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Background: Increasing evidence suggests that early-onset Parkinson’s

disease (EOPD) is heterogeneous in its clinical presentation and progression.

Defining subtypes of EOPD is needed to better understand underlying

mechanisms, predict disease course, and eventually design more efficient

personalized management strategies.

Objective: To identify clinical subtypes of EOPD, assess the clinical

characteristics of each EOPD subtype, and compare the progression

between EOPD subtypes.

Materials and methods: A total of 1,217 patients were enrolled from a large

EOPD cohort of the Parkinson’s Disease & Movement Disorders Multicenter

Database and Collaborative Network in China (PD-MDCNC) between January

2017 and September 2021. A comprehensive spectrum of motor and non-

motor features were assessed at baseline. Cluster analysis was performed

using data on demographics, motor symptoms and signs, and other non-

motor manifestations. In 454 out of total patients were reassessed after

a mean follow-up time of 1.5 years to compare progression between

different subtypes.

Results: Three subtypes were defined: mild motor and non-motor

dysfunction/slow progression, intermediate and severe motor and non-motor

dysfunction/malignant. Compared to patients with mild subtype, patients with

the severe subtype were more likely to have rapid eye movement sleep

behavior disorder, wearing-off, and dyskinesia, after adjusting for age and
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disease duration at baseline, and showed a more rapid progression in Unified

Parkinson’s Disease Rating Scale (UPDRS) total score (P = 0.002), UPDRS part

II (P = 0.014), and III (P = 0.001) scores, Hoehn and Yahr stage (P = 0.001),

and Parkinson’s disease questionnaire-39 item version score (P = 0.012) at

prospective follow-up.

Conclusion: We identified three different clinical subtypes (mild, intermediate,

and severe) using cluster analysis in a large EOPD cohort for the first time,

which is important for tailoring therapy to individuals with EOPD.

KEYWORDS

early-onset Parkinson’s disease, heterogeneous, subtype, PD-MDCNC, cluster
analysis

Introduction

Parkinson’s disease (PD) is the second most common
neurodegenerative movement disorder characterized by typical
motor symptoms and many less visible non-motor symptoms
(NMSs; Poewe et al., 2017; Bloem et al., 2021). It is characterized
pathologically by dopaminergic neuronal loss in the substantia
nigra pars compacta and intracellular inclusions containing α-
synuclein aggregates (Armstrong and Okun, 2020; Liu et al.,
2022; Zhou et al., 2022). PD is a progressive and complex
neurological disorder with heterogeneous symptomatology
(Jafari et al., 2020; Bloem et al., 2021). Although PD is an age-
related disease that typically appears after the age of 65 years,
the age of onset for approximately 10% of affected individuals
is younger than 50 years, referring to early-onset PD (EOPD;
Zhang et al., 2005; Schrag and Schott, 2006; Poewe et al.,
2017; Niemann and Jankovic, 2019). Patients with EOPD
have relatively high clinical heterogeneity and a longer disease
course and typically develop motor fluctuations and dyskinesias
earlier, which vary dramatically in its clinical manifestations
and prognosis (Pagano et al., 2016; Schirinzi et al., 2020). Thus,
EOPD requires more personalized treatment and long-term
management.

Several previous studies have used cluster analysis to
define clinical PD subtypes based on motor severity, motor
complications, some non-motor features, and demographic
characteristics (Fereshtehnejad et al., 2015; Lawton et al., 2018;
De Pablo-Fernández et al., 2019; Belvisi et al., 2021; Brendel
et al., 2021; Mestre et al., 2021). Growing evidences have
shown that there are distinct subtypes of PD with diverging
trends of progression (Qian and Huang, 2019; Hendricks
and Khasawneh, 2021; Mestre et al., 2021). However, all
previous cluster analyses were limited to patients with PD,
and an EOPD cluster analysis was not available. With some
patients with EOPD following a relatively benign course and
others progressing rapidly to disability, subtyping EOPD is

required. It is essential to perform cluster analysis based
on deep phenotyping, followed by prospective validation of
subtypes. Defining different subcategories of EOPD is key to
better understand its underlying disease mechanisms, predict
its disease course, and subsequently design more efficient
personalized management strategies (Qian and Huang, 2019).

This study aimed to (1) identify clinical EOPD subtypes
using cluster analysis based on a comprehensive baseline
dataset, (2) assess the clinical characteristics of each EOPD
subtype, and (3) compare disease progression between
different EOPD subtypes.

Materials and methods

Participants

Participants were enrolled from a large EOPD cohort of
the Parkinson’s Disease & Movement Disorders Multicenter
Database and Collaborative Network in China (PD-MDCNC)
between January 2017 and September 2021. The clinical
diagnosis of PD was confirmed by at least two neurological
specialists according to the Movement Disorder Society Clinical
Diagnostic Criteria for Parkinson’s Disease (Postuma et al.,
2015), including diagnoses of either clinically established or
probable PD. The exclusion criteria were as follows: (1) familial
history, (2) missing data ≥ 10%, and (3) diagnosis of other
causes of parkinsonism on baseline or follow-up assessments.
The clinical data of all participants were stored in the PD-
MDCNC.1 Written informed consent was obtained from all the
participants. This study was approved by the Ethics Committee
of Xiangya Hospital and was conducted in accordance with the
ethical guidelines of the Declaration of Helsinki.

1 http://www.pd-mdcnc.com
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Clinical assessment

All participants underwent comprehensive and
standardized clinical assessments. Before conducting the
assessment, all researchers were trained to ensure an equal
understanding of the scales used and the methods and phrasing
for clinical data collection. Demographic information and
clinical characteristics were collected, as described in our
previous study (Zhao et al., 2020; Zhou et al., 2022). Clinical
examinations of motor symptoms were performed based on
the Unified Parkinson’s Disease Rating Scale (UPDRS) and
Hoehn and Yahr (H&Y) stages, defining motor subtypes as
either tremor dominant, postural instability/gait difficulty or
indeterminate group. Motor complications, such as dyskinesia
and wearing-off were diagnosed by clinicians, and the severities
of dyskinesia and wearing-off were evaluated by UPDRS part
IV-A and 9-item End-of-dose Wearing-off Questionnaire
(WOQ-9), respectively. Freezing of gait (FOG) was evaluated
using New Freezing of Gait Questionnaire (NFOGQ).

In addition to motor symptoms, we evaluated a broad
range of NMSs based on the NMSS, the Scale for Outcomes in
Parkinson’s Disease for Autonomic Dysfunction (SCOPA-AUT),
Mini-Mental State Examination (MMSE), Rapid Eye Movement
Sleep Behavior Disorder Questionnaire-Hong Kong (RBDQ-
HK), Epworth Sleepiness Scale (ESS), Parkinson’s Disease
Sleep Scale (PDSS), Hyposmia Rating Scale (HRS), Functional
Constipation Diagnostic Criteria Rome III, and Hamilton
Depression Scale (HAMD-17). Quality of life was assessed using
the Parkinson’s disease questionnaire-39 item version (PDQ-
39). Details regarding the clinical scales were provided in our
previous study (Zhou et al., 2022). Patients with illiteracy,
primary education, and above junior education were identified
as having cognitive impairment when the MMSE scores were
below 17, 20, and 24 points, respectively. Hyposmia was defined
as a total HRS score less than 22.5. Rapid eye movement sleep
behavior disorder (RBD) was defined as a total RBDQ-HK
scale score no less than 18. Excessive daytime sleepiness (EDS)
was defined as a total ESS score higher than 10. Depression
was defined as a total HAMD-17 score higher than 7. The
levodopa equivalent daily dose (LEDD) was calculated based on
a commonly used method (Tomlinson et al., 2010).

After a mean follow-up period of 1.5 years, the same patients
were reassessed on the same variables as the baseline.

Database

Our team established the PD-MDCNC, a comprehensive
yet flexible, user friendly, secure, and easily accessible database.
And we launched the Chinese Early-Onset Parkinson’s Disease
Registry (CEOPDR), which is a large and longitudinal study
designed to assess clinical features, genetic architecture,
imaging, and biologic markers of EOPD progression in China.

All study data will be integrated in the CEOPDR study database
through the PD-MDCNC.

Data preprocessing

We conducted standardization to eliminate the influence
of various dimensions by scaling the variables to zero
mean and unit variance. Correlation analysis was performed
between the two variables. When the calculated coefficient
was greater than 0.98, only one feature was retained. Finally,
the analysis did not exclude any factors. To address high-
dimensional and multicollinearity problems, we used principal
component analysis (PCA). PCA was performed using the
Python software (version 3.6).

Cluster analysis

All data downloaded from the PD-MDCNC database were
analyzed using R version 4.1.2.2 Agglomerative hierarchical
clustering, K-means clustering, and spectral clustering analyses
were synchronously performed. We computed the Calinski–
Harabasz score to estimate the optimal clustering methods.
Ultimately, agglomerative hierarchical clustering was performed
because of the higher Calinski–Harabasz score and better-
balanced data distribution (Supplementary Tables 1, 2).
Visualization of the final hierarchical cluster solution was
performed using Python software (version 3.6) (Supplementary
Figure 1). A flowchart of data-driven clustering is shown in
Supplementary Figure 2.

Statistical analyses

For the analysis of cross-sectional data, continuous variables
were analyzed using one-way analysis of variance or non-
parametric tests. Categorical variables were analyzed using the
chi-squared test. Comparison of the baseline demography and
clinical features between the three statistical clusters was also
applied, adjusting for age and disease duration (continuous
variables were analyzed by linear regression, and categorical
variables were analyzed by logistic regression model).

We used general linear models (GLMs) for a comprehensive
longitudinal comparison of the progression of the three
subtypes. In each GLM, change of clinical characteristics was
defined as the dependent variable. To reduce the regression
toward the mean bias, the analysis was adjusted by the follow-
up duration and baseline values of the clinical factors (Vickers
and Altman, 2001; Fereshtehnejad et al., 2017). Statistical
significance was defined as P < 0.05. All data were analyzed

2 https://www.r-project.org
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using the IBM SPSS Statistics version 23.0 (IBM Corp., Armonk,
NY, USA).

Results

Overview

A total of 1,217 patients with EOPD were included in this
study. The mean age was 50.54 ± 6.82 years, 53.66% were male
patients, and the mean age at onset was 44.12 ± 5.54 years,
with an average disease duration of 6.34 ± 5.22 years. The
mean UPDRS part I, II, III, and total scores were 2.28 ± 1.98,
10.98 ± 6.56, 25.42 ± 15.73, and 40.58 ± 23.25, respectively.
Among the entire study population, RBD and dementia were
found in 322 (26.46%) and 103 (8.46%) patients, respectively,
at baseline. Supplementary Table 3 summarizes the baseline
clinical characteristics of the patients.

Cluster results and baseline
characteristics in different clusters

The following 25 variables were included in the final
clustering solution: age, age at onset, sex, duration, body mass
index, LEDD, UPDRS total score, UPDRS part I–III scores,
NMSS score, PDSS score, SCOPA-AUT score, PDQ-39 score,
H&Y stage score, motor subtypes, dyskinesia, wearing-off, FOG,
RBD, depression, EDS, dementia, hyposmia, and constipation
(Supplementary Table 3). As illustrated in Supplementary
Figure 1 (visualization of the final hierarchical cluster solution
in the EOPD cohort), cluster analysis revealed three distinct
clusters of patients with EOPD. Detailed characteristics of the
three clusters are listed in Table 1. We also demonstrated the
discriminative power of these features using the heatmap shown
in Figure 1. We observed evident baseline differences in motor
and non-motor manifestations among clusters, with clinically
important effect sizes.

The first cluster of 533 patients (cluster I, termed mild
motor and non-motor dysfunction based on baseline features)
was characterized by a low frequency of RBD, wearing-off, and
dyskinesia and mild motor and NMSs. Motor symptoms/signs
were relatively mild, with the lowest mean UPDRS part II and,
III and total scores (P < 0.05). The H&Y stage of the patients
was relatively mild. RBD [109 (20.45%) patients], wearing-off
[104 (19.51%) patients], and dyskinesia [69 (12.95%) patients]
were uncommon. Autonomic symptoms were generally mild
(5.75 ± 5.35 in the SCOPA-AUT scale, P = 0.013). Moreover,
the average LEDD was lower in cluster I than in clusters II and
III (P < 0.001).

At the other extreme, the third cluster of 172 patients
(cluster III, termed severe motor and non-motor dysfunction
based on baseline features) was characterized by a high

frequency of RBD, wearing-off and dyskinesia and more severe
motor and NMSs. Motor symptoms/signs were relatively severe,
with the highest mean UPDRS part II and, III and total scores
(P < 0.05). The H&Y stage score were also relatively worse. RBD
[70 (40.70%) patients], wearing-off [81 (47.09%) patients], and
dyskinesia [60 (34.88%) patients] were more common in cluster
III than in clusters I and II (P < 0.05). Autonomic symptoms
were the most severe (8.72 ± 6.95 in the SCOPA-AUT scale,
P = 0.013). Moreover, the average LEDD was significantly higher
in cluster III than in clusters I and II (P < 0.001).

The patients in cluster II (512 patients with the subtype
of intermediate EOPD) had intermediate motor and NMSs
between clusters I and III. The UPDRS part II, III, and total
scores were intermediate. The H&Y stage of the patients was
relatively moderate. RBD (143 [27.93%] patients), wearing-off
(148 [28.91%] patients) and dyskinesia (103 [20.12%] patients)
were moderately frequent.

Disease progression in different
clusters

After a mean duration of 1.5 years, follow-up data were
available for 454 patients (Table 2 and Figure 2). Patients in
cluster III had a dramatically worse prognosis, with a more rapid
progression in the UPDRS total (P = 0.009), UPDRS part II
(P = 0.035), UPDRS part III (P = 0.004), H&Y stage (P = 0.006),
and PDQ-39 (P = 0.037) scores. The intermediate cluster had a
medium progression rate, which was slightly higher than that of
cluster I.

Results from the GLM adjusted for baseline values and
follow-up duration showed that compared to the cluster I,
the cluster III subtypes had significantly greater progression in
UPDRS total score (7.44 units more increase in compared to the
mild subtype), UPDRS part II score (1.67 points more decline),
UPDRS part III score (5.63 points more decline), H&Y stage
score (0.31 points more decline), and PDQ-39 score (7.63 points
more decline), which demonstrated the worst prognosis of all
groups. Similar hierarchical progression was also observed in
several non-motor features, namely, NMSS (1.92 points faster
in cluster II, 5.00 points faster in cluster III), SCOPA-AUT
(0.51 and 0.56 points faster), RBDQ-HK (0.25 and 2.69 points
faster), ESS (0.82 and 1.44 points faster), HRS (−0.02 and −0.05
points faster), and HAMD (0.17 and 0.17 points faster) scores.
Nevertheless, all showed no statistical significance.

However, the rate of progression was not statistically
different between clusters I and II. As illustrated in Figure 2,
the faster slope of progression in cluster III was most
observed for the UPDRS total, UPDRS part III, and PDQ-
39 scores. Based on this prognostic information, we updated
the terminology of cluster III to severe motor and non-
motor dysfunction/malignant and that of cluster I to mild
motor and non-motor dysfunction/slow progression, leaving
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TABLE 1 Comparison of the baseline demography and clinical features between the three clusters of EOPD cohort based on hierarchical
clustering solution.

Characteristic Cluster* P-value Adjusted P-value** Multiple comparisons***

I (n = 533) II (n = 512) III (n = 172)

Age 49.54 ± 6.59 50.67 ± 6.86 53.22 ± 6.70 <0.001 − –

Gender ratio (male,%) 52.16 53.52 58.72 0.323 0.158 –

BMI 22.66 ± 3.01 22.54 ± 3.16 22.51 ± 2.77 0.715 0.880 –

Age at onset 44.24 ± 5.77 44.13 ± 5.32 43.76 ± 5.49 0.325 0.413 -

Disease duration 5.20 ± 4.83 6.48 ± 5.14 9.44 ± 5.30 <0.001 − –

LEDD 124.40 ± 85.88 367.62 ± 74.17 766.12 ± 197.62 < 0.001 < 0.001 All comparisons

UPDRS part I 2.08 ± 1.88 2.31 ± 2.02 2.82 ± 2.03 <0.001 0.140 –

UPDRS part II 9.92 ± 5.78 10.89 ± 6.63 14.52 ± 7.41 < 0.001 < 0.001 I vs. III, II vs. III

UPDRS part III 23.31 ± 14.16 25.44 ± 15.78 31.89 ± 18.29 < 0.001 0.034 I vs. III

UPDRS total score 36.76 ± 20.71 40.54 ± 23.48 52.49 ± 25.96 < 0.001 0.001 I vs. III, II vs. III

TD/Indeterminate/PIGD (%) 27.02/19.89/53.09 27.54/16.80/55.66 20.35/13.95/65.70 0.051 − –

H&Y 1.97 ± 0.83 2.15 ± 0.87 2.58 ± 0.88 < 0.001 0.001 I vs. III, II vs. III

Dyskinesia (%)a 12.95 20.12 34.88 < 0.001 0.001 All comparisons

Wearing-off (%)b 19.51 28.91 47.09 < 0.001 < 0.001 All comparisons

FOG (%)c 23.08 26.95 40.12 <0.001 0.352 –

NMSS 27.71 ± 26.12 31.94 ± 28.59 39.26 ± 27.19 <0.001 0.165 –

PDSS 121.75 ± 26.82 119.76 ± 25.78 111.04 ± 26.35 <0.001 0.099 –

SCOPA-AUT 5.75 ± 5.35 6.42 ± 6.02 8.72 ± 6.95 < 0.001 0.013 I vs. III, II vs. III

PDQ-39 24.95 ± 22.65 27.53 ± 25.70 37.73 ± 26.53 <0.001 0.051 –

Dementia (%)d 5.63 10.74 10.47 0.007 0.052 –

RBD (%)e 20.45 27.93 40.70 < 0.001 0.029 I vs. III

EDS (%)f 22.89 25.37 32.56 0.038 0.503 –

Hyposmia (%)g 31.71 34.18 38.95 0,210 0.947 –

Depression (%)h 24.58 27.54 36.05 0.014 0.156 –

Constipation (%)i 16.28 18.95 24.55 0.055 0.978 –

*Quantitative data were expressed as mean ± SD, categorical variables were expressed as percentages, unless otherwise indicated. **Adjusted P-value were performed between subtypes
comparisons by multivariable linear or logistic regression (controlled for baseline age and duration of disease). ***Multiple comparisons were performed among the three subtypes if
adjusted P-value was less than 0.05. Significant P-values are indicated in bold. a− iEvaluated, respectively by UPDRS part IV-A, WOQ-9, the 9-item End-of-dose Wearing-off Questionnaire;
NFOGQ, New Freezing of Gait Questionnaire; MMSE, Mini-Mental State Examination; RBDQ-HK, Rapid Eye Movement Sleep Behavior Disorder Questionnaire-Hong Kong; ESS,
Epworth Sleepiness Scale; HRS, Hyposmia Rating Scale; HAMD-17, Hamilton Depression Scale and Rome III criteria; EOPD, Early-onset Parkinson’s Disease; BMI, Body Mass Index;
LEDD, Levodopa Equivalent Daily Dose; UPDRS, Unified Parkinson’s disease Rating Scale; TD, Tremor-Dominant; PIGD, Postural Instability and Gait Difficulty; H&Y, Hoehn and Yahr;
FOG, freezing of gait; NMSS, Non-Motor Symptoms Scale; PDSS, Parkinson’s Disease Sleep Scale; SCOPA-AUT, the Scale for Outcomes in Parkinson Disease for Autonomic Dysfunction;
PDQ-39, Parkinson’s disease questionnaire-39 item version; RBD, Rapid Eye Movement Sleep Behavior Disorder; EDS, excessive daytime sleepiness.

cluster II terminology unchanged (i.e., intermediate). The
data distribution of all clusters and the prevalence of
clinical symptoms at baseline and follow-up are shown in
Supplementary Figures 3, 4, respectively.

Discussion

To the best of our knowledge, this is the first study
to explore the classification of patients with EOPD with a
longitudinal large-sample cohort in a comprehensive database
on a broad spectrum of motor and non-motor characteristics.
Our study found that the most critical determinants of EOPD
subtype and prognosis were motor and some NMSs, especially
the UPDRS total score, motor complications, RBD, and

autonomic dysfunction. Three subtypes were identified: mild
motor and non-motor dysfunction/slow progression (cluster
I), intermediate (cluster II) and severe motor and non-motor
dysfunction/malignant (cluster III). Identification of these
subtypes at baseline helps predict prognosis.

Evidence suggests that early-onset Parkinson’s disease is
clinically heterogeneous; however, cluster studies of clinical
subtypes in patients with EOPD remain scarce. We compared
different clustering solutions in our EOPD cohort and selected
the best solution to compare the baseline differences and
disease progression among the clusters. As expected, baseline
differences in motor and NMSs were observed among the
clusters. The mild subtype represents patients with EOPD who
have mild motor and non-motor manifestations, and RBD and
motor complications might be present but are milder than those
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TABLE 2 Longitudinal changes in clinical motor and non-motor outcomes in three different clinical phenotypes of EOPD at follow-up.

Outcome Phenotype Total P-value P-value

I (n = 216) II (n = 181) III (n = 57)

UPDRS total score

t2-t1 0.50 (17.04) 2.38 (16.11) 5.82 (18.65) 0.009 –

β adjusted coefficient (95% CI) 0* 2.24 (−0.95 to 5.43) 7.44 (2.67 to 12.20) – PII = 0.168, PIII = 0.002

UPDRS part I score

t2-t1 0.06 (2.06) 0.05 (2.08) 0.49 (2.46) 0.079 –

β adjusted coefficient (95% CI) 0* 0.13 (−0.24 to 0.50) 0.64 (0.08 to 1.19) – PII = 0.489, PIII = 0.024

UPDRS part II score

t2-t1 0.21 (4.30) 0.83 (4.76) 1.21 (5.18) 0.035 –

β adjusted coefficient (95% CI) 0* 0.67 (−0.21 to 1.55) 1.67 (0.34 to 2.99) – PII = 0.136, PIII = 0.014

UPDRS part III score

t2-t1 −0.72 (12.45) 1.31 (12.36) 3.53 (13.77) 0.004 –

β adjusted coefficient (95% CI) 0* 2.08 (−0.23 to 4.39) 5.63 (2.19 to 9.06) – PII = 0.078, PIII = 0.001

H&Y

t2-t1 0.21 (0.73) 0.19 (0.74) 0.30 (0.67) 0.006 –

β adjusted coefficient (95% CI) 0* 0.05 (−0.071 to 0.18) 0.31 (0.123 to 0.50) – PII = 0.391, PIII = 0.001

NMSS

t2-t1 0.61 (24.03) 0.91 (23.97) 3.49 (31.08) 0.335 –

β adjusted coefficient (95% CI) 0* 1.92 (−2.76 to 6.60) 5.00 (−1.86 to 11.88) – PII = 0.420, PIII = 0.153

PDSS

t2-t1 −4.27 (27.89) −3.33 (28.65) −4.69 (27.66) 0.866 –

β adjusted coefficient (95% CI) 0* 0.48 (−4.98 to 5.95) −1.72 (−9.66 to 6.21) – PII = 0.862, PIII = 0.670

SCOPA-AUT

t2-t1 1.38 (5.82) 1.54 (6.15) 1.85 (5.11) 0.707 –

β adjusted coefficient (95% CI) 0* 0.51 (−0.79 to 1.81) 0.56 (−1.49 to 2.61) – PII = 0.443, PIII = 0.589

PDQ-39

t2-t1 −1.10 (19.92) 1.47 (22.10) 4.07 (23.59) 0.037 –

β adjusted coefficient (95% CI) 0* 2.48 (−1.49 to 6.46) 7.63 (1.70 to 13.55) – PII = 0.220, PIII = 0.012

MMSE

t2-t1 0.17 (2.17) 0.32 (2.40) −0.30 (2.17) 0.249 –

β adjusted coefficient (95% CI) 0* 0.00 (−0.42 to 0.43) −0.52 (−1.15 to 0.12) – PII = 0.988, PIII = 0.114

RBDQ-HK

t2-t1 1.53 (11.51) 1.45 (12.78) 2.56 (16.21) 0.355 –

β adjusted coefficient (95% CI) 0* 0.25 (−2.27 to 2.772) 2.69 (−1.04 to 6.43) – PII = 0.846, PIII = 0.157

ESS

t2-t1 −0.07 (6.03) 0.08 (6.55) 1.22 (5.84) 0.156 –

β adjusted coefficient (95% CI) 0* 0.82 (−0.31 to 1.96) 1.44 (−0.25 to 3.13) – PII = 0.156, PIII = 0.095

HRS

t2-t1 −1.28 (4.62) −1.12 (4.77) −1.40 (5.66) 0.998 –

β adjusted coefficient (95% CI) 0* −0.02 (−0.98 to 0.94) −0.05 (−1.44 to 1.35) – PII = 0.968, PIII = 0.947

HAMD

t2-t1 0.54 (5.85) 0.34 (4.80) 1.06 (6.81) 0.945 –

β adjusted coefficient (95% CI) 0* 0.17 (−0.88 to 1.21) 0.17 (−1.39 to 1.72) – PII = 0.752, PIII = 0.834

All presented values are mean (standard deviation), unless otherwise specified. In each general linear models, change of clinical characteristics was defined as the dependent variable, and
was adjusted by the follow-up duration and baseline value of clinical factors. *Reference group. Significant P-values are indicated in bold. EOPD, Early-onset Parkinson’s Disease; UPDRS,
Unified Parkinson’s Disease Rating Scale; H&Y, Hoehn and Yahr; NMSS, Non-Motor Symptoms Scale; PDSS, Parkinson’s Disease Sleep Scale; SCOPA-AUT, the scale for outcomes in
Parkinson’s Disease for Autonomic Dysfunction; PDQ-39, Parkinson’s disease questionnaire-39 item version; MMSE, Mini Mental State Examination; RBDQ-HK, Rapid Eye Movement
Sleep Behavior Disorder Questionnaire-Hong Kong; ESS, Epworth Sleepiness Scale; HRS, Hyposmia Rating Scale; HAMD, Hamilton Depression Scale.
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FIGURE 1

Heatmap of the three subtypes at baseline. The figure was depicted according to the mean values or percentages of subtypes. The red color
represented a more severe deficit and the blue color referred to a less severe symptom. The darker the figure described, the larger difference
were shown among the subtypes. Variables with P value <0.05 are shown. LEDD, Levodopa Equivalent Daily Dose; UPDRS, Unified Parkinson’s
disease Rating Scale; H&Y, Hoehn and Yahr; FOG, freezing of gait; NMSS, Non-Motor Symptoms Scale; PDSS, Parkinson’s Disease Sleep Scale;
SCOPA-AUT, the Scale for Outcomes in Parkinson’s Disease for Autonomic Dysfunction; PDQ-39, Parkinson’s disease questionnaire-39 item
version; RBD, Rapid Eye Movement Sleep Behavior Disorder; EDS, excessive daytime sleepiness.

present in cluster III. These patients had the most favorable
disease course, with the least worsening of the UPDRS total
score after 1.5 years. In contrast, the severe subtype had a
high frequency of RBD, wearing-off, and dyskinesia at baseline.
These patients also exhibited more severe motor and autonomic
symptoms. This subtype showed the most rapid and malignant
progression rate in terms of the UPDRS total, UPDRS part II,
UPDRS part III, H&Y stage, and PDQ-39 total scores. Between
these two extremes, the intermediate subtype was defined as
having intermediate motor and NMSs. This subtype showed
a moderate progression rate, which was slightly higher than
that in cluster I. Our results further confirmed the clinical
heterogeneity of EOPD. Defining EOPD subtypes contributes

to a better understanding of the underlying mechanisms of
EOPD, predicts the disease course of EOPD, and leads to tailored
treatment strategies (Hendricks and Khasawneh, 2021).

A heterogeneous clinical presentation and prognosis
of patients with PD is increasingly recognized; in a recent
longitudinal study, the presence of RBD, cognitive impairment,
and autonomic dysfunction were the best predictors of
a diffuse/malignant phenotype of PD (Fereshtehnejad et al.,
2015). In our study, patients with the severe subtype also showed
a higher propensity for RBD and more worsened autonomic
disturbance, in agreement with previous studies (Fereshtehnejad
et al., 2015, 2017). Previous study (Fereshtehnejad et al.,
2015, 2017; Udow et al., 2016; Jozwiak et al., 2017) also
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FIGURE 2

Longitudinal changes in outcomes of interest in different phenotypes of EOPD at follow-up. In each general linear models, change of clinical
characteristics was defined as the dependent variable, and was adjusted by the follow-up duration and baseline value of clinical factors. Mean
follow-up duration in the entire population = 1.5 years. UPDRS, Unified Parkinson’s disease Rating Scale; H&Y, Hoehn and Yahr; PDQ-39,
Parkinson’s disease questionnaire-39 item version.

found that these NMSs often coincided, suggesting a
common neurobiological factor (Udow et al., 2016). Reduced
noradrenergic function in PD was associated with the presence
of RBD and autonomic dysfunction and noradrenergic
impairment may contribute to the high prevalence of these
NMSs in PD (Sommerauer et al., 2018). In addition, compared
to patients with mild and intermediate EOPD subtypes, patients

with severe EOPD subtype had more severe motor symptoms
and higher frequency of motor complications in our study,
which are consistent with the results of other similar studies
in PD (van Rooden et al., 2011; Belvisi et al., 2021), and severe
motor and non-motor dysfunction/malignant subtype may
indicate a relatively diffuse neurodegenerative process. Different
from the results of other cohort studies, our study further

Frontiers in Aging Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnagi.2022.1040293
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-1040293 November 7, 2022 Time: 18:28 # 9

Zhou et al. 10.3389/fnagi.2022.1040293

highlights the importance of motor complications as drivers of
EOPD subtyping and prognosis.

The mechanism underlying the EOPD subtype differences
remains unclear. Studies have indicated that genetic,
environmental factors, gene-environment interactions, or all of
these factors may play an important role in the pathogenesis of
EOPD. There is accumulating evidence indicating that different
genotypes of EOPD may lead to distinct clinical characteristics
and rate of progression. For example, EOPD with PRKN,
PINK1, or DJ-1 mutations are characterized by good response
to L-dopa treatment, dystonia and dyskinesia being relatively
common, cognitive decline relatively uncommon and a slower
deterioration of the disease when compared with idiopathic
PD (Kasten et al., 2018; Lin et al., 2019; Zhao et al., 2020; Sun
et al., 2021). Patients of EOPD with SNCA mutations show
asymmetric onset, good responsiveness for L-dopa in initial
time, early motor complications, rapid progression and worse
cognitive impairment (Trinh et al., 2018; Chen et al., 2020;
Zhao et al., 2020). Potential explanations of subtype differences
include different PD-associated protein dysfunctions (Quinn
et al., 2020; Mencke et al., 2021; Menozzi and Schapira, 2021),
different accumulation rates of pathogenic alpha-synuclein
(Lawton et al., 2022), different trajectories of pathology
progression (De Pablo-Fernández et al., 2019) or possibly
even different compensatory capacities in the neural circuits
(Palermo et al., 2020; Wang et al., 2022). Future studies should
focus on understanding the underlying disease pathophysiology
that drives these different clinical clusters in EOPD and their
subsequent progression.

This study has some limitations. Our cluster analysis
solution classified EOPD based on clinical presentation only,
and additional variables (i.e., genetics, neuroimaging markers,
and other biomarkers) may be able to further refine the clusters.
Secondly, our study has the heterogeneity of clinical data
collection and quality from different investigators. Nevertheless,
to retain the consistency and quality of the data as much
as possible, all the researchers involved in the study received
standardized and unified training. Thirdly, the follow-up data
are incomplete, and the reasons of causing this are varied. For
example, the follow-up time of some patients with EOPD has
not been reached, and the impact of COVID-19 containment
measures. Moreover, the prognostic value and applicability
of our recommended EOPD subtyping method should be
confirmed in other cohorts.

In summary, we developed three clinical EOPD subtypes
based on the cluster analysis of a large EOPD cohort. Motor
symptoms, motor complications, and NMSs were distinguished
among the clusters, some of which were verified in follow-
up data. These findings improve our understanding of EOPD
heterogeneity. Exploring EOPD subtypes will shed light on
precision medicine and develop more effective approaches
for clinical trials and treatment strategies for patients with
EOPD in the future.

Conclusion

We identified three different clinical subtypes (mild,
intermediate, and severe) using cluster analysis in a large EOPD
cohort for the first time, which is important for tailoring therapy
to individuals with EOPD.
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