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Background: It has been suggested that diabetes mellitus (DM) and the

apolipoprotein E (APOE) ε4 allele (APOE4) increase the risk for Alzheimer’s

disease (AD) and cognitive decline. However, the evidence is sparse. We

explored whether APOE4 status modulated the effects of midlife and late-life

DM on global cognition of non-demented older adults.

Methods: In all, 176 non-demented adults (age 65–90 years) were enrolled.

All the participants underwent comprehensive clinical assessments including

midlife and late-life DM evaluation and APOE genotyping. The global cognitive

performance index was assessed by the total score (TS) of the Consortium to

Establish a Registry for Alzheimer’s Disease neuropsychological battery.

Results: We found a significant midlife DM × APOE4 interaction effect

on the global cognitive performance. Subgroup analyses indicated that an

association between midlife DM and decreased global cognitive performance

was apparent only in older adults who were APOE4-positive, and not in those

with APOE4-negative.

Conclusion: Our findings from non-demented older adults suggest that

midlife DM increases the risk for AD and cognitive decline, and this risk is

modulated by APOE4 status. To prevent AD and cognitive decline, physicians

should check for the possible coexistence of midlife DM and APOE4-

positive status.
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midlife diabetes mellitus, APOE4, global cognitive decline, Alzheimer’s disease,
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Introduction

Diabetes mellitus (DM) has been reported to be a potential
risk factor for cognitive impairment and dementia including
Alzheimer’s disease (AD) (Koekkoek et al., 2015; Hu et al.,
2020; Noguchi-Shinohara et al., 2022). Some human and
preclinical studies have supported the idea that DM may
cause cognitive impairment and dementia by impairing brain
structure and metabolism, e.g., amyloid β (Aβ), tau, and glucose
metabolism, as well as insulin signals and cerebrovascular
dysfunction (Jayaraman and Pike, 2014; Gonzalez-Reyes et al.,
2016; Shinohara and Sato, 2017; Sutherland et al., 2017; Beeri
and Bendlin, 2020; Rasool et al., 2021). In particular, midlife or
early-onset DM may hasten cognitive impairment and dementia
in later life and could be more stronger associated with an
increased risk of all dementia and AD dementia than late-onset
DM (Mayor, 2014; Harvard Health Letter, 2015; Sadahiro et al.,
2019; Wang and Liu, 2021).

Apolipoprotein E ε4 allele (APOE4) is the strongest risk gene
for AD (Yamazaki et al., 2019) and affect the major pathway by
which APOE4 increases the risk of AD by driving earlier and
more abundant Aβ pathology in the brains of APOE4-positive
older adults (Morris et al., 2010; Yamazaki et al., 2019). In
addition, APOE4 may cause cognitive impairment and dementia
by reducing functions in multiple brain homeostatic pathways,
such as lipid transport, synaptic integrity and plasticity, glucose
metabolism, and cerebrovascular function (Lowe et al., 2014;
Yamazaki et al., 2019; Jeon et al., 2020).

Taken together, both major risk factors, i.e., DM and APOE4,
may affect AD and cognitive dysfunction by sharing common
pathways (Liu et al., 2013; Zhao et al., 2017; Shinohara et al.,
2020). However, the interaction between DM and APOE4 as
contributing to cognitive dysfunction and dementia has not
yet been fully clarified. A cohort study showed a significant
interaction between a DM history and the APOE genotype, in
which any DM history affected the cognitive decline in APOE4-
negative older adults, but not in APOE4-positive older adults
(Shinohara et al., 2020). In contrast, a cross-sectional study on
middle-aged to older adults revealed the modifying effect of the
presence of APOE4 on the association between current DM and
poor cognitive performance (Dore et al., 2009). Furthermore, a
longitudinal study showed that APOE4 modifies the association
between midlife DM and poor cognitive decline (Bangen et al.,
2013). These conflicting results may be due to a difference in
the DM period, i.e., midlife or late-life DM. Nevertheless, no
study has yet investigated the interaction between DM and
APOE4 in contributing to poor cognition and AD or dementia
according to the presence of DM during the midlife and late-
life period, respectively. Therefore, we examined the association
between midlife and late-life DM and global cognition in non-
demented older adults. We also explored the moderating effect
of APOE4 on these associations. Additionally, we investigated
the moderating effect of APOE4 on the associations between

other vascular risks and global cognition for comparative
purpose.

Materials and methods

Participants

This study is part of the General Lifestyle and AD (GLAD)
study, which aimed to investigate how multi-faceted lifetime
experiences and bodily changes contribute to the brain or
cognitive changes related AD. Given that AD dementia stage
may be too late to see the effects of disease-course modifying
therapies or interventions due to irreversible neuronal loss
(Sperling et al., 2011), early introduction of interventions
before neuronal loss would be important for maximizing their
beneficial effect. Moreover, the targets for developing disease-
modifying therapies or interventions are shifting from patients
with AD dementia to individuals in the predementia phase
and even in the asymptomatic stage of AD (Epelbaum et al.,
2017). In this context, the present study aimed to focus on
non-demented older adults. As of March 2022, the study had
enrolled 176 non-demented adults between 65 and 90 years of
age: 63 cognitively normal (CN) adults and 113 adults with mild
cognitive impairment (MCI). Participants were recruited from
individuals who participated in a dementia screening program at
the memory clinic of Hallym University Dongtan Sacred Heart
Hospital, Hwaseong, South Korea. Those who volunteered
were invited for an eligibility assessment. Volunteers from the
community were recruited through recommendations from
other participants, family members, friends, or acquaintances.

The CN group consisted of participants with a Clinical
Dementia Rating (CDR) (Morris, 1993) score of 0 and no
diagnosis of MCI or dementia. All participants with MCI met
the current consensus criteria for amnestic MCI, including
memory complaints confirmed by an informant, objective
memory impairment; preservation of global cognitive function,
independence in functional activities, and absence of dementia.
Regarding objective memory impairment, the age-, education-,
and sex-adjusted z-score was <−1.0 for at least one of the
four episodic memory tests included in the Korean version of
the Consortium to Establish a Registry for Alzheimer’s Disease
(CERAD-K) neuropsychological battery: the word list memory,
word list recall, word list recognition, and constructional
recall tests (Morris et al., 1989; Lee et al., 2002, 2004). All
individuals with MCI had a CDR score of 0.5. The exclusion
criteria were the presence of a major psychiatric illness or a
significant neurological or medical condition or comorbidity
that could affect mental functioning, illiteracy, the presence
of visual/hearing difficulties, and/or severe communication or
behavioral problems that would make clinical examinations
difficult, and use of an investigational drug. This study protocol
was approved by the Institutional Review Board of the Hallym
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University Dongtan Sacred Heart Hospital and was conducted
following the recommendations of the current version of
the Declaration of Helsinki. The participants or their legal
representatives gave informed consent.

Clinical assessments

All participants underwent standardized clinical
assessments by trained psychiatrists based on the GLAD
study clinical assessment protocol, which incorporated the
Korean version of the CERAD-K (Morris et al., 1989; Lee et al.,
2002). Trained neuropsychologists administered the GLAD
neuropsychological assessment protocol incorporating the
CERAD-K neuropsychological battery (Lee et al., 2004) to all
participants. The CERAD total score (TS), which was included
in the CERAD-K neuropsychological battery (Lee et al., 2004),
were selected as a measure of global cognitive function. A lower
score indicates poorer cognitive performance (Lee et al., 2004).
The TS was generated by summing the scores of the six tests
in the CERAD neuropsychological battery including verbal
fluency, the modified Boston naming test, word list memory,
constructional praxis, word list recall, and word list recognition
tests (Seo et al., 2010).

A vascular risk score (VRS) reflecting vascular risk burden
was calculated using the number of vascular risk factors
(DeCarli et al., 2004). All vascular risks (e.g., hypertension, DM,
dyslipidemia, coronary heart disease, transient ischemic attack,
and stroke) were assessed based on data collected by trained
researchers during systematic interviews of participants and
their family members. Reliable informants were interviewed to
acquire accurate information.

Midlife and late-life vascular risks were deemed present
if participants had been diagnosed in a clinic or were taking
medications for vascular risk at the time from years 45 to 64 and
65 to the present, respectively.

Measuring apolipoprotein E genotype

Apolipoprotein E was genotyped using the Seeplex ApoE
ACE genotyping kit (Seegene, Seoul, South Korea). APOE4-
positivity was defined as the presence of at least one ε4 allele.

Statistical analysis

Multiple linear regression analyses were performed to
examine the associations between midlife (or late-life DM) with
and global cognition, multiple linear regression analyses were
performed. The midlife (or late-life) DM was the independent
variable in each analysis and TS was the dependent variable.
We tested three models, controlling for the covariates in

a stepwise manner. The first model did not include any
covariates; the second model included age, sex, education,
and the clinical diagnosis as covariates; and the third model
included the covariates in the second model plus late-life
VRS. Then, we tested the regression analyses including the
midlife (or late-life) DM × APOE4-positivity interaction as
an additional independent variable to test the hypothesis that
APOE4-positivity modulates the association between midlife (or
late-life) DM and the TS. When a significant midlife (or late-
life) DM × APOE4-positivity interactive effect was found, we
performed additional subgroup analyses using the regression
model for the APOE4-negative and APOE4-positive groups
separately. All statistical analyses were performed using SPSS
Statistics software ver. 27 (IBM, Corp., Armonk, NY, USA).

Results

Participants

Table 1 summarizes the demographic and clinical
characteristics of the participants. Of the 176 participants,
63 were CN and 113 were MCI. Supplementary Table 1
shows the demographic and clinical characteristics of the
participants according to the midlife DM status. In total, 147
were DM-negative participants and 29 were DM-positive
participants.

Association between diabetes mellitus,
apolipoprotein E ε4 allele-positivity,
and cognition

Midlife and late-life DM were not significantly associated
with the TS (Supplementary Table 2). In addition, APOE4-
positivity was not significantly associated with the TS
(Supplementary Table 3).

Moderating effect of apolipoprotein E
ε4 allele-positivity on the association
between diabetes mellitus and
cognition

The midlife DM × APOE4-positivity interaction was
significant in terms of the TS, indicating that APOE4-positivity
moderated the association between the midlife DM and global
cognitive impairment (Table 2). Further subgroup analyses
showed that midlife DM was significantly associated with a
low TS in the APOE4-positive but not in the APOE4-negative
subgroup (Table 3 and Figures 1A,B). The interactions between
other vascular risks and APOE-4 positivity were not significant
(Table 2).
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TABLE 1 Demographic and clinical characteristics of the
older participants.

Characteristic Overall

n 176

Age, years 72.99 (5.63)

Female, n (%) 122 (69.32)

Education, years 9.28 (4.53)

APOE4-positivity, n (%) 40 (22.73)

MCI, n (%) 113 (64.20)

MMSE 24.69 (3.60)

Midlife vascular risks

DM 29 (16.48)

HTN 71 (40.34)

Dyslipidemia 43 (24.43)

Coronary heart disease 8 (4.55)

TIA 2 (1.14)

Stroke 2 (1.14)

Late-life vascular risks

DM 43 (24.43)

HTN 104 (59.09)

Dyslipidemia 77 (43.75)

Coronary heart disease 27 (15.34)

TIA 0 (0.00)

Stroke 2 (1.14)

Midlife VRS, % 14.96 (17.10)

Current VRS, % 23.67 (18.38)

Global cognitive performance

TS 58.66 (13.86)

APOE4, apolipoprotein E ε4 allele; MCI, mild cognitive impairment; MMSE, mini-
mental state examination; DM, diabetes mellitus; HTN, hypertension; TIA, transient
ischemic attack; VRS, vascular risk score; TS, total score of Consortium to Establish
a Registry for Alzheimer’s Disease. Data are expressed as mean (SD), unless
otherwise indicated.

Discussion

This study of older adults found that midlife DM worsened
global cognition, i.e., the TS, which was moderated by the
effect of APOE4 on the association between midlife DM and
decreased global cognition. Previous studies have suggested that
DM and APOE4 are major risk factors for AD and related
cognitive decline, and there are many reports that each has a
significant association with cognitive decline (Morris et al., 2010;
Liu et al., 2013; Jayaraman and Pike, 2014; Lowe et al., 2014;
Koekkoek et al., 2015; Gonzalez-Reyes et al., 2016; Shinohara
and Sato, 2017; Sutherland et al., 2017; Zhao et al., 2017;
Yamazaki et al., 2019; Beeri and Bendlin, 2020; Hu et al.,
2020; Jeon et al., 2020; Shinohara et al., 2020; Rasool et al.,
2021; Noguchi-Shinohara et al., 2022). The coexistence of
these two risk factors is thought to have a more devastating
effect on AD and related cognitive decline, but few studies
have examined the interaction between the two. In addition,
midlife and late-life DM may have different effects on cognitive

TABLE 2 The results of multiple linear regression analyses, including
the interaction terms between vascular risks (DM, HTN, dyslipidemia,
coronary heart disease, TIA, or stroke) in terms of predicting the TS.

β P

Midlife DM 0.079 0.230

APOE4-positivity 0.044 0.476

Midlife DM × APOE4-positivity −0.203 0.007

Midlife HTN −0.006 0.915

APOE4-positivity 0.005 0.941

Midlife HTN × APOE4-positivity −0.071 0.379

Midlife dyslipidemia 0.119 0.059

APOE4-positivity 0.004 0.954

Midlife dyslipidemia × APOE4-positivity −0.109 0.129

Midlife coronary heart disease 0.063 0.306

APOE4-positivity −0.037 0.495

Midlife coronary heart disease × APOE4-positivity −0.036 0.564

Midlife TIA NA NA

APOE4-positivity NA NA

Midlife TIA APOE4-positivity NA NA

Midlife stroke NA NA

APOE4-positivity NA NA

Midlife stroke APOE4-positivity NA NA

Late-life DM 0.041 0.524

APOE4-positivity −0.003 0.964

Late-life DM × APOE4-positivity −0.085 0.255

Late-life HTN −0.038 0.531

APOE4-positivity <0.001 0.998

Late-life HTN × APOE4-positivity −0.050 0.616

Late-life dyslipidemia 0.066 0.274

APOE4-positivity −0.042 0.581

Late-life dyslipidemia × APOE4-positivity −0.012 0.891

Late-life coronary heart disease 0.080 0.176

APOE4-positivity −0.029 0.623

Late-life coronary heart disease × APOE4-positivity −0.034 0.593

Late-life TIA NA NA

APOE4-positivity NA NA

Late-life TIA APOE4-positivity NA NA

Late-life stroke NA NA

APOE4-positivity NA NA

Late-life stroke APOE4-positivity NA NA

DM, diabetes mellitus; HTN, hypertension; TIA, transient ischemic attack; TS, total score
of Consortium to Establish a Registry for Alzheimer’s Disease; APOE4, apolipoprotein
ε4 allele; VRS, vascular risk score; NA, not assessable. Multiple linear regression model
included vascular risks, APOE4-positivity, and the interaction between vascular risks and
APOE4-positivity treated as the independent variables; for potential confound factors
(age, sex, education, and clinical diagnosis) were treated as covariates; and TS treated as
the dependent variable.

function (Mayor, 2014; Harvard Health Letter, 2015; Sadahiro
et al., 2019; Wang and Liu, 2021) in addition to the moderation
effect of APOE4. Nevertheless, no study has examined DM,
APOE4, and the DM interaction by dividing the exposure to DM
into middle age and older age, respectively.
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TABLE 3 The results of the multiple linear regression analyses for the
associations between midlife DM and the TS by the
APOE4-positivity subgroup.

APOE4-negative, APOE4-positive,
n = 136 n = 40

β P β P

Midlife DM
Model 1a 0.048 0.581 −0.413 0.008
Model 2b 0.068 0.245 −0.353 0.007
Model 3c 0.054 0.412 −0.445 0.003

DM, diabetes mellitus; TS, total score of Consortium to Establish a Registry for
Alzheimer’s Disease; APOE4, apolipoprotein E ε4 allele; VRS, vascular risk score.
aUnadjusted. bAdjusted for age, sex, education, and clinical diagnosis. cAdjusted for age,
sex, education, clinical diagnosis, and current VRS.

This is the first study to demonstrate that APOE4 has a
significant moderating effect on the association between DM
and cognitive decline in middle age, but not in older age. This
may be because participants with midlife DM have a longer
duration of exposure to DM and are more likely to exacerbate
the progression than those with late-life DM, including late-
onset DM. These findings are consistent with the results of
previous studies regarding the stronger effect of early-onset
DM on the risk of AD dementia and cognition than late-onset
DM (Mayor, 2014; Harvard Health Letter, 2015; Sadahiro et al.,
2019; Wang and Liu, 2021). Moreover, this midlife DM is likely
to have an interacting or synergistic effect in APOE4-positive
older adults who may be susceptible to AD or related cognitive
decline. Contrary to the results of our study, a longitudinal study
demonstrated that non-demented older adults aged 65 years and
over who have late-life DM and APOE4 are at a substantially
higher risk of cognitive decline (Haan et al., 1999). Although
their findings did not confirm the presence or absence of DM
in the middle age, it seems similar to our findings on the DM-
APOE4 interaction for cognitive decline when the proportion of

FIGURE 1

Box plots displaying midlife DM status and the TS in older
participants by subgroup (A) APOE4-negative and
(B) APOE4-positive. Error bars indicate standard errors. DM,
diabetes mellitus; TS, total score of Consortium to Establish a
Registry for Alzheimer’s Disease; APOE4, apolipoprotein E ε4
allele. Multiple linear regression analyses were performed after
adjusting for potential confounders.

DM that starts in middle age, i.e., midlife DM, is high among
older adults with late-life DM. A cross-sectional study with
middle to older adults showed a modifying effect of the presence
of APOE4 on the association between current DM and poor
cognitive performance (Dore et al., 2009). Their study included
a significant number of middle-aged as well as older adults,
so it is likely that their findings were similar to ours due to
the significant proportion of middle-aged onset DM. Taken
together, these conflicting results may be due to differences in
the DM exposure period, i.e., midlife and late-life DM, as well as
the proportion of participants with midlife DM.

In the present study, this moderating effect was only seen
in the APOE4-positive group, and not in the APOE4-negative
group. The majority of the findings of previous studies support
our results (Haan et al., 1999; Dore et al., 2009; Bangen et al.,
2013). However, a cohort study suggested that this moderating
effect appeared in the APOE4-negative group, and commented
that such effects may be masked by the presence of APOE4,
which itself increases the risk of vascular problems (Shinohara
et al., 2020). The difference may be due to the DM exposure
period and the accuracy of cognitive assessment scales. Unlike
our study, they defined the presence of DM as any DM history
and used relatively simple scales, such as the CDR or mini-
mental state examination (MMSE). In contrast, we defined DM
as midlife or late-life DM and used the TS of the CERAD,
which has much broader cognitive domains and scores with a
wider range than CDR or MMSE, to reflect minimal changes in
cognition over the global domains. Other possibilities include
differences in the ratio and combination of APOE2 and 3
alleles in the APOE4-negative group and differences in clinical
expression according to race (Barnes and Bennett, 2015).

The precise mechanism by which midlife DM and APOE4
interact to increase AD and cognitive dysfunction is unclear.
As one of the most probable hypotheses, that accumulation
of advanced glycation end products (Vistoli et al., 2013), a
biomarker implicated in the development and progression of
oxidative-based diseases such as DM (Yamagishi et al., 2012)
and AD (Sasaki et al., 1998; Grillo and Colombatto, 2008;
Li et al., 2012), may play a role in neurodegeneration given
the co-localization of advanced glycation end products in the
Aβ and tau pathology in AD (Sasaki et al., 1998; Grillo and
Colombatto, 2008; Li et al., 2012). In addition, APOE4 is
associated with a threefold greater advanced glycation end
products-binding activity compared to the APOE3 isoform
indicating that advanced glycation end products caused by
APOE4 interactions may contribute to the formation of Aβ and
tau deposition (Li and Dickson, 1997). As other mechanisms,
insulin-degrading enzyme (Kurochkin et al., 2018), insulin
resistance (Sedzikowska and Szablewski, 2021), and acylated
glucagon-like peptide 1 (GLP-1) analog have been proposed
to link DM and AD, and the role of APOE4 between them is
being investigated. In particular, liraglutide, a novel DM drug
with a GLP-1 agonist action, is currently undergoing a clinical
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trial, i.e., the ELAD trial (Evaluating Liraglutide in Alzheimer’s
Disease NCT01843075), and is being investigated for its benefits
on changes in AD biomarkers and clinical measures in addition
to age and APOE4 status (Femminella et al., 2020).

In this study, no interactions were detected between other
vascular risks and APOE4 on global cognitive decline. A few
studies have been published on the possible moderating effect of
APOE4 on the association between other vascular risks [such as
hypertension (Yasuno et al., 2012), atherosclerosis (Haan et al.,
1999), and peripheral vascular disease (Haan et al., 1999)] and
cognitive decline. As these vascular risks have the potential to
interact with each other, systematic follow-up and repeat studies
are needed to clarify the relationship.

Strengths and limitations

To the best of our knowledge, this is the first study to show a
moderating effect of APOE4 on the association between midlife
DM and global cognitive decline. The present findings did not
change even after controlling for potential confounders and
late-life vascular risks. Our study had some limitations. First,
as this was a cross-sectional study, causal relationships could
not be inferred. Long-term prospective studies are needed. In
addition, the small number of participants decreased statistical
power, thus, contributing to the null result for the relationship
between midlife DM, APOE4-positivity, and global cognition.
A study with a larger sample size is required. Second, about 64%
of the study participants were diagnosed with MCI, which may
also raise some concerns about the accuracy of self-report for
midlife-DM status. However, although participants with MCI
have problems for their recent memory, their remote memory is
very well-preserved (Leyhe et al., 2009). Therefore, it is not likely
that participants with MCI reported their history for midlife
DM status history more erroneously because the self-report for
midlife DM status mainly depends on remote memory rather
than recent memory. In addition, even when we controlled for
the clinical diagnosis (CN vs. MCI) as an additional covariate
in Model 3 (Tables 2, 3 and Supplementary Tables 2, 3), the
results were still very similar. Additionally, the accuracy of the
information of DM was verified by reliable informants or by
reviewing available medical charts. Third, we did not statistically
analyze the duration, severity, complications, or types of DM.
However, we analyzed the interaction of DM with APOE4 on
global cognition in middle age and older age, i.e., midlife DM
and late-life DM, based on the evidence of two significant
lifetime periods vulnerable to AD and related cognitive decline
(Mayor, 2014; Harvard Health Letter, 2015; Koekkoek et al.,
2015; Gottesman et al., 2017; Sadahiro et al., 2019; Hu et al.,
2020; Wang and Liu, 2021; Noguchi-Shinohara et al., 2022).
Nevertheless, there remains a possibility that treatment response
(e.g., well-controlled DM or not) for presence and severity
of hyperglycemia may affect our findings. We assessed fasting
blood glucose levels, which may be considered as a biomarker

for the presence and severity of hyperglycemia, and obtained
the same results after controlled the fasting glucose level as an
additional covariate (Supplementary Tables 4, 5). Lastly, we
could not statistically analyze the dose effect of APOE4 for the
moderating effect on DM and global cognition because only one
subject with E4E4 was detected among all of the participants.

Conclusion

Our findings suggest that midlife DM increases the risk for
AD and cognitive decline, and this risk is modulated by APOE4
status. To prevent AD and cognitive decline, physicians should
check for the possible coexistence of midlife DM and APOE4-
positive status.
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