performance in trained models when 

evaluating those with non-white background. There is a need for 
additional studies to develop algorithms with the ethnicity and 
demographic characteristics of subjects in mind (Bae et al., 2020). An 
important step is the ADNI4 project which aims to enroll 50 to 66% 
unrepresented populations in 2022 using new biofluid and technologies 
(Weiner et al., 2023). Until then, generalization will remain a challenge.

Lack of an in vivo gold standard for 
diagnosis

Currently, there is no definitive gold standard to diagnosis AD in 
vivo. Neuropathologic evidence of extracellular amyloid plaques and 
intracellular neurofibrillary tangles in a post-mortem analysis remains 
the only gold standard (DeTure and Dickson, 2019). Scientific 
discoveries have identified features that are highly suggestive of AD 
such as amyloid, tau, and neurodegenerative changes. The National 
Institute on Aging and Alzheimer’s Association created a research 
framework for AD diagnosis using biomarker evidence to categorize 
individuals (Ebenau et  al., 2020). The ATN (amyloid/tau/
neurodegeneration) classification system includes neuroimaging and 
biofluids such as CSF. A study assessed the practicality of the ATN 
model in a longitudinal memory clinic sample and found that the 
A + T + N+ group accounted for the majority of patients converting to 
dementia (Eckerström et al., 2021). However, the ATN framework 
needs further validation and is not currently used in routine clinical 
practice. AD pathology is highly complex with evidence suggesting one 
can have abundant plaques without ever developing dementia 
(Zolochevska et al., 2018). Additionally, a study found brain changes 
such as small GM volumes and hypometabolic regions were associated 
with episodic memory loss but may be independent from Aβ pathology 
(Mattsson et  al., 2015). Therefore, it is not enough to identify 
individuals at highest risk for AD with simply the presence of amyloid 
alone but rather, there needs to be evidence of both amyloid-β and 
biomarkers indicating neurodegeneration (Jagust, 2016). However, AD 
pathologic abnormalities have shown to differ between individuals 
presenting a major challenge in finding a definitive biomarker for AD 
diagnosis. For example, a study investigating 34 subjects with history 
of MCI that progressed to dementia underwent postmortem brain 
analysis. The study found that the majority of individuals with MCI 
progressed both clinically and pathologically to AD however, 29% 
developed non-AD primary pathologic abnormalities (Jicha et  al., 
2006). The study raises the question of potential pathologic 
heterogeneity of individuals with MCI recruited in clinical trials or AD 
cohort studies such as ADNI. Another study examining forty-five 
ADNI participants post-mortem revealed one participant only 
displayed non-AD pathology (argyrophilic grain disease) while 
comorbidities, such as Lewy body pathology, made up 58% of the cases 
(Franklin et  al., 2015). It remains unclear whether heterogenous 
pathologies in AD could affect the training dataset and thus the 
performance of the algorithms. Without a reliable in vivo gold standard 
for diagnosis, the reliability of algorithm training is called into question.

Skepticism in the medical community

On one end of the spectrum, many in the medical community 
believe AI will be highly beneficial to the field of medicine and will 
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change the way radiologists practice - for the better. With advancing 
technology, medical imaging will revolutionize and improve patient 
outcome. However, on the other end of the spectrum, there is 
skepticism towards AI implementation in radiology. A literature 
review found four causes of skepticism towards AI from physicians: 
(1) concerns about the accuracy of AI in clinical settings, (2) ethical 
concerns such as responsibility, reliability, and transparency, (3) a 
sense of mistrust in the management responsible for buying and 
implementing AI products, and (4) fear of losing one’s skills and 
eventually their job (Galsgaard et al., 2022). The study suggests the loss 
of being in control of one’s job and a threatened self-image of being 
the expert when working with AI are two possible explanations 
behind the skepticism arising from physicians (Galsgaard et al., 2022). 
Worldwide, professionals in the field of radiology question whether 
the need for trained radiologists will be replaced by AI (Pakdemirli, 
2019). Dr. Robert Schier, a neuroradiologist with RadNet Northern 
California, believes that in 10 to 20 years, most imaging studies will 
only be read by a machine and sent directly to a physician without the 
need of a radiologist (Wait, 2020). One study believes machine 
learning is the most potent threat to radiology and as the algorithm 
becomes more skilled in the future, it could potentially replace 
radiologists altogether (Chockley and Emanuel, 2016). Whether or 
not these concerns about AI become a reality, they must be taken 
seriously as there is evidence of such fears impacting medical students’ 
preference for radiology as their future career. A study of medical 
students in Saudi  Arabia found that concerns of AI displacing 
radiologists in the future had a negative impact on choosing radiology 
as a specialty (Bin Dahmash et al., 2020). Of the students who chose 
radiology as their first specialty, 58.8% were anxious about the 
uncertainty of AI on radiology. Another study examined the impact 
of AI on US medical students’ choice of radiology as a career through 
an online survey distributed to 32 accredited medical schools (Reeder 
and Lee, 2022). The study found that AI significantly lowered students’ 
preference for ranking radiology with 1/6 of the students not ranking 
radiology as their 1st choice due to AI concerns. Additionally, half of 
the students who considered radiology within their top three choices 
were concerned about AI. The study discovered that avoidance of AI 
within the medical student community was associated with a lower 
understanding of radiology, fear of decreased job opportunities, and 
previous AI exposure from the medical community (Reeder and Lee, 
2022). The Association of American Medical Colleges predicted that 
by 2034, the shortage of radiologists and other specialists could 
surpass 35,000 (AAMC, 2021). To fill the shortage, medical students 
need to be persuaded into the field of radiology, but AI appears to be a 
deterring force. Evidently, there is skepticism towards AI 
implementation in radiology in the medical community. Regardless, 
the potential benefits of AI to patient health and outcome cannot 
be ignored.

Physician bias

The use of AI in the clinical setting raises debates on risks, ethical 
problems, and bias. AI is expected to reduce medical errors, but this 
is not always the case. Potential issues that can arise are automation 
bias, omission errors, and commission errors. Automation bias is the 
tendency to favor a machine-generated diagnosis over a physician’s 
expertise or scientific knowledge (Neri et al., 2020). Omission errors 

occur when a physician rejects a correct diagnosis because he or she 
views AI to be without errors and does not notice or ignores its faults 
(Neri et al., 2020). Commission errors occur when a physician accepts 
the machines decision even when there are inconsistencies (Neri et al., 
2020). For example, a study evaluated the influence of diagnostic 
suggestions on a physicians’ diagnostic decision and found that 
physicians are more likely to accept correct diagnoses than to reject 
incorrect ones (van den Berge et al., 2012). These findings indicate that 
suggested diagnoses may make physicians more inclined towards 
favoring information that confirms their belief, leading to potential 
diagnostic errors (van den Berge et al., 2012). The researchers also 
evaluated a physician’s diagnostic performance by manipulating the 
order in which they encountered correct or incorrect suggestions (van 
den Berge et al., 2012). The results indicated that the order of correct 
or incorrect diagnoses did not influence the physician’s tendency to 
accept or reject following suggestions. Overall, the study found that 
the physicians were more likely to accept diagnostic suggestions, 
regardless of whether the suggestions were correct or not (van den 
Berge et  al., 2012). More recent studies evaluated the effect of 
machine-generated suggestions on physicians’ decisions. A 
randomized control study evaluated a physicians’ diagnostic accuracy 
with and without using an AI-driven differential diagnosis lists 
(Harada et al., 2021). The results showed that the AI driven differential 
diagnosis lists did not improve the physicians’ diagnostic accuracy. 
However, in the group with AI suggestions, the omission errors were 
15.9% and the commission errors were 14.8%. The study found that 
commission errors tended to decrease in more experienced physicians 
and in those with greater mistrust in AI (Harada et  al., 2021). 
Additionally, a study investigated the diagnostic accuracy of digital 
screening mammography with and without computer-aided detection 
(CAD; Lehman et al., 2015). The results showed that overreliance on 
diagnostic suggestions from a computer system resulted in more false 
negative rates in radiology diagnoses when compared to those without 
CAD (Lehman et al., 2015). Furthermore, as algorithms continue to 
make incorrect diagnoses, eventually people will lose trust. This is 
known as algorithm aversion. A study found that people are more 
likely to lose confidence in an algorithm than a human after seeing 
both make the same mistake, even if the algorithm can outperform a 
human in certain situations (Dietvorst et al., 2015). In conclusion, 
these studies raise a major problem for the use of AI in the clinical 
setting. If healthcare professionals become too reliant on machine 
diagnoses and ignore their training and the scientific evidence 
presented, patients’ safety will be at risk.

Patient privacy concerns

Physicians must act by the code of medical ethics to ensure 
patient safety (Haskell, 2019). Patients’ right to informed consent, 
privacy and data protection, and ownership of healthcare information 
also must always be respected. One of the main limitations of AI is 
its requirement for large datasets to train, test, and validate the 
algorithms (Brady and Neri, 2020). Although the datasets have been 
“anonymized,” there is still significant risk for data breaches of patient 
privacy. An article describing the ethical issues that arise from using 
portable and cloud-enabled neuroimaging raises similar privacy 
concerns that would be expected with AI (Shen et al., 2020). The 
privacy concerns include questioning the effectiveness of 
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de-identification of data, the possibility of data breach, the challenge 
of ensuring companies responsible for storing and analyzing patient 
data have adequate security, and the task of ensuring accountability 
to patients regarding their privacy and security (Shen et al., 2020). 
Additionally, while the use of such data may be beneficial to patients, 
there are ways to unethically make a profit on data that may cause 
harm to the patient. For instance, if a company chooses to purchase 
the rights to medical data access and capitalizes from the AI 
algorithm built from the data, the line is blurred regarding who 
should gain from the profits (Fernandez-Quilez, 2023). It may 
be expected that patients receive some form of payment since their 
data is being used. Additionally, even if the patient did not receive 
some compensation, the question remains whether the patient 
should have control or be informed of where their health information 
is transferred. There is no consensus regarding data ownership in 
these potential situations (Fernandez-Quilez, 2023). Additionally, 
large companies have great interest in the USD 8.3 trillion-dollar 
healthcare industry (Thomason, 2021). The Big Tech platforms  - 
namely, Google, Amazon, Facebook, Apple, and Microsoft - have 
launched apps and medical devices to take part in the world of digital 
health (Thomason, 2021). Tech companies promise to protect patient 
healthcare records, but a survey conducted in 2018 showed 
Americans were least willing to share health data with tech 
companies at a 11% rate (Farr, 2019). The lack of trust in big tech is 
not a big surprise due to privacy scandals in the past. For instance, a 
healthcare company in the UK named DeepMind partnered with 
Royal Free London NHS Foundation Trust in 2016 to use AI in the 
management of acute kidney injury (Murdoch, 2021). Critics noticed 
that patient privacy and ownership over their health information was 
not adequately controlled (Murdoch, 2021). Despite the controversy, 
Google gained ownership over the DeepMind’s app, thereby 
transferring UK patient information to the US without the consent 
of 1.6 million patients (Murdoch, 2021). The University of College 
London Hospital stated they had control over the anonymized data 
and the information was available only to the researchers working on 
the project (Lomas, 2019). Yet, the term anonymized raises suspicion. 
While HIPPA has implemented stronger privacy protections against 
reidentification of data, it has loopholes and does not address the use 
of ML on medical data (Kancherla, 2020). For example, a 2018 study 
trained a ML algorithm to re-identify actual people from health 
tracking devices even though their data had been supposedly 
protected (Na et  al., 2018). These findings suggest that current 
practices for deidentifying patient data are lacking. Until safeguards 
and regulations are in place, AI poses a dangerous threat to patient 
information, privacy, and safety.

Future considerations

The difficultly in establishing accurate staging of AD using MRI, 
PET and other modalities has shifted the focus to a more precise form 
of imaging (Kim et  al., 2022). Near-infrared fluorescence (NIRF) 
imaging is a powerful modality that can detect AD-associated proteins 
using fluorescence (Kim et al., 2022). Small molecule NIRF probes 
tested on AD model mice have shown success in detecting β-amyloid, 
tau proteins, and reactive oxygen species in vivo (Yang et al., 2020). A 
recent study developed the first NIRF probe that could image BACE1, 
a key protein in the pathogenic process, in live AD model mice (Bi 

et al., 2022). Future studies are looking to develop new NIRF probes 
for the diagnosis of Alzheimer’s (Quan et al., 2023). Additionally, 
blood tests have shown promising data for replacing more invasive 
PET or CSF tests and will be further investigated (Veitch et al., 2022). 
A recent study found blood levels of phosphorylated tau (p-tau)231 
and p-tau217 could detect early cerebral Aβ pathologies demonstrating 
their importance as biomarkers for preclinical AD (Milà-Alomà et al., 
2022). Additional future studies are needed before blood-based 
biomarkers are used alone to diagnose AD or incorporated in clinical 
care (Hansson et al., 2022). Lastly, before AI can be  integrated in 
routine clinical setting for the diagnosis of AD, there needs to be clear 
evidence of real-word value. The studies presented in the paper 
(Table 1) illustrate various AI models that have shown high sensitivity 
and specificity for AD and could serve a major role in the clinical 
setting. However, until the models are implemented in real-world 
clinical trials, their validity are called into question. Further studies 
need to focus on improving the efficiency of AI for AD clinical trials 
(Seo et al., 2022). For instance, there is a need for greater external 
validation of the models, a need for greater quantity and quality of AD 
data, a need for more diversity, and a need for creating AI models 
based on multimodal clinical data (Acosta et al., 2022) to help bridge 
the translational gap. As previously mentioned, the next 5-year phase 
of ADNI4 will recruit more minorities and less-educated individuals 
to improve the generalizability of future studies (Veitch et al., 2022). 
Similar efforts to increase diversity are being seen in the UK, Europe, 
Latin America and in the Asia-Pacific region (Raman et al., 2022). 
Major advancements are still needed to help combat the Alzheimer’s 
disease crisis predicted in the coming decades.

Conclusion

Alzheimer’s disease is a progressive, neurodegenerative disease 
that greatly impacts the life of the patient and the family. Signs of 
mental deterioration are often confused for old age and by the time 
the patient decides to visit the physician, a diagnosis may be too late. 
Neuroimaging, although costly, has served a vital role in identifying 
markers for the diagnosis of AD. MRI, CT, and PET are modalities 
used in clinical settings to identify a patient’s cognitive status, each 
with their own benefits and limits. As noted, limitations exist when 
using neuroimaging alone to identify AD. With advancing technology, 
there is a challenge in analyzing and interpretating vast amounts of 
brain imaging data. The use of AI with neuroimaging for the diagnosis 
of AD is a rapidly emerging field and has the potential to solve these 
problems. Research involving AI in neuroimaging has resulted in 
remarkable outcomes including the ability to classify, track the 
progression, and diagnose AD in early stages. These models are not 
currently available in routine clinical practice, but the progression 
towards use in clinical settings is expected as technology advances.

AI introduces limitless possibilities in the future diagnosis of 
AD, yet there is still resistance from the healthcare community to 
incorporate AI in the clinical setting. To answer the question of 
whether AI should be used in conjunction with neuroimaging in 
the diagnosis of AD, the possible benefits and challenges of AI 
were discussed. The main advantages of AI considered are its 
potential to improve diagnostic accuracy, improve the efficiency 
in analyzing radiographic data, reduce physician burnout, and 
advance precision medicine. The challenges include 
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generalization and data shortage, lack of in vivo gold standard, 
skepticism in the medical community, potential for physician 
bias, and concerns over patient information, privacy, and safety. 
Although the pros and challenges discussed are not all specific 
for AD, they are still important considerations as AI will not only 
be used for neurocognitive diseases. It is predicted physicians of 
the future will be using AI in conjunction with neuroimaging in 
their decision-making process. However, physicians today are 
already incorporating AI in their workday such as with the use of 
triaging. Although the challenges present fundamental concerns 
and must be  addressed when the time comes, it would 
be unethical not to use AI if it can improve patient health and 
outcome. The Hippocratic Oath taken by physicians require new 
physicians to uphold specific ethical standards, including to do 
no harm. There are risks and benefit to all medical decisions and 
it would ultimately be  a disservice to the population if a 
technological advancement that could widely impact patient 
health for the better is not used. With anything new, resistance is 
an inevitable reaction as it is human nature to be uncomfortable 
with change. However, with change comes progress. Not only will 
patients greatly benefit from AI, but so too will current and 
future radiologists. No other field of medicine is as technologically 
dependent as radiology and together with AI, patient health will 
be greatly improved. AD is a devastating diagnosis for the patient, 
and for the family. No one wants to see their loved ones devoid 
of memories. Until there is a cure for AD, computer algorithms 
can play a major role in clinical settings. AI’s biggest achievements 
for the future of AD and other diseases are yet to be seen.
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