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Numerous artificial intelligence (AI) based approaches have been proposed for automatic

Alzheimer’s disease (AD) prediction with brain structural magnetic resonance imaging

(sMRI). Previous studies extract features from the whole brain or individual slices

separately, ignoring the properties of multi-view slices and feature complementarity.

For this reason, we present a novel AD diagnosis model based on the multiview-slice

attention and 3D convolution neural network (3D-CNN). Specifically, we begin by

extracting the local slice-level characteristic in various dimensions using multiple

sub-networks. Then we proposed a slice-level attention mechanism to emphasize

specific 2D-slices to exclude the redundancy features. After that, a 3D-CNN was

employed to capture the global subject-level structural changes. Finally, all these 2D and

3D features were fused to obtain more discriminative representations. We conduct the

experiments on 1,451 subjects from ADNI-1 and ADNI-2 datasets. Experimental results

showed the superiority of our model over the state-of-the-art approaches regarding

dementia classification. Specifically, our model achieves accuracy values of 91.1 and

80.1% on ADNI-1 for AD diagnosis and mild cognitive impairment (MCI) convention

prediction, respectively.

Keywords: Alzheimer’s disease (AD), disease prognosis, multi-view-slice attention, 3D convolution neural network,

brain sMRI image

1. INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia that causes progressive and
permanent memory loss and brain damage. It is critical to initiate treatment for slowing
down AD development in early AD. As a non-contact diagnostic method, structural magnetic
resonance imaging (sMRI) is regarded as a typical imaging biomarker in quantifying the
stage of neurodegeneration (Kincses et al., 2015; Bayram et al., 2018; Shi et al., 2018).
Based on the examination of the brain’s sMRI images, numerous artificial intelligence (AI)
technologies, including conventional voxel-based machine learning methods and deep-learning-
based approaches, have been performed for assisting the cognitive diagnosis (Martí-Juan et al.,
2020; Tanveer et al., 2020; Wu et al., 2021a,b).

In the early attempts, traditional statistical methods based on voxel-based morphology (VBM)
were introduced to measure the brain’s morphologic changes. VBM-based studies determine the
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intrinsic characteristics of specific biomarkers, such as the
hippocampus volumes (Fuse et al., 2018), cortex sickness
(Luk et al., 2018), subcortical volumes (Vu et al., 2018),
and frequency features with non-subsampled contourlets (Feng
et al., 2021), to calculate the regional, anatomical volume of
the brain. However, most VBM-based approaches relying on
domain knowledge and expert’s experience need a complex
handcrafted feature extraction procedure, which is independent
of the subsequent classifiers, resulting in potential diagnostic
performance degradation.

With the advancement of deep learning, especially the
successful applications of convolution neural networks (CNN), in
recent years, a growing body of research employed deep learning
to analyze the MR images by training an end-to-end model
without handcrafted features (Zhang et al., 2020; AbdulAzeem
et al., 2021; Qiao et al., 2021). Since the 3D volumetric nature of
sMRI, 3D-CNN could be directly applied to capture the structural
changes of the whole brain at the subject-level (Jin et al., 2019).
However, there is much useless information in the complete
MRI with millions of voxels. Furthermore, it is hard to fully
train the CNNs with only a few labeled MRI data available at
the subject level. Many deep-learning-based methods turn to
exact pre-determination of regions-of-interest (ROI) for training
the models with 3D-Patch or 2D-slice (Ebrahimighahnavieh
et al., 2020). Liu et al. (2020b) extract multi-scale image patches
based on the pre-determined anatomical landmarks from sMRI
for training an end-to-end CNN. Lian et al. (2020a,b) trained
multiple classifiers with multilevel discriminative sMRI features
from the whole sMRI with a hybrid network to capture local-to-
global structural information. Compared with the modeling in
the subject level, the patches or slices carry more local features
but lose some global information. In addition, some studies
try to exclude irrelevant regions by emphasizing specific brain
tissues with the help of segmentation technology. Cui and Liu
(2019) and Poloni and Ferrari (2022) focus on the specific
biomarker from specific regions, such as the hippocampus, to
capture the structural changes in 3D MR images for AD and

FIGURE 1 | The slice-level information in brain sMRI. (A) Slice-level features in axial plan. (B) Slice-level features captured in multiview, including the sagittal, coronal,

and axial planes.

mild cognitive impairment (MCI) classification. Chen and Xia
(2021) design a sparse regression module to identify the critical
cortical regions, such as the amygdala, posterior temporal lobe,
and propose a deep feature extraction module to integrate the
features landmarked regions for the diagnosis process. However,
such methods need extra tissue segmentation operations, which
inevitably increase the complexity of the diagnostic model.

Although the existing models have achieved outstanding
results so far, it is still a challenging work for AD diagnosis
due to a large number of volumes in 3D MR images and a
subtle difference between abnormalities and normality brains,
i.e., it is vital to extract subtle changes in disease progression
from MRI sequence data with a high denominational. Previous
studies focus on extracting features from the whole brain or
individual slices separately, ignoring the feature complementarity
from different views. As illustrated in Figure 1, each slice of the
brain sMRI in different views contains a certain amount of local
information that could also be valuable for dementia diagnosis.
Considering both global structure changes of whole brain and
fine-grained local distinctions of slices could be both crucial, this
study proposes a novel fusionmodel for AD classification, named
multiView-slice attention and 3D convolution neural network
(MSA3D), which organically integrates multiple slices features
and 3D structural information.

The main contributions of this study are three-fold:

(1) We proposed an MSA3D model to combine the 2D multi-

view-slice levels and global 3D subject-level features for fully

mining the subtle changes in different views and dimensions.
(2) We propose a slice-level attention module to help the CNN

focus on specific slices to obtainmore discriminative features

representations from abundant vowels.

(3) We perform two classification tasks, i.e., AD diagnosis and

MCI conversion prediction, on two ADNI datasets. Our

model achieves superior diagnostic results compared with

other tested models, demonstrating our model’s efficacy in

aiding dementia prediction.
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2. MATERIALS AND DATA
PREPROCESSING

2.1. Studied Subjects
Following the previous studies (Liu et al., 2019; Lian et al.,
2020b), we employed two public sMRI data sets, i.e., ADNI-1
and ADNI-2, for empirical study. Both of them can be found on
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) website
(Jack et al., 2008). This study employed the ADNI data only for
model validation but did not involve any patient interaction or
data acquisition. More detailed data acquisition protocols are
available at http://adni.loni.usc.edu/. We collected a total of 1,451
subjects from the ADNI database with baseline T1 weighted
(T1W) brainMRI scans, which are divided into four categories:

• Cognitively Normal (CN): Subjects diagnosed with CN at
baseline and showed no cognitive decline.

• Stable MCI (sMCI): Subjects diagnosed with MCI remain
stable and have not converted to AD at all time-points (0–90
months).

• Progressive MCI (pMCI): Subjects are diagnosed with MCI
who would gradually progress to AD within 0–36 months.

• Alzheimer’s disease: Subjects diagnosed as AD at baseline and
whose conditions would not change during the follow-up
period.

To avoid data leakage problems mentioned in Wen et al. (2020),
we also remove the subjects exited in both ADNI-1 and ADNI-2.
More specifically, the ADNI-1 dataset is formed of 808 subjects
with 1.5 T T1W sMR brain images, including 183 AD, 229
CN, 167 pMCI, and 229 sMCI. The ADNI-2 dataset has 643
3T T1W sMR brain images, including 143 AD, 184 CN, 75
pMCI, and 241 sMCI. Table 1 summarizes the detailed clinical
information of the studied subjects, including age, sex, and the
scores of the mini-mental state examination (MMSE). In our
experiments, these two independent datasets will be employed as
the training dataset and testing dataset, repetitively, to perform
cross-validation. More specifically, we first trained the model
on the ADNI-1 and evaluated it on ADNI-2. Subsequently, we
reversed the experimentation and used the ADNI-2 for model
learning, and then the trained model was assessed on ADNI-
1. Note that we employed the ADNI data only for empirical
analysis but this study did not employ any patient interaction or
data acquisition.

2.2. Data Preprocessing
The standard preprocessing pipeline was performed on all the
T1W brain MRIs as follows: First, all MRIs were performed in an
axial orientation parallel to the line through anterior commissure
(AC)-posterior commissure (PC) correction. Then the invalid
volumes of the sMRI, i.e., the blank regions, were removed,
leaving only the brain tissues. Subsequently, the intensity of brain
images was corrected and normalized with the N3 algorithm
after the skull dissection (Wang et al., 2011). Finally, all the
aligned images are resized into the same spatial resolution for
facilitating the CNN training. The model’s inputs are fixed
to 91× 101× 91(i.e., 2mm× 2mm× 2mm cubic size) in our
experiment, following the previous study (Jin et al., 2020).

TABLE 1 | Detailed clinical information of the studied subjects in ADNI-1 and

ADNI-2 (± means the SD).

Dataset Label Total number Age (Years) Sex (M/F) MMSE

ADNI-1
NC 229 76.2 ± 5.1 119/110 29.2±1.0

sMCI 229 74.8 ± 7.6 153/76 27.2 ± 1.7

pMCI 167 74.9 ± 7.2 102/65 26.9 ± 1.7

AD 183 75.6 ± 7.6 96/87 23.1 ± 2.5

ADNI-2
NC 184 77.3 ± 6.7 87/97 28.8 ± 1.7

sMCI 241 71.3 ± 7.5 134/107 28.3 ± 1.5

pMCI 75 71.9 ± 7.2 40/35 27.0 ± 1.6

AD 143 75.6 ± 7.8 85/58 21.9 ± 3.8

3. METHODOLOGY

The overall architecture of our model is presented in Figure 2,
which is composed of five main parts: the MRI sequences input,
multi-view-slice sub-network (MVSSN), slices attention module
(SAM), subject-level 3D-CNN (S3D-CNN), and a softmax
classifier with full connection layer. The following sections
provide more details for each module.

3.1. Multi-View-Slice 2D Sub-Networks
In this subsection, we introduce the MVSSN module for
extracting multiview 2D-slice level features. As shown in
Figure 3, the inputs of MVSSN are consist of the MR slices in
three views, i.e., the sagittal, coronal, and axial imaging planes.
Since discriminative features may exist in different slices, we
employ a 2D-CNN to extract the multiview slice features from
each slice. Let’s denote the x, y, and z as theMRI planes of sagittal,

coronal, and axial, respectively, particularly, Sx = [s1x, s
2
x, ..., s

Mx
x ]

denotes the slice cluster in the x plane, where Mx is the total
slice number of the cluster Sx. After using the multiple 2D-
CNNs on each slice to generate the feature maps in different
views separately, the input I ∈ RD×H×W can be transformed as
the featuremaps Fx, Fy, Fz in three dimensions. For example, each
feature map Fix in sagittal view is calculated by Equation (1):

Fix = f ix(s
i
x,w

i
x) (1)

where f ix is a independent 2D-based CNN, wi
x is the weight of

CNN f ix, and i ∈ [1,Mx] means the ith slice in the x-direction.
Each f ix contains three CNN blocks, each with a conventional
layer, a barch normalize (BN) layer, a rectified linear unit (RELU)
operator, and a maxpooling layer. Detailed parameters of our
2D-based CNN are listed in Table 2.

After the Global-Avg-Pooling (GAP) operation, the feature
map Fix can be pooled as a vector denoted as Iix. In the end, all
the feature maps in x view can be cascaded as Ix = [Ix1 , I

x
2 , ..., I

x
Mx

].
The same conventional operation can be applied on y and z views
to generate the corresponding feature map clusters.

3.2. Slices Attention Module
Each vector in Ik can be regarded as a class-specific response
after extracting the multiple slices-level features using the
MVSSN. Considering that the volumetric MRI data contains
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FIGURE 2 | Illustration of the proposed multiview-slice attention and 3D convolution neural network (MSA3D) model.
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FIGURE 3 | 2D-CNN slice sub-network for multi-view slice features extraction.

different slices, many of them may not contain the most
representative information relevant to dementia (Lian et al.,
2021). To address this issue, we proposed a SAM to help the CNN
focus on the specific features by exploiting the interdependencies
among slices.

As shown in Figure 2, given a set of features embedding of the
jth direction, denoted as Ik ∈ Mk×C, where C = 8 is the feature
channels of each slice, and k ∈ {x, y, z} means the MR plane.
By employing an attention mechanism, we can obtain the slice

attention Ak ∈ Mk×Mk , which can build the dynamic correlations
between the target diagnosis label and slice-level features with the
following equation:

akij =
exp(Iki · I

k
j )

∑Mk
i=1 exp(I

k
i · I

k
j )

(2)
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TABLE 2 | Detailed parameters of our 2D-CNN slice sub-network.

Layer Kernel Stride Activation Output channels

Conv2D 3 × 3 2 BachNorm+Relu 8

MaxPooling2D 2 × 2 8

Conv2d 3 × 3 2 BachNorm+Relu 32

MaxPooling2D 2 × 2 32

Conv2D 3 × 3 2 BachNorm+Relu 64

MaxPooling2D 2 × 2 64

Global-Avg-Pooling2D 1 × 1 1 128

Full connected 128

Full connected 8

where akij ∈ Ak is the score that semantically represents the

impact of ith slice feature on the jth slice in the kth direction.
The final output of the weighted slice features Ĩk ∈ Mk×C can
be calculated by:

Ĩkj = β

Mk∑

i=1

(akijI
k
i )+ Ikj (3)

where β is a learnable parameter that will gradually increase from
0, note that the final output feature maps are the sum of all the
weighted features of the slices in one direction so that the SAM
can adaptively emphasize the most relevant slices to produce a
better AD inference.

After the SAM module, we fuse all the slice features in three
directions using concatenation operation to form the final slice-
level features Fs = [̃Ix, Ĩy, Ĩz], where Fs represents the cascaded
weighted features which can capture the multiple views of local
changes of the brain in three directions in 2D MRI images.

3.3. Subject-Level 3D Neural Network
The brain MRI data can be regarded as 3D data with an input
size ofH ×W ×D, whereH andW denote the height and width
of the MRI, repetitively, and D is the image sequence. In order
to explore the global structure changes of the brain, all of the
convolution operations and pooling layers are reformed from 2D
to 3D. The 3D CNN operator is given in Equation (4):

ulj(x, y, z) =∑
δx

∑
δy

∑
δz

Fl−1
i (x+ δx, y+ δy, z + δz)×W l

ij(δx, δy, δz)
(4)

where (x, y, z) refers to the 3D coordinates in sMRI data, Fl−1
i

is the ith feature map of the l− 1 layer. W l
ij(δx, δy, δz) is a 3D

convolution kernel slides in 3 dimensions, thus the new jth
feature map ulj(x, y, z) of the l layer can be generated after 3D

convolution across the Fl−1
i from the l− 1 layer. Similar to the

2D-CNN, our 3D-CNN includes four network blocks, and each
block has a 3D-CNN layer, 3D BN layer, ReLu activation, and 3D
max-pooling layer. Finally, the 3D convolutional feature maps
are pooled into one 1D vector using a 3D-GAP layer with a
kernel size of 1 × 1 × 1. The produced vector represents the

TABLE 3 | Detailed parameters of our 3D-CNN subject sub-network.

Layer name Kernel Stride Activation Output channels

Conv3D 3× 3× 3 1 BachNorm3d+Relu 32

MaxPooling3D 3× 3× 3 2 32

Conv3D 3× 3× 3 1 BachNorm3d+Relu 128

MaxPooling3D 3× 3× 3 2 128

Conv3D 3× 3× 3 1 BachNorm3d+Relu 256

MaxPooling3D 3× 3× 3 2 256

Conv3D 2× 2× 2 2 BachNorm3d+Relu 512

MaxPooling3D 5× 5× 5 2 512

Globel-Avg-Pooling3D 1× 1× 1 512

global subject-level features. Detailed parameters of our 3D-CNN
subject-level subnetwork are shown in Table 3.

3.4. Fully Connected Layer and Loss for
Classification
To exploit both the slice-level and subject-level features generated
by 2D and 3D-CNNs, a fully connected (FC) layer is employed
to concatenate all the 2D and 3D features maps, followed by
a final FC layer and a softmax classifier, which outputs the
prediction probability of the diagnostic labels. The cross-entropy
(CE) is widely adopted as the training loss function for image
classification (Liu et al., 2021), which is given as follows:

L=−
1

C

C∑

c=1

1

N

∑

Xi∈X

I
{
Yc
i = c

}
log(P(Yc

i = c|Xi:W)) (5)

where I{ · } = 1 if { · } is true, otherwise I{ · } = 0. N is the total
number of test subjects and Xi means the ith sample with the
corresponding label Yi in the training datasets X, and i ∈ [1,N].
P(Yc

i = c|Xi:W) measures the probability of the input sample Xi

that is correctly classified as the Yc
i by the trained network with

weightsW.

3.5. Complexity Analysis
We further analyze our proposed model’s complexity by
reporting the two branches of subnetworks, respectively.
For the aspect of the global subject-level 3D-CNN
model, the computational complexity of 3D-CNN layer
is O(DxDyDzK

3
global

), where Kglobal is 3D-CNN kernel

size, while Dx,Dy,Dz is the feature map dimensions
of the layer. For the aspect of the slice-level 2D-CNN
model, since the 2D feature maps are fused in three
dimensions, the time complexity of the 2D-CNN layer is
O(MzDxDyK

2
slice

+MxDyDzK
2
slice

+MyDxDzK
2
slice

), where
Mx,My,Mz denotes the total number of slices in three MR
planes, receptively, and Kslice is the 2D-CNN kernel size.

4. EXPERIMENTAL RESULTS

4.1. Competing Methods
We first compare our proposed MSA3D method with multiple
deep-learning-based diagnosis approaches that we reproduced
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TABLE 4 | Classification results of AD vs. CN and MCI convention on ADNI-2.

Method
AD vs. CN pMCI vs. sMCI

ACC SEN SPE AUC F1 ACC SEN SPE AUC F1

Voxel+SVM 0.759 0.677 0.810 0.729 0.705 0.736 0.107 0.769 0.609 0.162

3D-CNN 0.872 0.874 0.839 0.933 0.856 0.769 0.427 0.831 0.721 0.467

Multi-Slice 0.838 0.755 0.826 0.894 0.813 0.728 0.267 0.792 0.620 0.317

Multi-Patch 0.841 0.790 0.844 0.924 0.803 0.722 0.373 0.821 0.698 0.438

MSA3D 0.911 0.888 0.914 0.950 0.898 0.801 0.520 0.856 0.789 0.553

All the models are trained on ADNI-1. The best results are highlighted in bold.

and evaluated on the same training and testing datasets including
(1) a statistical method based on VBM with SVM [denoted as
VBM+SVM, proposed by Ashburner and Friston (2000)], (2) a
method using 3D-CNN features [denoted as 3D-CNN, proposed
by Wen et al. (2020)], (3) a method using multi-slice 2D features,
i.e., the features extracted from all the slices in three directions
(denoted as Multi-Slice), and (4) a method using 3D-CNN with
3D patch-level features (denoted as Multi-Patch).

(1) Voxel+SVM: As a conventional statistical-based model,
Voxel+SVM performed sMRI analyses at the voxel level
(Ashburner and Friston, 2000). Using a non-linear image
registration approach, we first normalized all MRIs with
the automated anatomical atlas (AAL) template. Then, we
segmented the gray matter (GM) from sMRI data. In the end,
we mapped the density of GM tissue into one vector and used
the support vector machine (SVM) as the classifier for AD
diagnosis.

(2) 3D convolution neural network: As an important part of
MSA3D, 3D-CNN can extract global subject-level changes of
sMRI for dementia diagnosis (Wen et al., 2020). Thus, it can
be regarded as the baseline model in our study. In this model,
we only give the 3D MRI data as the input for training the
3D-CNN.

(3) Multi-Slice: As another essential component of MSA3D, the
multi-slice model focus on the local slice-level features, which
consist of all the features extracted by using the 2D-CNN with
the 2D slices in sagittal, coronal, and axial MR planes.

(4) Multi-Patch: In this method, multiple 3D-patches are
partitioned from the whole brain according to the landmarks
defined in Zhang et al. (2016) and Liu et al. (2020b) to extract
region-scale features (ROI), and then we train a 3D-CNN as
the feature extractor for each patch. In the end, all the ROI-
based features were cascaded to obtain the final embedded
feature for the entire sMRI.

4.2. Experimental Setting
All the tested models are implemented with Python on Pytorch
using one NVIDIA GTX1080TI-11G GPU. During the training
stage, the batch size is set to the same value of 12 for all models
for a fair comparison. Stochastic gradient descent (SGD) with
an initial learning rate of 0.01 and a weighted delay of 0.02
is adopted as the optimization approach, along with an early
stopping mechanism for avoiding over-fitting. The following five
criteria are calculated to investigate the performance of the tested

models, including accuracy (ACC), specificity (SPE), sensitivity
(SEN), the area under the ROC curve (AUC), and F1-values (F1).

4.3. Results on ADNI-2
We first present the comparison results of two classification tasks
(i.e., AD vs. NC and pMCI vs. sMCI) on ADNI-2 in Table 4

and Figure 4, with the tested methods trained on the ADNI-
1. As we can inform from Table 4, Multi-Patch shows a better
performance than Multi-Slice on AD prediction, especially on
the challenging pMCI vs. sMCI. The results indicate that local
discriminative features are important for MCI prediction, and
only the 2D-slice level features may not be a good option for
CNNs. In addition, 3D-CNN achieved the second-best results
on both AD and MCI prediction tasks. We can also find
that all the deep-learning-based models perform better than
the conventional Voxel+svm method. The main reason is that
the deep-learning-based technique can achieve a better feature
extraction with an end-to-end framework. In general, our model
consistently yields better performance than the tested methods,
e.g., in the case of MSA3D vs. 3D-CNN baseline, our model
resulted in 7 and 5.6% improvements in terms of ACC and
AUC for classifying AD/NC, and 7.3% and 16.9% improvements
in terms of ACC and AUC for determining pMCI/sMCI. This
result shows that after fusion of the 2D and 3D information
through two branches of CNNs, our model can capture more
discriminative changes in both multiview 2D-slices and 3D
whole-brain volumes in the progress of AD andMCI conversion.
So that our model generates significant improvements in terms
of all the metrics compared to other methods in comparison.

4.4. Results on ADNI-1
In order to further investigate the effectiveness of the test models,
we also perform a cross-valuation on ADNI datasets, i.e., we
trained the models on ADNI-2 and tested them on ADNI-1. It
needs to be pointed out that because of the lack of sufficient
pMCI samples in ADNI-2 (75 in ADNI-2 vs. 167 in ADNI-1),
we only conduct the experiments of AD diagnosis on ADNI-1.
The comparison results are summarized in Table 5 and Figure 5,
from which we can observe similar results compared to the
models tested on the ADNI-2. Our model still produces the
best values in terms of all the metrics compared with the
other methods.

Meanwhile, we can find a significant performance drop for
all models when trained on ADNI-2, which leads to a relatively
small improvement of AUC achieved by our model compared
with the 3D-CNN. The main reason for this is that ADNI-1 and
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A B

FIGURE 4 | Comparisons results in terms of ROC curves. The models are trained on ADNI-1 and tested on ADNI-2. (A) AD vs. NC. (B) pMCI vs. sMCI.

ADNI-2 were collected using 1.5 and 3.0 Tesla MRI scanners,
respectively. The strength of a 3.0 T magnet is two times that of
a 1.5 T magnet, which could cause the overestimation of brain
parenchymal volume at 1.5 T (Chu et al., 2016). The variable
image quality between different scanners directly impacts the
models for diagnosis. However, our model still outperforms the
3D-CNN baseline by 5.3% of the F1 value in this scenario.
All of these findings suggest the proposed model’s efficacy
and reliability.

4.5. Comparison With Other Methods in
Literature
In this section, we give a brief description of our MSA3D
method with the previous study reported in the literature for
AD diagnosis using the ADNI database. The state-of-the-art
comparison studies contain:

(1) The conventional statistical-based methods include: SVM
trained with Voxel-based features (VBF; Salvatore et al., 2015);
landmark-based morphometric features extracted from a local
patch (LBM; Zhang et al., 2016); SVM trained with landmark-
based features (SVM-landmark; Zhang et al., 2017).

(2) The deep-learning-based methods include: 3D-CNN based on
the whole brain sMRI data (whole-3DCNN; Korolev et al.,
2017); Multi-layer perception + recurrent neural network
using the longitudinal sMRI features (MLP-RNN; Cui et al.,
2018); 3D-CNN based on the multiple-modality inputs
including sMRI, PET, and MD-DTI data (multi-3DCNN;
Khvostikov et al., 2018); 3D-DenseNet based on the 3D-
patches features extraction from the hippocampal areas (3D-
DenseNet; Liu et al., 2020a); hierarchical fully convolutional
network based on 3D-patch and regions features extracted
with prior landmarks (wH-FCN; Lian et al., 2020b).

TABLE 5 | Classification results of AD vs. CN on ADNI-1.

Methods ACC SEN SPE AUC F1

Voxel+SVM 0.754 0.728 0.781 0.774 0.741

3D-CNN 0.833 0.738 0.813 0.905 0.796

Multi-slice 0.774 0.776 0.812 0.832 0.753

Multi-patch 0.808 0.710 0.793 0.890 0.767

MSA3D 0.864 0.858 0.884 0.912 0.849

All the models are trained on ADNI-2. The best results are highlighted in bold.

As shown in Table 6, We can draw the following conclusions: (1)
deep-learning-based methods, especially the CNN-based models,
perform much better than most of the conventional statistical
methods in terms of ACC. The main reason is that CNN has
more feature representation power than handcrafted features.
(2) The local features, including ROI-based, landmark-based,
and hippocampal segmentation, are also essential to improve
the performance of dementia prediction, which indicates that
the local changes in whole-brain images provide some valuable
clues for AD diagnosis. However, most of these models need
predefined landmarks or segmentation regions, which could be
hard to obtain potentially informative ROIs due to the local
differences between subjects. (3) Different from existing deep-
learning-based models (Korolev et al., 2017; Khvostikov et al.,
2018; Lian et al., 2020b; Liu et al., 2020a), our proposed model
can extract more discriminative features from both local 2D-slice
level and 3D-subject level sMRI data using 2D-slice attention
network and 3D-CNN, it generates the best ACC, SEN values on
AD vs. CN task, and the best SPE and AUC values for predicting
pMCI vs. sMCI.

It is noteworthy that our model does not need any predefined
landmarks or extra location modules (e.g., hippocampus
segmentation), but it achieved better or at least comparative
diagnostic results than that of existing deep-learning-based AD
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FIGURE 5 | Comparisons of ROC curves. The models are trained on ADNI-2 and tested on ADNI-1.

TABLE 6 | The performance comparison of our model with other state-of-the-art studies report in the literature using the ADNI database for prediction of AD vs. CN and

pMCI vs. sMCI.

Method Test subjects
AD vs. CN pMCI vs. sMCI

ACC SEN SPE AUC ACC SEN SPE AUC

VBF
137AD+76sMCI+

134pMCI+162CN
0.760 – – – 0.660

SVM-Landmark
154 AD+346 MCI

+207 CN
0.822 0.774 0.861 0.881 – – – –

LBM 385AD+465sMCI+

205pMCI+429CN
0.822 0.774 0.861 0.881 0.686 0.395 0.732 0.636

MLP-RNN 198AD+229CN 0.897 0.868 0.925 0.921

Whole-3DCNN
50AD+77sMCI+

43pMCI+61CN
0.800 – – 0.870 0.520 – – 0.520

Multi-3DCNN 48AD+58CN 0.850 0.880 0.900 – – – – –

3D-DenseNet
97AD+233MCI

+119CN
0.889 0.866 0.808 0.925

wH-FCN
385AD+465sMCI

+205pMCI+429CN
0.903 0.824 0.965 0.951 0.809 0.526 0.854 0.781

Our model
326AD++470sMCI

+242pMCI+413CN
0.911 0.888 0.914 0.950 0.801 0.520 0.856 0.789

The best results are highlighted in bold.
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FIGURE 7 | Comparison between multi-view slice fusion without SAM (i.e., MS3D) and multi-view slice fusion with SAM (i.e., MSA3D). (A,B) Show the classification

results for AD vs. CN and pMCI vs. sMCI, respectively.
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diagnosis methods. For example, compared with the second-
best wH-FCN model, which extracts features from multiple
3D-patches with hierarchical landmarks proposals, MAS3D
generates better results in terms of ACC, SEN, and yields almost
the same AUC values on AD vs. CN task. For the aspect of the
pMCI vs. sMCI task, our model performs slightly worse than the
wH-FCN in terms of ACC and SEN. The possible reason is that
wH-FCN adopts more prior knowledge to improve the model’s
recognition capability, i.e., wH-FCN constrains the distances
between landmarks and initializes the network parameters of the
MCI prediction model from the task of AD classification.

5. DISCUSSION

5.1. Influence of Features in Different
Dimensions
In this section, we investigate the effects of models using multiple
slice-level features in different views for AD classification. As
shown in Figure 6, compared with the model combined with
features in the axial plane generates much better results than that
of the sagittal and the coronal planes in terms of ACC and SEN.
Moreover, after combining the features in three dimensions, our
proposed MAS3D outperforms all the tested models, especially
yielding significantly better SEN values than the tested methods.
This result demonstrates that our 2D- and 3D-features fusion

strategy can organically integrate the multi-view-slices features
in all directions.

5.2. Influence of Slice Attention Module
As introduced in Section 3.2, the SAM was employed in our
MSA3D model to assist the slice-level feature extraction by
exploiting the relationships among the slices, i.e., to filter out
uninformative slices efficiently. In this subsection, we conducted
an ablation experiment for comparison, in which the SAM is
removed from our MSA3D, defined as MS3D, to investigate the
effectiveness of the proposed SAM, and all the models are trained
using ADNI-1 and obtained the test results on ADNI-2.

The comparison results are illustrated in Figure 7, fromwhich
we can inform that: (1) the two variants of our methods (i.e.,
MS3D andMSA3D) consistently perform better than the baseline
model (i.e., 3D-CNN), which means the fusion of 2D -slice level
and 3D subject features provides richer feature representation
power for AD diagnosis. (2) the SAM further improved the
performance of slice level feature extraction, especially on the
challenging MCI prediction task, e.g., The proposed MSA3D
generally had better classification performances than MS3D (the
ACC and SEN is 0.772 vs. 0.801 and 0.440 vs. 0.520, respectively).
This indicates that the proposed SAM can help the neural
network focus on specific slices and learn more discriminative
2D-slice level features from abundant slices.

FIGURE 8 | Attention maps of our MAS3D method for predicting multiple subjects selected from the ADNI database with different stages of dementia (i.e., AD and

pMCI), respectively. Each subject’s attention map is displayed in three MR planes (i.e., sagittal, coronal, and horizontal), where red and blue colors denote high and

low discriminative features in sMRI, respectively.
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5.3. Visualization of Slices Features
This section visualizes the attention maps produced by
our MAS3D method using the Grad-cam (Selvaraju et al.,
2020) technology for predicting the subjects with AD and
pMCI. The first, second, and third columns of Figure 8

show the different 2D-slices of sMRI in different views,
including sagittal, coronal, and horizontal, respectively, where
the corresponding model is trained on ADNI-1, and three AD
and three pMCI subjects are randomly selected from ADNI-2
for testing.

From Figure 8, we can infer that our model can identify
discriminative atrophy areas for different subjects with
different stages of dementia, especially for the regions that
affect human memory and decision making in the brain.
For example, our model emphasizes the atrophy of the
frontoparietal cortex, ventricle regions, and hippocampus in
the brain. It needs to be pointed out that these highlighted
brain regions located by our model in AD diagnosis are
consistent with previous clinical research (Chan et al.,
2002; Zhang et al., 2021), which have reported the potential
sensitive markers for neurodegeneration. All of these results
suggest our proposed model can more precisely learn more
discriminative features from the brain sMRI for precise
dementia diagnosis.

5.4. Limitation and Future Study
While the experimental results suggested our proposed model
performed well in automatic dementia detection, its performance
and generalizationmight be potentially enhanced in the future by
addressing the limitations listed below.

First, we take advantage of both 2D-slice and 3D-subject
features in an integrated MSA3Dmodel. However, the numerous
2D slices observably increased the computational complexity.
Since not all the slices help determine the prediction, we could
reduce the complexity by using an online feature selection
module (Wu D. et al., 2021) to select the 2D slices dynamically.
Second, the difference distributions between ADNI-1 and ADNI-
2 were not taken into account, i.e., 1.5 T scanners and 3 T
scanners for ADNI-1 and ADNI-2, repetitively, which might
have a detrimental impact on the model’s performance, i.e., the
model trained on ADNI-2 and assessed on ADNI-1 performed
worse than that trained on ADNI-1 and evaluated on ADNI-2.
We could potentially introduce the domain adaption technique
into our model to reduce the domain gap between different
ADNI datasets. Finally, To further verify the generalization
capacity of the proposed model, we will investigate more deep-
learning-based methods and test our model on other AD
datasets for more AD-related prediction tasks, such as dementia
status estimation.

6. CONCLUSION

This study explores a 2D-slice-level and 3D subject-level fusion
model for AI-based AD diagnosis using brain sMRI. In addition,
a slice attention module is proposed to select the most
discriminative slice-level features adaptively from the brain sMRI
data. The effectiveness of our model is validated on ADNI-1 and
ADNI-2, repetitively, for dementia classification. Specifically, our
model achieves 91.1 and 80.1% ACC values on ADNI-1 in AD
diagnosis and MCI convention precondition, respectively.
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