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Neurodegenerative disorders (NDs) are becoming one of the leading

causes of disability and death across the globe due to lack of timely

preventions and treatments. Concurrently, intensive research efforts are being

carried out to understand the etiology of these age-dependent disorders.

Extracellular vesicles (EVs)—biological nanoparticles released by cells—are

gaining tremendous attention in understanding their role in pathogenesis and

progression of NDs. EVs have been found to transmit pathogenic proteins of

NDs between neurons. Moreover, the ability of EVs to exquisitely surmount

natural biological barriers, including blood-brain barrier and in vivo safety has

generated interest in exploring them as potential biomarkers and function as

natural delivery vehicles of drugs to the central nervous system. However,

limited knowledge of EV biogenesis, their heterogeneity and lack of adequate

isolation and analysis tools have hampered their therapeutic potential. In

this review, we cover the recent advances in understanding the role of

EVs in neurodegeneration and address their role as biomarkers and delivery

vehicles to the brain.
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Introduction

Neurodegenerative disorders (NDs) such as Alzheimer’s,
Huntington’s, Parkinson’s and amyotrophic lateral sclerosis
(ALS) are heterogeneous diseases that follow a progressive
pattern of accumulation and spreading of misfolded
proteins whose composition varies according to the disease.
Accumulation of misfolded proteins results in progressive loss
of specific neurons and synapses in distinct regions of the brain
(Budnik et al., 2016; Gan et al., 2018). At present, NDs are the
second leading cause of deaths worldwide that cannot be cured
or slowed down significantly due to lack of treatments. Death
of the neurons at different regions of the brain results in a
progressive dysfunction of motor control, mood disorders and
cognitive impairment that eventually progress to a full-fledged
dementia, causing devastating effects on socio and economic
life of patients and their families (Dugger and Dickson, 2017).
NDs are becoming a global public health challenge due to an
increase in the number of deaths and disabilities caused by
these diseases. It is estimated that around 50 million people are
suffering from NDs and its number is anticipated to increase
to 135 million by 2050 (Livingston et al., 2020). To tackle
the growing challenges of the neurodegenerative diseases,
comprehensive and collaborative efforts need to be developed
for effective treatments that could delay onset or retard progress
of these diseases.

Over the last few decades, advancement in human
genetic studies and development of advanced molecular
biology techniques have revolutionized our understanding in
determining the causes of various NDs (Paulson, 2009; Alves
et al., 2018; Caron et al., 2018). In early 1990s, mutations
underlying the common monogenic neurological disorders
such as Huntington’s disease, Duchenne muscular dystrophy
and Charcot-Marie-Tooth disease type 1 were identified
and characterized. Recent advances in DNA sequencing has
accelerated the discovery of highly penetrant single-gene
mutations of various rare disorders (Ravi et al., 2021). Using
advanced genetic approaches, it is now possible to detect and
manage the symptoms of the disease before its onset. More
importantly, the monogenic nature of several NDs have led
to development of therapeutic intervention to either target the
mutant genes using antisense RNA and RNA interferences or
target the mutant protein by designing chemical inhibitors and
monoclonal antibodies (Gabathuler, 2010; Alyautdin et al., 2014;
Sharma et al., 2019).

Apart from genetic studies, compelling evidence from
cellular, biochemical, and animal studies have shown that
misfolding of proteins, their aggregation and accumulation
are one of the main causes for the death of neurons, loss
of synaptic connections that ultimately leads to brain damage
(Soto and Pritzkow, 2018). Despite the fact that the distinctive
proteins are involved in various NDs, the process of protein
misfolding, their intermediates and end-products are mostly

similar, which has provided in-depth understanding about
overlapping disease mechanisms in patients with sporadic
and inherited neurodegenerative disease (Soto, 2003; Gandhi
et al., 2019; Mukherjee et al., 2021). Moreover, high resolution
structural studies of protein aggregates revealed presence of
conformational variant of the protein aggregates of prion
proteins, tau proteins, α-synuclein and β-amyloids that provides
molecular basis for presence of distinct tauopathies of each
misfolded proteins (Hauw et al., 2015; Lazaro et al., 2019; Lim,
2019).

Overview of extracellular vesicles

Despite extensive knowledge gained in understanding the
molecular mechanism of the aggregation of misfolded proteins
and their cross-seeding with other protein aggregates, very
little is known about the cellular pathways implicated in
spreading of misfolded seeds across different neurons (Soto
and Pritzkow, 2018; Liu et al., 2021). Among several cellular
pathways proposed, the role of extracellular vesicles (EVs) is
gaining extensive importance during the past several years.
EVs represent a new paradigm of cell-cell communication
that has provided in-depth knowledge in understanding the
bidirectional communication between cells and their complex
microenvironment. Originally, exosomes were first described by
E G Trams in 1981 who observed release of small vesicles of
around 40 nm into cell culture media. These vesicles referred
to as “exosomes” were found encapsulated within a larger
vesicle of 5–10 µm in diameter (Trams et al., 1981). In
1983, Harding and colleagues, while working on trafficking of
transferrin receptors, discovered fusion of large multivesicular
bodies (MVB), containing small intraluminal vesicles, with the
plasma membrane, releasing these small intraluminal vesicles
into the extracellular environment. In 1987 Johnstone named
these vesicles as exosomes (Johnstone et al., 1987). However,
till 1990 exosomes were considered as garbage cans used by
cells to discard unwanted cellular proteins. Subsequent study
in 1996 by Raposo et al. (1996) which observed activation
of CD4+ T cells by MHC II enriched exosomes, sparked a
renewed interest in exosome biology that led to exponential
development of the EV field. Over the past two decades,
there have been ground breaking reports demonstrating the
role of EVs in cancer metastasis, diagnostics, progression of
neurological diseases and application of bioengineered EVs
in drug delivery systems (El Andaloussi et al., 2013; Murphy
et al., 2019). Meanwhile, Significant progress has been made
in understanding the cell biology of exosome biogenesis and
their content (Kang et al., 2021). Depending on cells of origin,
mechanism of biogenesis, environmental conditions, epigenetic
changes and developmental stages, the molecular constituents
of EVs include DNA (ssDNA, dsDNA, mtDNA) RNA (miRNA,
lncRNA, tRNA, snoRNA), lipids and specific proteins (ESCRT
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complexes, ALIX, or Rab GTPases, GAPDH, CD9, CD63, CD81,
HSP70, and HSP90, tubulin) (Jurj et al., 2020). With the
immense interest in EVs and advances in the high throughput
techniques, there has been a data explosion of EVs during the
last decade. To get an access of the publicly available datasets,
an online compendium of heterogeneous databases have been
curated by biologists and uploaded into different databases such
as Exocarta (Keerthikumar et al., 2016), Vesiclepedia (Kalra
et al., 2012), and EVpedia (Kim et al., 2015). Exocarta is
mostly focussed on exosome markers and contains information
on isolation and characterization methods of these vesicles.
Vesiclepedia and EVpedia catalog data from different types of
EVs.

Based on the underlying biogenesis and biophysical
characteristics, EVs have been categorized into several classes
but small EVs with diameter of 30–150 nm are the most
well-studied (Table 1; Tkach and Thery, 2016; Willms et al.,
2018; Kalluri and LeBleu, 2020). The term exosomes is often
referred to vesicles of 30–150 nm in diameter that are
generated by inward budding of late-endosomes producing
intraluminal vesicles (exosomes) within MVB. The MVBs
fuse with the plasma membrane, releasing exosomes into
extracellular space (Escola et al., 1998; Stuffers et al., 2009;
Raposo and Stoorvogel, 2013; Bebelman et al., 2018; van
Niel et al., 2018). Another type of vesicles referred to as
microvesicles or ectosomes or microparticles are secreted by
cells via outward blebbing of plasma membrane. Microvesicles
have a characteristic size of 100–1,000 nm (Ostergaard et al.,
2012; Raposo and Stoorvogel, 2013; Zaborowski et al., 2015).
A third, less studied category of vesicles, known as apoptotic
bodies (1–5 µm) are released by blebbing of dying cells (Stahl
et al., 2019). Although the above classification system has
enabled us to differentiate different types of EVs based on size
and other limited biochemical properties, linking size of EVs
with their biological functions remains enigmatic (Tkach et al.,
2018; Margolis and Sadovsky, 2019). Due to inadequate EV
separation and analysis techniques, it is difficult to interpret

whether a single cell produces EVs of different sizes or
does different sizes of EVs are released by different cells?
Similarly, no information is available to understand variation
in secretion of EV types at different times and conditions. Due
to complexity of EV biology, we are unable to link different
types of EVs with their characteristic biological functions. In
order to address EV heterogeneity, different new tools and
techniques are being applied to characterize several types of
EVs. By employing asymmetric-flow field-flow fractionation
(AF4), Zhang H. et al. (2018) were able to efficiently resolve EV
subpopulations and identified a distinct abundant population of
non-membranous nanoparticles named “Exomere” (∼35 nm),
which were enriched with proteins involved in metabolism,
coagulation and hypoxia. They were also able to separate and
characterize two discernible exosome subpopulations, small
exosomes vesicles (Exo-S, 60–80 nm) and large exosome vesicles
(Exo-L, 90–120 nm). Exo-S were predominantly enriched in
protein associated with endosomes, MVB and phagocytosis
while as Exo-L were found to contain protein of plasma
membrane, cell-cell contact and late-endosomes suggesting
that Exo-S are more likely canonical exosomes derived from
endosomes and Exo-L are more likely microvesicles that are
blebbed from plasma membrane. Recently, studies carried out
by Zhang et al. (2021) have identified another amembranous
nanoparticle termed as supermere (supernatant of exomere).
Although, supermere are morphologically identical to exomere,
their protein and RNA content differs from sEVs and exomere.
Several clinically relevant proteins such as amyloid precursor
protein (APP), cellular-mesenchymal-epithelial transition factor
(MET), argonaute-2 (AGO2), TGFβ-induced (TGFBI), and
extracellular RNA previously reported to be in exosomes, were
highly enriched in supermeres (Zhang et al., 2021).

To identify and characterize different subpopulation of EVs
and other biological nanoparticles, various advanced techniques
such as high-resolution density gradient fractionation,
immunoaffinity, imaging flow cytometry (IFCM) were
recently employed (Gorgens et al., 2019; Jeppesen et al., 2019;

TABLE 1 Classification of Extracellular vesicles and their characteristics.

Name of the
vesicles

Type Protein markers Size (nm) References

Small exosomes Exosomes Flotillin 1, flotillin 2, Tetraspanin
(CD63, CD81, CD9) ESCRT-1

60–80 Thery et al., 2001; Morita et al.,
2007; Zhang S. et al., 2018; Doyle
and Wang, 2019

Large-exosomes Exosomes Annexin A1/A4/A5, charged
multivesicular body protein
1A/2A/4B/5 (Hsp40)

90–120 Zhang S. et al., 2018; Jeppesen
et al., 2019

Microvesicles Microvesicles CD40, selectins, integrins, and
cytoskeletal proteins

150–1,000 Heijnen et al., 1999; Di Vizio
et al., 2012; Zhang S. et al., 2018

Exomere Nanoparticle HSP90AB1, ACTG1, RAB7A,
Hist1h3b

35 Zhang S. et al., 2018

Apoptotic
bodies

Apoptotic EVs Annexin V (PS exposure) >1,000 Thery et al., 2001; Ratajczak and
Ratajczak, 2020
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Dar et al., 2021). However, ambiguity in biochemical markers
associated with EV subtypes and lack of standardized method
to isolate different types of EVs across biological samples
have remained one of the major bottlenecks in addressing
heterogeneity and classification of EVs. Keeping these issues
in focus, we prefer to use the latest guidelines from the
International Society for Extracellular Vesicles (ISEV) clearly
on definition, isolation and classification of EVs. While going
through the literature of EVs pertaining to their role in
neurodegeneration, we found that many authors have used
the term exosomes while describing their results. No specific
exosomal marker or method of selectively isolating exosomes
were mentioned during characterization of EVs. Therefore,
the mentioned exosomes in many cases could also contain
small amounts of other types of EVs. In this review, the generic
term EVs have been used to mention either exosomes or
microvesicles without specific attention to their size, biogenesis
and method of isolation. Wherever exosome or microvesicles
term have been used, it signifies the choice of the authors in the
respective work cited in this review.

Role of extracellular vesicles in
dissemination of pathogenic
protein aggregates in
neurodegenerative disorders

Despite the findings that showed important physiological
roles of central nervous system (CNS) derived EVs in regulation
of inflammatory responses (Bianco et al., 2005), promotion of
neurite outgrowth (Wang et al., 2011) and regulation of myelin

membrane biogenesis (Bakhti et al., 2011), EVs are considered
to contribute to the pathogenesis of many neurological diseases,
including NDs via disseminating pathogenic protein aggregates
(Table 2) (Soria et al., 2017; DeLeo and Ikezu, 2018). Although
the exact mechanism involving the role of EVs in spreading of
aggregated proteins is still unknown, elucidating the pathways
and mechanisms by which an abnormal isoform of the host
encoded prion protein, referred to as PrPSc, spreads through
host have highlighted direct involvement of EVs in spreading of
infected prion proteins. Studies carried out by Vella et al. (2008)
have demonstrated that both normal (PrPC) and abnormal
(PrPSc) prion proteins are associated with exosomes secreted
by both neuronal and non-neuronal culture cells. By using
sucrose density gradient and electron microscopy experiments,
the author has found exclusive association of prion proteins with
exosomes (Vella et al., 2008). Earlier, it has been demonstrated
that endocytic pathways play an important role in conversion
of PrPc to PrPsc, suggesting the role of endosome-derived
exosomes in secretion of PrPsc (Borchelt et al., 1992). Using
specific exosome markers, MS and morphological analysis, both
PrPc and PrPsc have been found to be released via endosome
derived exosomes (Fevrier et al., 2004). However, prion
association has also been found associated with microvesicles
(Caughey et al., 2009; Heumuller et al., 2022; Kovac and Curin
Serbec, 2022). Studies carried out by Leblanc et al. (2006) have
found that cells infected with retrovirus strongly enhance the
release of PrPC and PrPSc proteins via exosomes. Exosomes
have been also reported in transmitting infectivity between
heterologous cell types, suggesting their role in transmission of
prion infectivity within the nervous system (Leblanc et al., 2006;
Vella et al., 2007). Inhibition of neutral sphingomyelinase by
GW4869 was shown to impede both exosomes biogenesis and

TABLE 2 Current knowledge about role of EVs in Pathophysiology of NDs.

Disease type Key role of EVs Key markers found in EVs

Alzheimer’s
disease

EVs isolated from AD patients transferred toxic Aβ to neurons with
subsequent toxic effect on the recipient cells (Falker et al., 2016;
Sardar Sinha et al., 2018).
Inhibition of EV significantly reduced tau propagation in vitro and
in vivo (Asai et al., 2015).
EVs from AD patients induced tau pathology in mice (Winston
et al., 2016).

Presence of Aβ and p-tau in brain-derived EVs isolated from blood
of patients (Saman et al., 2012; Simic et al., 2016)
Upregulation of miR-9-5p, miR342-3p and miR-598 in the blood
and CSF of AD patients (Manna et al., 2020; Wang and Zhang,
2020).
Elevated levels of autolysosomal proteins (LAMP-1 and cathepsin
D) in nEV (Goetzl et al., 2015b).

Parkinson’s
disease

Pathogenic species of α-synuclein were found in EVs isolated from
CSF of PD patients that trigger oligomerization of soluble
α-synuclein in targeted cells (Danzer et al., 2012; Stuendl et al.,
2016).
EVs containing oligomeric α-synuclein spread Synucleinopathy in
mice brain after focal administration (Zhang S. et al., 2018).

Elevated levels of α-synuclein were detected in CSF-derived EVs
from PD patients at early stages of the disease (Stuendl et al., 2016).
Levels of α-synuclein in EVs of dementia patients with Lewy bodies
correlate with severity of the disease
Altered miRNA levels in CSF EVs of PD patients (Gui et al., 2015).

Amyotrophic
lateral sclerosis

Misfolded superoxide dismutase (SOD 1) transmission between
cells occurs via EVs (Grad et al., 2014).
EVs containing mutant TDP-43 caused degeneration of neurons
in vitro (Sproviero et al., 2018).

Expression of TDP-43 full-length and C-terminus fragments were
reported in a cohort of ALS-FTD patient-derived EVs of CSF origin
(Ding et al., 2015).

Huntington’s
disease

EVs were found involved in propagation of mHTT in mouse models
(Jeon et al., 2016; Ananbeh et al., 2021).

None
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packaging of prion proteins, suggesting the important role of
exosomes in secretion of prion proteins.

Since most of the NDs share common mechanism of
aggregation and propagation of misfolded protein to defined
regions of the brain, evidence is mounting that EVs carry prion-
like templating protein aggregates of other neurodegenerative
diseases including Parkinson’s disease (PD), Alzheimer’s disease
(AD), Huntington’s disease (HD), and ALS (McAlary et al.,
2019; Sandau et al., 2020; Yoon et al., 2022). Once these EVs
are secreted by the affected neurons, they are taken up by
other cells of the CNS, resulting in transferring of these seed-
proteins into the targeted cells. In AD, deposits of amyloid-β
(Aβ) proteins and hyper-phosphorylated tau protein aggregates
known as neurofibrillary tangles (NFTs) are thought to act
as “seeds” that undergo nucleated polymerization leading to
formation of pathogenic aggregates in brains of Alzheimer
patients (Nizynski et al., 2017; Sarnataro, 2018). APP is a
ubiquitous type-1 transmembrane protein consisting of a single
transmembrane domain with large extracellular domain and
a short cytoplasmic C-terminus domain. Under physiological
conditions, cleavage of APP protein on surface of plasma
membrane by α-secretase and then γ-secretase results in the
formation non-amyloidogenic fragments along with soluble
amyloid precursor protein fragments α (sAPPα) and C-terminal
fragments (CTFs). Under certain conditions, the extracellular
cleavage is made more distant from the membrane by β-site
APP cleaving enzyme (BACE) or β-secretase and γ-secretase,
leading to formation of a somewhat longer peptide fragment
(40–42 AA) called amyloid-beta or Aβ peptide, along with
soluble amyloid precursor protein fragments β (sAPPβ) and
CTFs (Ehehalt et al., 2003; O’Brien and Wong, 2011; Miura
et al., 2020). APP can be processed on the cell surface by α

and γ-secretase or reinternalized in clathrin-coated pits into an
endosomal compartment containing the proteases BACE1 and
γ-secretase. The latter results in the production of Aβ that can be
either degraded in the lysosomes or dumped into extracellular
space. FRET and other experimental evidence have indicated
that BACE interacts with APP in the endosomes and preventing
of surface endocytosis blocks almost 80% of Aβ release (Koo
and Squazzo, 1994; Kinoshita et al., 2003; Fukumori et al., 2006;
Zou et al., 2022). These experimental evidence indicates the
role of exosomes in releasing Aβ peptides into the extracellular
spaces and their uptake by other neuronal cells. Direct evidence
for the involvement of exosomes in neuron-neuron transfer of
toxic proteins comes from Sardar Sinha et al. (2018) studies
who demonstrated that intracellular levels of lower molecular
weight Aβ oligomers (oAβ) and protofilaments is increased in
the exosomes isolated from Alzheimer’s patients brain when
compared to similar preparations of control brain samples
from patients deceased from non-neurological reasons. While
studying the release of (Aβ) peptides into the extracellular space,
Rajendran et al. (2006) have shown β-secretase cleavage occurs
in early endosomes. A fraction of Aβ peptide is trafficked into

MVB for extracellular release via exosomes. Moreover, exosome
markers such as Alix and flotillins have been found in the
plaques of AD patients. The staining pattern was absent in the
postmortem samples of healthy individuals, suggesting specific
association of EVs with amyloid plaques (Saman et al., 2012;
Goetzl et al., 2015a; Hu et al., 2016). Numerous other studies
indicate that EVs play a prominent role in pathogenesis of AD
(Vella et al., 2016; Deng et al., 2017). Studies carried out on
neuroblastoma PrPC knockout cell lines revealed preferential
binding and fibrillization of small Aβ species on exosomes
expressing PrPC (Falker et al., 2016; Sardar Sinha et al., 2018).
In another study, microglia-derived microvesicles were found
to induce Aβ neurotoxicity in vitro by promoting formation
of small soluble neurotoxic species from Aβ extracellular
aggregates (Joshi et al., 2014). These observations reinforces
the role of EVs in pathogenesis of NDs in a prion-like
manner, thus, making them an alternative pharmaceutical target
to downregulate their formation or secretion by inhibiting
proteins involved in biogenesis of exosomes (Bulloj et al., 2010;
Dinkins et al., 2014; Vella et al., 2016). However, contrary to
these results, Yuyama et al. (2014) demonstrated that infusion
of neuronal exosomes into brain of APP transgenic mouse
decreased Aβ and amyloid depositions, possibly via binding of
Aβ peptide on neuronal derived exomes, containing abundant
glycosphingolipids. These Aβ bound exosomes were believed
to be phagocytosed by microglial cells for degradation of
Aβ aggregates (Yuyama et al., 2014). It has been found that
during excessive formation of Aβ aggregates, microglial cells
are unable to degrade all Aβ aggregates and thereby release
soluble Aβ peptides via microvesicles that induce toxicity to
surrounding neurons (Gouwens et al., 2018). Microglia cells
have also been demonstrated to play an important role in
propagation of tau protein and neurotoxicity in the brain.
Using two different tau mouse models, it has been suggested
that microglia cells phagocytose tau-containing cytopathic
neurons (known as phagoptosis) or tau-containing inactive
synapses, which is known as synaptic pruning and secrete tau
protein in exosomes, which efficiently transmit tau to neurons
(Schafer et al., 2012; Brown and Neher, 2014; Asai et al.,
2015). Moreover, the microglial depletion significantly reduces
exosomal transmission of tau to neurons ex vivo. Similarly,
exosomes isolated from the plasma of AD patients were found
to induce the formation of tau pathology in CNS of normal mice
(Winston et al., 2016). These and other clinical studies strongly
support the findings that exosomes are an important component
of the pathobiology of Alzheimer’s disease. However, not all
aggregates are encapsulated in EVs as majority of extracellular
aggregates of tau and α-synuclein are found membrane free and
use other cellular pathways for propagation (Mao et al., 2016).

EVS have also been shown to play an important role in
spreading of ALS, also known as Lou Gehrig’s disease, after the
baseball player who was diagnosed with it (Ferrara et al., 2018;
Gagliardi et al., 2021). ALS is a progressive neurodegenerative
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disease that causes deterioration of motor neurons that control
voluntary muscle movement such as walking, eating, breathing,
and speaking. Like other NDs, histology of ALS patients
revealed abnormal accumulations of protein aggregates in
motor neurons and neuronal accessory cells (Ilieva et al., 2009;
Sproviero et al., 2018). The major protein aggregates found in
ALS include TAR DNA-binding protein 43 (TDP-43) Cu/Zn
superoxide dismutase 1 (SOD1), and fused in sarcoma (FUS).
Growing evidence suggests that misfolding of these proteins
accumulates in the cells and can cause aggregation of their native
counterparts through a mechanism similar to self-seeding of
infectious prion proteins (Polymenidou and Cleveland, 2011).
In ALS it is observed that the release and propagation of
protein aggregates of SOD 1, TDP-43, and FUS occurs via
EVs (Sproviero et al., 2018; You and Ikezu, 2019). Astrocytes
overexpressing mutant SOD 1 were found to secrete a greater
number of exosomes and efficiently transfer mutant SOD 1 to
spinal neurons, leading to death of these neurons (Basso et al.,
2013). Similarly, exposure of N2a cells to EVs isolated from
the brains of ALS patients caused redistribution of TDP-43
aggregates in the cells while no such effect was found when EVs
isolated from a control brain were added to these cells (Feneberg
et al., 2014).

Parkinson’s disease, which is the second most prevalent
neurodegenerative disorder, is characterized by intracellular
accumulation of protein aggregates composed primarily
misfolded and fibrillary forms of α-synuclein, forming
intracytoplasmic inclusion bodies known as Lewy bodies at
many region in the brain including substantia nigra, locus
coeruleus, cerebral cortex, central and peripheral divisions of
the autonomic nervous system (Polymeropoulos et al., 1997;
Kam et al., 2018; Pinnell et al., 2021). α-synuclein is a small
natively unfolded protein that is predominantly found in
soluble form at presynaptic terminals that has been suggested
to play a role in homeostasis of the synaptic vesicle pool
and the modulation of synaptic transmission via sustaining
normal SNARE-complex assembly (Kim and Lee, 2008; Burre
et al., 2010). During the pathogenesis of PD, it is believed
that monomeric α-synuclein assembles into higher ordered
structures known as α-synuclein preformed fibrils (PFFs)
that contribute death to neuronal cells. Moreover, Increasing
experimental evidence suggests that free floating α-synuclein
protein seeds and its multiple forms are capable of spreading
across different neurons via multiple cellular mechanism (Peng
et al., 2020; Liu et al., 2022). Recent experimental studies carried
out in mice and non-human primates have demonstrated
spread of toxic α-synuclein from peripheral organs such
as gut and olfactory bulb to central nervous system (Braak
et al., 2003; Rey et al., 2016; Kim et al., 2019; Arotcarena
et al., 2020). Among multiple cellular pathways reported to
mediate release and uptake of α-synuclein, EVs have been
demonstrated to play an important role in inter-neuronal
transmission of α-synuclein (Danzer et al., 2012; Ngolab et al.,

2017; Minakaki et al., 2018). Soluble oligomeric and monomeric
species of α-synuclein were found associated with exosomes
isolated from neuroblastoma cells, overexpressing the protein
(Emmanouilidou et al., 2010). Moreover, exosome-associated
α-synuclein were more efficiently taken up by the recipient
cells and induced more toxicity compared to free form of
α-synuclein (Danzer et al., 2012). Considering the potential
role of divalent metal ions in protein aggregation, exposure
of cultured dopaminergic neurons with manganese (Mn2+)
were found to induce secretion of misfolded α-synuclein via
exosomes. Uptake of these exosomes by the microglial cells
elicited neuroinflammatory responses in both cell culture and
animal models (Harischandra et al., 2019). Similarly, EVs
isolated from CSF of patients with Parkinson’s disease were
found to contain a pathogenic species of α-synuclein that could
initiate oligomerization of soluble α-synuclein in target cells
and confer disease pathology (Danzer et al., 2012; Stuendl et al.,
2016). Exosomes containing ganglioside lipids GM1 or GM3
were reported to promote aggregation of α-synuclein (Grey
et al., 2015). Recently, it has been found that lipid peroxidation
product 4-hydroxynonenal (HNE) increases aggregation of
endogenous α-synuclein in primary neurons and trigger
secretion of EVs containing cytotoxic oligomeric α-synuclein.
Focal administration of these EVs into the striatum of wild-type
mice resulted in spread of synuclein pathology to anatomically
connected brain regions, thereby confirming direct involvement
of EVs in propagating the neurodegenerative process of PD
(Zhang S. et al., 2018).

Extracellular vesicles as
biomarkers in neurodegenerative
disorders

Presence of misfolded protein aggregates in cerebrospinal
fluid (CSF) and blood forms a basis for development of
biomarkers of NDs. However, presence of these proteins
at extremely low concentration in CSF and blood makes
them less attractive for the development of meaningful
neurodegenerative-specific biomarkers (Thompson et al., 2016).
To overcome these hurdles, it is important to examine other
components of the biofluid such as EVs and characterize
their association with the progress of the neurological diseases.
Secretion of EVs by almost all cell types, presence of cargos such
as proteins, lipids, nucleic acid that varies according to their
cellular origin makes them promising biomarkers to understand
cellular and pathogenic processes of ND (Chiasserini et al.,
2014; Vella et al., 2016; Younas et al., 2022). Availability of
highly advanced biochemical tools such as high resolution
tandem mass spectrometry, bioinformatics, immunological
assays and electron microscopy allows comprehensive analysis
of EVs isolated from CSF and blood for the presence of
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specific biomarkers under physiological and pathophysiological
conditions.

In several experiments, detection of pathogenic proteins of
NDs from CSF-isolated EVs hold promise for the development
of early or presymptomatic biomarkers for NDs (Table 2). An
analysis of phosphorylated tau (p-tau) isoforms isolated from
CSF-derived EVs have identified high levels of p-T181-tau/T181
in AD patients at early stages of disease that decrease at later
stages (Saman et al., 2012). Interestingly, the levels of these
proteins were significantly higher in patients than in healthy
controls, therefore, making them promising biomarkers to study
development of AD (Kim et al., 2021). Several other reports
have demonstrated presence of other pathogenic proteins
(prion/prion-like proteins, α-synuclein) in CSF-derived EVs,
making them potential candidates for development of sustained
ND therapies (Chiasserini et al., 2014; Stuendl et al., 2016). In
addition to misfolded proteins, several studies have investigated
the potential of miRNA associated with EVs in detecting or
studying the progress of NDs. Dysregulation of miRNA caused
due to mutated genes of NDs and protection of miRNA
by EVs from degradation makes them an attractive pool as
potential biomarkers of NDs. Several studies have reported
upregulation of certain microRNAs (miR-9-5p, miR342-3p, and
miR-598) in the blood and CSF of AD patients when compare
to EVs of healthy individuals (Manna et al., 2020; Wang and
Zhang, 2020). In patients with sporadic ALS, downregulation of
exosomal miR-1825 and miR-1234-3p that target NXPH3 and
NLE1 gene involved in pathogenesis of ALS have been seen,
suggesting involvement of these genes in pathogenesis of ALS
(Taguchi and Wang, 2018; Chen et al., 2021). Taken together,
the detection of pathogenic proteins and miRNA from CSF-
derived EVs hold great promise to serve as early biomarkers for
neurodegenerative diseases. However, the moderately invasive
nature of CSF collection, painful procedure to collect CSF
from patients and availability of low sample volume limits
its widespread use in routine primary clinical care practices
(Blennow, 2017).

The ability of central nervous system EVs to cross the blood-
brain barrier into blood has opened up a new paradigm for the
diagnosis of neurodegenerative diseases (Thompson et al., 2016;
Song et al., 2020). CNS-specific protein markers such as CD171
(also known as neural cell adhesion molecule L1, L1CAM) and
glutamate aspartate Transporter (GLAST) have been used to
isolate brain-derived EVs from blood by immunoprecipitation
(Younas et al., 2022). Analysis of AD-related cargos in neuronal
EVs (nEVs) revealed presence of gradually increased levels of
Aβ-42 along the Alzheimer’s continuum, indicating that nEVs
have the potential to reflect brain pathological changes and are
emerging as promising liquid biopsy tools. Moreover, they could
also serve as a predictor of disease progression during clinical
trials. Similarly, another study carried out by Dutta et al. (2021)
on brain-derived EVs isolated from serum using neuronal and
oligodendroglial markers in two independent cohorts found

lower concentration of α-synuclein in control group and higher
in Multiple system atrophy (MSA) compared to the Parkinson’s
disease (PD) group. Increased levels of tau protein have been
detected in nEVs isolated from human plasma, with significantly
increased levels found in PD patients compared to AD patients
(Shi et al., 2016). Moreover, they found that the ratio of
α-synuclein level in oligodendroglial exosomes compared to
putative neuronal exosomes could be used as a sensitive marker
for distinguishing between PD and MSA (Dutta et al., 2021).
Overall, these studies highlighted the therapeutic potential of
CNS-derived EVs as biomarkers, evaluating the early detection
and progression of NDs. However, due to low-abundance of
brain-derived EVs in the blood, development of standardized
and ultrasensitive methods to isolate these types of EVs and high
resolution visualization techniques are needed to utilize brain-
derived EVs as reliable biomarkers for NDs. Moreover, concerns
regarding specificity of surface markers used to isolate nEVs
and lack of standardized procedure to identify and correlate
EVs isolated by different cell types of brain under different
conditions needs further investigation (Jia et al., 2019; Li et al.,
2019, 2022; Kalluri and LeBleu, 2020; Younas et al., 2022).

Extracellular vesicles as drug
delivery vehicles to central
nervous system

Despite significant advancement of nanotechnology,
delivery of drugs to a specific tissue is still a major challenge to
move different therapies, including the most promising RNA
interference (RNAi), from bench to bedside (Park, 2013; Dar
et al., 2015a,b). Activation of immune response, inability to cross
different biological membranes, biocompatibility and toxicity
are some of the major concerns related with the existing drug
delivery systems (Keles et al., 2016; Torrice, 2016). Discovery
of EVs as intercellular communication vehicles has gained
tremendous attention academically as well as at industrial level
as reflected by start-up of new international pharmaceutical
companies (Evox Therapeutics in United Kingdom, Codiak
Bioscience in U.S.A and ExoPharm in Australia), exploring the
therapeutic potential of EVs in diagnosis and drug-delivery.
These small, nano- sized vesicles play an important role in
intercellular communication by delivering payloads in the form
of proteins, mRNA and non-coding RNAs (Lakhal and Wood,
2011).

Several intriguing properties of exosomes such as
immunological inertness and ability to overcome natural
biological barriers have increased their therapeutic potential
exponentially in delivering drugs, particularly non-coding
RNAs (Luan et al., 2017). The pioneering work carried out by
Alvarez-Erviti et al. (2011) to exploit exosomes for delivering
siRNA across blood-brain barrier after systemic injection
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provides the first proof-of-concept for the potential of exosomes
as vehicles of drug delivery. In this study, immature dendritic
cells of mice were used to isolate EVs. Cells were transfected
with plasmid encoding RVG peptide fused to Lamp2b in order
to express RVG peptide on the surface of EVs. RVG is a 29-mer
peptide isolated from rabies virus glycoprotein that mediates
delivery of drugs across the blood-brain barrier. Since then
several studies have been carried out to engineer EVs for
delivering different kinds of pharmaceutical drugs to the brain
(Lakhal and Wood, 2011; Wiklander et al., 2019; Zhou et al.,
2022).

Based on their natural tendency to cross biological barriers,
biodistribution of unmodified EVs have been carried out after
intravenous injections. Majority of the IV injected EVs were
found to rapidly accumulate in the reticuloendothelial system,
with a small portion reaching to the brain (Lai et al., 2014;
Wiklander et al., 2015; Pauwels et al., 2021). Moreover, parental
cell surface markers have been found to be important in
targeting EVs to a particular tissue. A significantly higher
uptake of EVs, purified from neuronal cells, to the brain was
observed in mice and zebrafish models (Yang et al., 2015;
Venkat et al., 2019). To achieve more targeting of EVs to brain
parenchyma, recombinant fusion proteins were expressed on
EV surfaces by transfecting cells with the plasmid expressing
the desired fusion protein. A well-characterized and highly
expressed EV membrane protein such as Lamp2b has been used
as an anchor to display brain targeting peptides such as RVG
peptide, lactoferrin, transferrin receptor binding T7 peptide and
RGDYK peptide on surface of EVs for brain targeting (Alvarez-
Erviti et al., 2011; Cooper et al., 2014; Izco et al., 2019; Dar et al.,
2021). Using these strategies, a higher accumulation of these EVs
were reported in the brain after intravenous injections leading
to silencing of genes, causing neurodegenerative diseases (Tian
et al., 2018; Kim et al., 2020).

Despite considerable potential of EVs in drug delivery
to brain, limited knowledge of EV biogenesis and loading
of therapeutic drugs remains one of the major obstacle to
harness their full potential as natural drug delivery systems
(Lakhal and Wood, 2011; Ramirez et al., 2018; Wiklander
et al., 2019). Various techniques like electroporation, direct
incubation of hydrophobic drugs with EVs, transfection of
cargos into cells for endogenous loading into EVs, have
been developed to load therapeutic cargos into EVs (Sun
et al., 2010; Alvarez-Erviti et al., 2011; Didiot et al., 2016).
Similarly, other methods such as development of anchor peptide
against surface markers of EV proteins have been used for
loading phosphorodiamidate morpholino oligomer (PMO) onto
EVs (Gao et al., 2018). However, these loading methods are
limited by low efficiency, toxicity, lack of reproducibility and
scalability (Kooijmans et al., 2013). Moreover, these methods
produce a heterogenous population of EVs that imposes further
complexity in understanding the phenotypic effects of EVs
in targeted cells (Sutaria et al., 2017; Murphy et al., 2019).

To harness the therapeutic potential of EVs, it is important
to understand the intracellular pathways of EV biogenesis,
so that the natural characteristics of EVs can be exploited
for therapeutic applications rather than by manipulating them
in the laboratory. Recently, we developed a new method for
loading therapeutic nucleic acid into EVs by utilizing naturally
occurring free GAPDH binding sites on the surface of EVs
(Dar et al., 2021). Further experiment revealed presence of
phosphatidylserine binding domain of GAPDH (designated
as G58). Using G58 as an anchoring peptide to EV surface,
multiple recombinant fusion proteins were developed that lead
to efficient delivery of siRNA into the brain of Huntington’s
disease mouse model, resulting in silencing of HTT gene
in different regions of the mouse brain. Presence of natural
free GAPDH-binding sites on EVs isolated from multiple
cells is one of the important steps toward developing a
universal loading method where EVs from patients could
be directly used for loading cargos with minimum in vitro
manipulations.

Conclusion

Extracellular vesicles that were initially considered as
garbage bags have been shown to play an important role in cell-
cell communications. Given their unique characteristics, EVs
have attracted immense interest in understating their under
physiological and pathophysiological conditions. EVs have been
demonstrated to carry pathogenic proteins responsible for
spreading of neurodegenerative disease and, therefore, hold
great potential for clinical application. Although significant
advances have been made in understanding the biology of EV
biogenesis and biochemical characteristics, very little is known
about the role of different types of EVs in packaging and
release of pathogenetic proteins such as prion proteins, Aβ

protofilaments and other types of misfolded proteins. Most of
the studies carried out in the past have used the term exosomes
while describing their roles in NDs without fully characterizing
the different types of vesicles obtained from the cultural media
and biological fluids. Using the advanced techniques such as
single vesicle high-resolution IFC and specific markers for
exosomes and microvesicles, the role of different types of EVs
could be established (Gorgens et al., 2019; Jeppesen et al., 2019).

Presence of EVs in various biological fluids opened
up new possibilities to use EVs as biomarkers for early
detection and progression of various pathological states such
as neurodegenerative diseases. Recent findings of brain-derived
EVs in blood raised a great interest in isolation and biochemical
characterization of these EVs as these EVs could offer
enormous information to study neurodegeneration in real time.
However, heterogeneity of EVs has complicated their molecular
characterization. Therefore, future studies need to focus on
developing novel methods to isolate different types of EVs
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and analyze their biochemical signatures. Another emerging
application of EVs is their ability to deliver drugs across
biological barriers. Biocompatibility of EVs, immunological
inertness and ability to express desired protein ligands on
their surface using conventional genetic engineering tools have
attracted considerable interest in EVs as future delivery systems
in gene therapy. However, the EV field is still in infancy and
much attention needs to be given to understand how EVs
deliver cargos inside cells. Therefore, future studies need to
dissect different routes of EV entry into the cells and release
of EV cargos into the cytoplasm. Moreover, novel methods
for loading drugs to EVs needs to be developed that needs
little bioengineering so that patient-derived EVs could be used
directly to deliver therapeutic drugs. Taken together, it seems
possible that EVs hold tremendous potential to develop as
multifunctional biopharmaceuticals.
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