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Background: Quantitative electroencephalography (qEEG) has been suggested as a
biomarker for cognitive decline in Parkinson’s disease (PD).

Objective: Determine if applying a wavelet-based qEEG algorithm to 21-electrode,
resting-state EEG recordings obtained in a routine clinical setting has utility for predicting
cognitive impairment in PD.

Methods: PD subjects, evaluated by disease stage and motor score, were compared
to healthy controls (N = 20 each). PD subjects with normal (PDN, MoCA 26–30, N = 6)
and impaired (PDD, MoCA ≤ 25, N = 14) cognition were compared. The wavelet-
transform based time-frequency algorithm assessed the instantaneous predominant
frequency (IPF) at 60 ms intervals throughout entire recordings. We then determined
the relative time spent by the IPF in the four standard EEG frequency bands (RTF) at
each scalp location. The resting occipital rhythm (ROR) was assessed using standard
power spectral analysis.

Results: Comparing PD subjects to healthy controls, mean values are decreased
for ROR and RTF-Beta, greater for RTF-Theta and similar for RTF-Delta and RTF-
Alpha. In logistic regression models, arithmetic combinations of RTF values [e.g.,
(RTF-Alpha) + (RTF-Beta)/(RTF-Delta + RTF-Theta)] and RTF-Alpha values at occipital
or parietal locations are most able to discriminate between PD and controls. A principal
component (PC) from principal component analysis (PCA) using RTF-band values in
all subjects is associated with PD status (p = 0.004, β = 0.31, AUC = 0.780). Its
loadings show positive contribution from RTF-Theta at all scalp locations, and negative
contributions from RTF-Beta at occipital, parietal, central, and temporal locations.
Compared to cognitively normal PD subjects, cognitively impaired PD subjects have
lower median RTF-Alpha and RTF-Beta values, greater RTF-Theta values and similar
RTF-Delta values. A PC from PCA using RTF-band values in PD subjects is associated
with cognitive status (p = 0.002, β = 0.922, AUC = 0.89). Its loadings show positive
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contributions from RTF-Theta at all scalp locations, negative contributions from RTF-
Beta at central locations, and negative contributions from RTF-Delta at central, frontal
and temporal locations. Age, disease duration and/or sex are not significant covariates.
No PC was associated with motor score or disease stage.

Significance: Analyzing standard EEG recordings obtained in a community practice
setting using a wavelet-based qEEG algorithm shows promise as a PD biomarker and
for predicting cognitive impairment in PD.

Keywords: quantitative electroencephalography (QEEG), biomarker, Parkinson’s disease, cognitive dysfunction,
wavelet-based time-transform algorithm

INTRODUCTION

Parkinson’s disease (PD) is characterized by the presence of
cardinal motor symptoms including resting tremor, rigidity,
bradykinesia and postural instability. Non-motor symptoms
including cognitive impairment, anxiety, depression, REM-sleep-
behavior disorder, olfactory dysfunction, autonomic dysfunction,
orthostatic hypotension, urinary incontinence and constipation
are common and often precede the onset of motor symptoms.
Cognitive impairment becomes more prevalent as the disease
progresses and dementia often develops (Aarsland and Kurz,
2010). The prevalence of dementia in PD may be as high as 75%
for disease duration greater than 10 years (Hely et al., 2008). The
ability to predict the onset or likelihood of cognitive impairment
in PD is important, as impaired cognition is associated with
increased morbidity and mortality, decreased quality of life, and
increased caregiver burden.

Biomarkers of cognitive dysfunction in PD have been
developed (Shi et al., 2010) based on neuroimaging (Poston
and Eidelberg, 2009; Arnaldi et al., 2017), genetics (Liu et al.,
2017), blood (Lawton et al., 2020) and CSF (Mollenhauer et al.,
2017). Over the last decade, analyses of non-stationary EEG data,
data where the statistical characteristics change with time, using
quantitative electroencephalography (qEEG) methods have been
investigated for their ability to distinguish the parkinsonian state
and/or predict dementia in PD. Different measures and EEG
characteristics have been utilized for this purpose: Fonseca et al.
(2009) observed an increase in absolute and relative posterior-
delta amplitude in 32 PD patients compared to 26 normal

Abbreviations: AIC, Aikake information criterion; AUC, Area under the
receiver operating characteristic curve; CI, Confidence interval; EEG,
Electroencephalogram; EMR, Electronic medical record; FFT, Fast Fourier
transform; H&Y, stage Hoehn and Yahr Parkinson’s disease stage; IPF, The
instantaneous predominant frequency at a scalp location, calculated at 60 ms
intervals throughout a resting-state EEG recording; LB, Lewy bodies; MCI,
Mild cognitive impairment; MCI-AD, Mild cognitive impairment associated
with Alzheimer’s disease; MCI-LB, Mild cognitive impairment associated with
Lewy bodies; MD, Median; MoCA, Montreal Cognitive Assessment; MT, Median
test; MWU, Mann-Whitney U-test; PC, Principal component; PCA, Principal
components analysis; PD, Parkinson’s disease; PDD, Parkinson’s disease subjects
with impaired cognition (MoCA ≤ 25); PDN, Parkinson’s disease subjects with
normal cognition (MoCA 26-30); qEEG, Quantitative electroencephalography;
ROR, Resting occipital rhythm; RTF-band, The relative time spent by the IPF in
one of the four standard EEG frequency bands (alpha, beta, delta, or theta) during
an entire EEG recording; SD, Standard deviation; STN, Subthalamic nucleus;
STN-DBS, Subthalamic nucleus deep brain stimulation; TT, t-test (two-tailed);
UPDRS-III, Unified Parkinson’s Disease Rating Scale, part III (motor score).

controls; Morita et al. (2011) found an association between a
decrease in the spectral ratio of fast-to-slow frequency bands
[(Alpha + Beta)/(Theta + Delta)] and a decline in Mini-Mental
State Examination (MMSE) scores; Caviness et al. (2015, 2016)
reported that an increase in delta-band power was associated
with longitudinal changes in neuropsychological testing and
distinguished PD patients from controls; and Klassen et al. (2011)
found that background frequency and relative power in the theta
band were potential predictors of dementia in PD in a cohort of
138 PD subjects, 21 of which had dementia at baseline.

Most of the above-mentioned studies included patients
who were undergoing dopaminergic therapy. To address the
contributions of potential treatment effects as well as disease–
stage, Arnaldi et al. (2017) analyzed EEGs in a cohort of 57
drug-naïve de novo PD patients using qEEG and 123I-FP-CIT-
SPECT and determined that a mean posterior qEEG frequency
of less than 8.3 Hz was a good predictor of cognitive decline in
that cohort. Chaturvedi et al. (2017) analyzed high-resolution
256–channel EEG recordings of PD patients and found that
theta-power in the left temporal region and the alpha/theta
ratio in the central and left regions were able to distinguish PD
patients from healthy controls, suggesting a role for regional EEG
differences in the disease state. Geraedts et al. (2018) showed
that decreased posterior dominant frequency and increased theta
power correlate with cognitive impairment in PD. Massa et al.
(2020) showed that the alpha/theta ratio was significantly lower
in early stage Lewy body disease and in PD without cognitive
impairment in comparison to healthy controls and Alzheimer’s-
disease-associated mild cognitive impairment (MCI-AD). Using
qEEG, Schumacher et al. (2020) compared mild cognitive
impairment associated with Lewy bodies (MCI-LB) with MCI-
AD and reported increased pre-alpha, decreased beta power and
slower dominant frequency in MCI-LB, suggesting that early EEG
slowing is a specific feature of MCI-LB. Taken together, these
studies demonstrate that EEG and qEEG parameters can not only
distinguish PD patients from healthy controls, but also serve as
potential biomarkers of cognitive impairment in PD and LB-
associated diseases. In addition, they point to the association of
regional EEG differences with the disease state and degree of
cognitive impairment.

An open question is how to best harness the discriminatory
ability of qEEG for analyzing non-stationary EEG data for the
purpose of distinguishing healthy controls from PD subjects,
and cognitively normal from cognitively impaired PD subjects,
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in clinical settings where 21-electrode resting-state EEG data
is routinely obtained. In this report, we evaluate whether a
wavelet-based algorithm has utility for this purpose. Since EEG
data can contain multiple independent spectral components that
can vary rapidly in their frequency, we hypothesized that PD
subjects differ from healthy controls, and cognitively normal PD
subjects differ from cognitively impaired PD subjects, in how
these spectral components change in frequency. To capture the
rapid changes in frequency, we applied a wavelet-based algorithm
previously developed by two of us (Indic and Narayanan, 2011) to
derive the instantaneous frequency of the EEG signal at multiple
time scales. We then determined the instantaneous predominant
frequency (IPF, F0) at 60-msec intervals throughout the entire
EEG recording at each scalp location and characterized the
relative time spent by the IPF in each of the four standard (alpha,
beta, delta, theta) EEG frequency bands (RTF). We analyzed these
data using logistic regression and principal components analysis
(PCA) to assess whether the RTF values in one or more EEG
frequency bands (RTF-band) or arithmetic combinations of these
values [e.g., the ratio of Alpha + Beta to Delta + Theta, after
Morita et al. (2011)] can be used to distinguish PD from healthy
control subjects, and within the PD cohort, subjects with normal
cognition from subjects with cognitive impairment.

MATERIALS AND METHODS

This retrospective review of patient records and EEG data study
was approved by the NorthShore institutional review board.

Study Participants
Twenty PD patients were recruited from one author’s (KM)
movement disorders clinic. These subjects were medicated with
levodopa or dopamine agonists at the time of EEG recording.
They remained on medications in consideration of Best Practice
and to be consistent with the aim of evaluating whether qEEG
analysis of routinely collected EEG data, which would be collected
while patients remain on their medications, is productive for
discriminating between the groups being studied. The twenty
age and sex-matched healthy controls were subjects whose EEGs
were performed at our health system following a syncopal
episode. Healthy controls had no neurological diagnoses in their
medical records and a normal EEG. The average duration of
EEG recording was 40 min (range: 30–60 min). The Montreal
Cognitive Assessment (MoCA), which is the recommended scale
for capturing cognitive changes in PD (Chou et al., 2010),
the Unified Parkinson’s Disease Rating Scale (UPDRS) part III
(motor) (Fahn et al., 1987; Movement Disorder Society Task
Force on Rating Scales for Parkinson’s Disease, 2003) and the
Hoehn and Yahr (H&Y) disease-stage scale (Goetz et al., 2004)
scores were obtained as part of the standard clinical evaluation of
PD patients in our movement disorders clinic at the NorthShore
University HealthSystem (Evanston, IL). Twelve males and eight
females were included in each group with an average age of
72.4 (standard deviation (SD) 8.1, range 59–85) and 72.7 (SD
8.4, range 59–89) years, for PD and control groups, respectively.
Clinical features of the PD patients are shown in Figure 1.

Quantitative Electroencephalography
Analysis
Natus Neuroworks R© (Middleton, WI) was used for EEG
recording and review. Raw EEG data from each channel were
exported to MATLAB (Version 2018. The Math Works Inc.,
MA) for the wavelet analysis. To capture the rapid variation in
frequency in the non-stationary EEG signal, we used an algorithm
previously developed by two of us (Indic and Narayanan, 2011)
to derive the instantaneous frequencies seen in the EEG signal at
multiple time scales. This algorithm uses a continuous wavelet
transform, with the Morlet wavelet as the mother wavelet, to
complete a time-frequency decomposition of the EEG signal and
extract information about simultaneously existing frequencies in
the EEG data. It can reliably extract frequency information even
in the presence of artifacts, providing they do not have the same
frequency content of the EEG (Indic and Narayanan, 2011).

The wavelet transform of the discrete EEG signal is obtained
by the convolution of the scaled and translated version of a
mother wavelet function with the signal. The convolution is
performed N times, N being the length of the EEG signal, using
a discrete Fourier transform and wavelet function at each of a
set of predefined time scales. We used a dyadic representation
of time scales with eight sub-octave scales per octave with
a total of 80 scales. The wavelet transformation provides a
scalogram—a visual representation plotting the absolute value
of the continuous wavelet transform as a function of time and
frequency, and so is useful for time-localization of short-duration
of high-frequency events as well as frequency localization of
low-frequency, longer duration events. At each instant of time,
we estimated the peak value of the scalogram. The frequency
corresponding to the peak at an instant of time provides the
instantaneous predominant frequency (IPF, or F0). The output
of the analysis for each EEG channel was the IPF over time, with
calculation of the IPF performed every 60 ms. For each channel
we calculated the probability of IPF being in one of the four,
standard-EEG-frequency bands (delta, theta, alpha, or beta) over
the entire EEG recording. We refer to this as the relative time of
this frequency (RTF) in each band at that channel.

Analysis of the resting occipital rhythm (ROR) was performed
with Spike2 (Cambridge Electronic Design, Cambridge,
United Kingdom) and Igor Pro software (Wave metrics,
Lake Oswego, OR). Standard power-spectral-density analysis was
performed over a short block of time while the subject was resting
with their eyes closed, using a Fast Fourier Transform (FFT).

Statistical Analyses
Since this is a pilot study aimed at evaluating whether the wavelet
algorithm previously described by Indic and Narayanan (2011)
can be applied to resting-state EEG data to identify features
associated with disease (PD vs. healthy control) and cognitive
status in PD subjects (normal vs. impaired cognition), there
were no published data allowing us to estimate an effect size
for the differences that would be seen in either of these groups.
Therefore, we could not perform an a priori power analysis.
We assessed 20 PD and 20 healthy controls; within the PD
subjects, six were cognitively normal (PDN, MoCA 26-30) while
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FIGURE 1 | Clinical characteristics of study subjects with Parkinson’s disease. MoCA and UPDRS-III scores are plotted for female (teal) and male (coral) PD
subjects; symbol size corresponds to disease duration (range: 1–15 years),

14 were cognitively impaired (PDD, MoCA ≤ 25). This sample
size is comparable to that used in some studies that identified
differences in these groups using other EEG analysis methods
(see section “Introduction”). We report 95% confidence intervals
(CIs) to allow for independent determination of the effect size and
range of possible differences with which our data are consistent.

Differences in RTF-band values between subject groups (PD
vs. healthy control, PDN vs. PDD) were initially evaluated using
both parametric (two-tailed t-test (TT) to compare means (M)
and nonparametric [median test (MT) to compare medians
(MD), Mann-Whitney U-test (MWU) to compare distributions]
statistics. Logistic regression models (Stata, vs. 16.1, StataCorp
LLC, TX) were used to evaluate associations between subject
groups and RTF-band values or, since specific spectral differences
have been associated with cognition in previous studies (see
Introduction), arithmetic combinations of RTF-band values

[(RTF-Alpha + RTF-Beta), (RTF-Alpha + RTF-Beta – RTF-
Theta), (RTF-Alpha – RTF-Theta), (RTF-Theta – RTF-Beta),
and (RTF-Alpha + RTF-Beta)/(RTF-Delta + RTF-Theta)], by
location, focusing on variables with relatively high and similar
variance in PD and control subjects. Given the size of groups
in our cohort, we sought to minimize overfitting (Peduzzi et al.,
1996; Vittinghoff and McCulloch, 2007) in these exploratory
models by considering the contributions of only one or two RTF-
band variables at once, e.g., RTF-Theta at O1 and O2 or P3 and
P4, and interpreted significant models (model p and RTF-band
variable p < 0.05) as providing evidence of association only if
they also passed a link test, a Pearson goodness-of-fit test, and
had a McFadden’s adjusted R2 supportive of good model fit (0.2–
0.4). The Aikake information criterion (AIC) was used to evaluate
whether model fit was improved by including age, sex, and/or
disease duration as covariates.
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Since we captured four RTF-band values at each of 21 scalp
locations in each study subject, we used principal components
analysis (PCA), performed in Stata (vs. 16.1) and in R,1 on
data from 15 scalp locations to reduce data dimensionality
and reduce the likelihood of false discovery. PCA provides
an unsupervised method to identify a low-dimensional set
of uncorrelated variables that effectively summarize the data
obtained from applying the wavelet transform algorithm to EEG
data at each scalp location. The RTF-band data for a particular
frequency band at different scalp locations tend to be correlated
and consequently reflect redundant properties of the recorded
brain activity. In the PCAs we performed, we used only RTF-
band data, so each PCA used the variance of the RTF-band
values obtained at each scalp location to compute uncorrelated
principal components (PCs), linear combinations of the RTF-
band values that contain the information present in the original
data. The principal components separate the information in the
original RTF-band data so that each explains a maximal amount
of variance, with most of the information compressed into the
first several principal components. Our goal in using PCA was
to assess whether the scores of any of the PCs, derived only
using RTF-band data, are associated with group (PD vs. control,
PDN vs. PDD) membership, and identify the RTF-band-location
values with strong contributions to that PC.

We performed two different PCAs. In PCA-A, we used RTF-
band data from both PD and healthy control subjects, but not
any information on disease status, so that we could subsequently
evaluate whether any of the principal components, which only
accounted for the variance in the RTF-band data, are associated
with membership in the PD or the healthy control cohort.
In PCA-B, we used RTF-band data only from PD subjects,
but not any information on cognitive status, so that we could
subsequently evaluate whether any of the principal components,
which only accounted for the variance in the RTF-band data
from PD subjects, are associated with cognitive status in PD
subjects. Both PCAs used RTF-band values, each centered and
scaled to have unit variance, for all four bands at locations C3,
C4, O1, O2, F3, F4, F7, F8, FP1, FP2, P3, P4, T3, T4, and
T5. Data from midline and ear locations were not included
in this analysis, and data for location T6 was unavailable.
Logistic regression was used to evaluate the association of a PC’s
scores with group membership. The fit of logistic regression
models revealing a significant association between a PC and
group membership was evaluated as described above; we also
assessed whether any observations had a substantial impact on
model fit by evaluating the Pearson residuals, deviance residuals
and Pregibon leverage. For PD subjects, linear regression was
used to evaluate association of a PC with UPDRS-III score or
H&Y stage.

To assess uncertainty in the PC scores obtained from the
PCAs, we derived their 95% CIs using a bootstrap method
with 1,000 replications, using PCA.Bootstrap as implemented
in R (see text footnote 1) by JLR Villardon. This approach
overcomes the limitations of asymptotic approaches to calculate
CIs (Babamoradi et al., 2013).

1https://CRAN.R-project.org

FIGURE 2 | Examples of wavelet-based instantaneous predominant
frequency in study subjects. (A) (PDD), (B) (control), and (C) (PDN) show
qEEG data obtained at location O1 in the frequency range from 0 to 30 Hz. In
gray is the FFT-based resting occipital rhythm (ROR) during 30 s of quiet
resting with eyes closed. Black bars show the wavelet-based instantaneous
predominant frequency (F0) histogram over the entire recording. A normal
curve has been fitted to the FFT (dotted gray) and wavelet-based (black) data
over frequencies from 4 to 20 Hz. The ROR and relative times spent by the
instantaneous predominant frequency in each EEG band (RTF) are tabulated.

RESULTS

Relationship of Spectral and Wavelet
EEG Analysis
To characterize the relationship of the spectral and wavelet
analysis during the 30-min EEG recording in a healthy control,
PDN and a PDD individual, the spectral peak representing the
background ROR (O1 channel) was calculated by fitting a normal
curve to the FFT graph for frequencies of 4–20 Hz. A normal
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curve was also fit to the histogram of IPF for comparison.
Examples of wavelet analysis data in control, PDN and PDD
subjects are shown in Figure 2. The IPF histogram and FFT-based
spectrogram are often, but not always aligned.

A Quantitative Electroencephalography
Signature Distinguishes Between the
Parkinsonian and Control State
RTF-Band Values Are Associated With Parkinson’s
Disease and Control Status
We initially evaluated whether mean and median RTF-band
values at all scalp locations were different between control and
PD subjects. Compared to control subjects, values in PD subjects
were lower for RTF-Beta [TT: control M = 0.0930, SD = 0.0547;
PD M = 0.0474, SD = 0.0589; t(38) = 2.534, p = 0.0155; MWU:
control MD = 0.07, PD MD = 0.02, U = 3.030, p = 0.0020;
MT: χ2 (1, N = 40) = 6.4, p = 0.011], greater for RTF-
Theta [TT: control M = 0.146, SD = 0.069; PD M = 0.229,
SD = 0.125; t(38) = –2.599, p = 0.0132; MWU: control
MD = 0.14, PD MD = 0.20, U = –2.759, p = 0.0058; MT: χ2

(1, N = 40) = 6.4, p = 0.011], and similar for RTF-Delta [TT:
control M = 0.564, SD = 0.163; PD M = 0.586, SD = 0.171;
t(38) = –0.403, p = 0.689; MWU: control MD = 0.59, PD
MD = 0.60, U = –0.541, p = 0.6017; MT: χ2 (1, N = 40) = 0.4,

p = 0.527] and RTF-Alpha [TT: control M = 0.186, SD = 0.135;
PD M = 0.138, SD = 0.155; t(38) = 1.048, p = 0.301; MWU:
control MD = 0.15, PD MD = 0.07, U = 1.542, p = 0.1274; MT:
χ2 (1, N= 40)= 1.6, p= 0.206] (Figure 3A).

These results raised the possibility that RTF-band values,
possibly in a location-dependent manner, are associated with
disease status and degree of cognitive impairment. Therefore,
we used logistic regression to explore whether RTF-band values
or arithmetic combinations of these values with relatively
high variance, which would therefore be more informative for
detecting intergroup differences, are associated with disease
status. We evaluated arithmetic combinations of RTF-bands
that considered the relationships of the faster (alpha and
beta) and slower rhythms (delta and theta) in an effort to
assess their contribution to the parkinsonian state. A consistent
result from these analyses was that RTF-band values in
occipital (O1, O2) and parietal (P3, P4) regions were most
strongly associated with PD status. The associations were
most apparent for arithmetic combinations of RTF-band values
[(RTF-Alpha + RTF-Beta)/(RTF-Delta + RTF-Theta), RTF-
Alpha + RTF-Beta, RTF-Alpha + RTF-Beta – RTF-Theta, RTF-
Alpha – RTF-Theta] and for RTF-Alpha values (Table 1).

Significant associations were also seen when RTF-Alpha, RTF-
Delta, RTF-Theta, RTF-Alpha-Theta values were evaluated at
these scalp locations, when RTF-Beta was evaluated at pairs of

FIGURE 3 | Distribution of mean RTF values in subjects grouped by disease and cognitive status. Box plots with jittered data points show the mean RTF values
recorded from all scalp locations for each frequency band in (A) control and PD subjects and (B) cognitively normal (PDN, MoCA > 25) and cognitively impaired
(PDD, MoCA ≤ 25) PD subjects. Significance differences evaluated using a Mann-Whitney U-test.
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TABLE 1 | Classification of disease status by RTF values at scalp locations using logistic regression.

Scalp
locations

RTF or RTF
metric

evaluated

Variable* β 95% CI P-value Area under
ROC curve

Classification McFadden’s
adjusted R2

AIC

Correct
(%)

Sensitivity
(%)

Specificity
(%)

O1, O2
Alpha+ Beta
Delta+ Theta

O1 30.25 5.53, 54.96 0.016 0.900 77.5 90.0 65.0 0.308 38.385

O2 −35.71 –64.92, –6.49 0.017

Alpha + Beta O1 45.27 6.83, 83.71 0.021 0.860 75.0 85.0 65.0 0.210 43.804

O2 −50.58 –90.86, –10.30 0.014

Alpha + Beta –
Theta

O1 23.94 1.48, 46.39 0.037 0.8625 77.5 85.0 70.0 0.210 43.831

O2 −28.80 –52.87, –4.74 0.019

P3, P4 Alpha P3 57.11 11.06, 103.15 0.015 0.850 77.5 85.0 70.0 0.278 40.102

P4 −64.54 –114.17, –14.91 0.011

Alpha – Theta P3 23.54 5.76, 41.40 0.010 0.860 80.0 85.0 75.0 0.243 41.957

P4 −30.99 –52.94, –9.05 0.006

Alpha + Beta –
Theta

P3 12.47 1.172, 23.77 0.031 0.8625 75.0 80.0 70.0 0.170 46.006

P4 −17.24 –30.30, –4.18 0.010
Alpha+ Beta
Delta+ Theta

P3 5.50 0.401, 10.61 0.035 0.8075 67.5 80.0 55.0 0.139 47.76

P4 −7.823 –14.12, –1.53 0.015

Alpha + Beta P3 16.25 0.577, 31.92 0.042 0.8050 70.0 80.0 60.0 0.098 50.098

P4 −19.71 –36.34, –3.08 0.020

*The intercept was not significantly different from zero in all models; all models passed the link test.

T3, T4 and T5, and, consistent with finding that PD subjects have
lower mean RTF-Beta and higher mean RTF-Theta, for mean
RTF-Theta or mean RTF-Beta. However, the classification, area
under the ROC curve, and model-fit statistics were not as strong
as those shown in Table 1 (see Supplementary Table 1).

Age and/or sex were not significant predictors when
included in any of these analyses. While including sex and/or
age often improved classification, they invariably diminished
model fit statistics.

Principal Component Analysis Identifies a Principal
Component Able to Distinguish Between Parkinson’s
Disease and Control Subjects
Since RTF values within a frequency band, and arithmetic
combinations of RTF values of different frequency bands tend
to be correlated (Table 2), we were concerned that co-linearity
among variables diluted the precision of the logistic regression
analyses. Therefore, we used PCA to reduce data dimensionality
and assess whether uncorrelated PCs are associated with PD
vs. control status. PCA-A was performed using the only the
RTF-band values in each frequency band, from all subjects, at
scalp locations C3, C4, O1, O2, F3, F4, F7, F8, FP1, FP2, P3,
P4, T3, T4, and T5.

The first five PCs (named here A.PC1 – A.PC5 to avoid
confusion with PCs generated in the second PCA-B described
below), which explain 91.96% of the total variance (Figure 4A)
(A.PC1, 42.9%; A.PC2, 27.9%; A.PC3, 13.9%; A.PC4, 4.72%;
A.PC5, 2.5%) were each evaluated for a possible association
with PD or control status using logistic regression. We found
that A.PC2 is associated with PD and control status (model

p = 0.0037; β = 0.31, 95% CI: 0.037, 0.59; A.PC2 p value:
0.027; Intercept not significantly different from zero; McFadden’s
adjusted R2

= 0.280; Goodness-of-fit-test Pearson’s χ2
= 46.85,

p = 0.154; Link test: pass; AIC = 51.02; Area under ROC curve
(AUC): 0.780; Classification: 70% correct, 60% sensitivity, 80%
specificity) (Figures 4B,C). While A.PC2 remained a significant
predictor of disease status in models incorporating sex and age,
age and sex, either individually or together, were not significant
predictors of disease status. Including them did not improve
model fit as evaluated using AIC or McFadden’s Adjusted R2,
though including both improved classification (correct: 80.0%;
sensitivity: 75%; specificity: 85%; AUC= 0.8225). A.PC1, A.PC3,
A.PC4, and A.PC5 were not associated with PD vs. control status
(model p = 0.231, 0.453, 0.695, 0.355, respectively). A bootstrap
analysis deriving the 95% CIs for the A.PC1 and A.PC2 scores
for each study subject, as well as other PCA parameters,

TABLE 2 | Correlation between RTF values across all scalp locations.

Band Mean (Range)

Alpha 0.97 (0.92–0.99)

Beta 0.69 (0.071–0.99)

Delta 0.90 (0.59–0.99)

Theta 0.85 (0.56–0.99)

Alpha – Beta 0.86 (0.37–0.99)

Alpha + Beta – Theta 0.81 (0.22–0.99)

Alpha – Theta 0.90 (0.72–0.99)

Theta – Beta 0.74 (0.034–0.99)

(Alpha + Beta) (Delta + Theta) 0.82 (0.16–0.99)
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FIGURE 4 | PCA using RTF data for each frequency band at all scalp locations. PCA-A used RTF data from PD and control subjects. (A) Scree plot of eigenvalues
for PCA-A. Principal components A.PC1–5 account for 92.0% of the total variance. (B) Distribution of control (blue circles) and PD (orange squares) subjects by
A.PC1 and A.PC2 scores. A.PC2 scores distribute subjects by disease status more effectively than A.PC1 scores. (C) ROC curve from a logistic regression model
classifying subjects by disease status using A.PC2 scores. PCA-B used RTF data only from PD subjects. (D) Scree plot of eigenvalues for PCA-B. Principal
components B.PC1–5 account for 95.8% of the total variance. (E) Distribution of PDN (MoCA ≥ 26, purple circles) and PDD (MoCA ≤ 25, gold squares) subjects by
B.PC1 and B.PC2 scores. B.PC2 scores distribute PDN from PDD subjects more effectively than B.PC1 scores. (F) ROC curve from a logistic regression model
classifying PD subjects by PDN vs. PDD status using B.PC2 scores.

indicated that the PCA results are stable and reproducible
(Supplementary Figure 1).

Examination of the PCA-A loadings revealed that the loadings
for A.PC2 have strong, positive and similar levels of contribution
from RTF-Theta values at all scalp locations, and strong negative
contributions from RTF-Beta values at locations O1, O2, P3, P4,
C3, C4, T4, T5, and T6 (Figure 5A). These results are congruent
with those found in our initial analyses: (1) Compared to control
subjects, PD subjects had lower average RTF-Beta and greater
average RTF-Theta, and (2) Arithmetic combinations of RTF-
band values that include the beta and theta bands at occipital, as

well as parietal locations, have utility in discriminating between
PD and control subjects.

A Quantitative Electroencephalography
Signature Is Associated With Cognitive
Status in the Parkinsonian State
We took a similar approach to that used to identify qEEG
features distinguishing controls from PD subjects to evaluate
whether a qEEG signature is associated with cognitive status
in the parkinsonian state. First, we compared the means of
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FIGURE 5 | Loadings of uncorrelated principal components from PCAs. (A) Loadings from the first five PCs of PCA-A (A.PC1–5), which used RTF values from scalp
locations in all subjects. (B) Loadings from the first five PCs of PCA-B (B.PC1–5), which used RTF values only from PD subjects. The amount of variance explained
by each PC is indicated parenthetically. The intensity and color of shading reflects the strength (stronger = more intense) and type of correlation (red = negative,
blue = positive) of the loading with a PC.

the RTF-band values at all scalp locations in PDN (cognitively
normal) and PDD (cognitively impaired subjects). Compared
to PDN subjects, median values in PDD subjects were lower

for RTF-Alpha [MWU: PDN MD = 0.19, PDD MD = 0.05,
U = 2.062, p = 0.0408; MT: χ2 (1, N = 20) = 3.81, p = 0.05],
lower for RTF-Beta [MWU: PDN MD = 0.08, PDD MD = 0.01,
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U = 2.557, p = 0.0087; MT: χ2 (1, N = 20) = 8.57,
p = 0.003], greater for RTF-Theta [MWU: PDN MD = 0.13,
PDD MD = 0.24, U = –2.638, p = 0.0064; MT: χ2 (1,
N = 20) = 3.81, p = 0.05] and similar for RTF-Delta [MWU:
PDN MD = 0.60, PDD MD = 0.60, U = –0.825, p = 0.4095;
MT: χ2 (1, N = 20) = 0.0, p = 1.0] (Figure 3B). This suggested
that RTF-band values at some locations, or the average RTF-band
value across all scalp locations, might be useful to discriminate
between PDN and PDD subjects.

To explore this hypothesis, we used logistic regression in an
attempt to identify RTF locations and frequency bands associated
with cognitive status in the parkinsonian state. While some RTF-
band variables (RTF-Theta in C3 and C4, RTF-Theta in O1
and O2, RTF-Theta in P3 and P4; RTF-Beta in C3 and C4,
RTF-Beta in T3, T4, or T5) resulted in models with a model
p < 0.05, either RTF-band variables did contribute significantly
to the models, or a link test run after the estimation commands
failed, suggesting that none of the models were properly specified
(Supplementary Table 2).

We therefore evaluated whether PCA could identify
uncorrelated PCs useful for classification of PD subjects by
their cognitive status (PDN vs. PDD). PCA-B was done using
RTF-band values = at the same scalp locations used in PCA-A,
but only from PD subjects. The first five PCs (named here
B.PC1 – B.PC5 to distinguish them from A.PC1-5 described
above) accounted for 95.75 percent of the total variance (B.PC1,
41.73%; B.PC2, 28.23%; B.PC3, 15.83%; B.PC4, 7.86%; B.PC5,
2.89%) (Figure 4D). We used logistic regression to evaluate
whether any of the first five B.PCs were associated with PDN
vs. PDD status. While neither age (p = 0.634), disease duration
(p = 0.444), nor sex (p = 0.116) were significantly associated
with cognitive status (Table 3), since disease duration and
age are risk factors for cognitive impairment, we evaluated
whether including these covariates improved model-fit statistics.
We found that B.PC2 was associated with PDN v PDD status
(Figures 4E,F), and that including age, disease duration
and/or sex as covariates did not improve model fit statistics
(Table 3). While some models evaluating the association
of B.PC1 and the covariates with PDN/PDD status were
significant, their model-fit statistics suggested they were not
properly specified. Models evaluating the association of B.PC3,
B.PC4, and B.PC5 with PDN/PDD status were not significant
(model p = 0.421, 0.357, 0.326, respectively). As for PCA-A,
a bootstrap analysis deriving the 95% CIs associated with
B.PC1 and B.PC2 scores, as well as other PCA parameters,
indicated that the PCA results are stable and reproducible
(Supplementary Figure 2).

Examination of the PCA-B loadings revealed that that B.PC2
has positive, similar strong level of contribution from RTF-Theta
values at all scalp locations. Less strong are negative contributions
from RTF-Beta values at central locations (C3, C4) and RTF-
Delta levels at central (C3), frontal (F3, F7, F8), and temporal
(T3, T4) locations (Figure 5B). Compared to the PCA-A loadings
distinguishing between the PD and normal state, the PCA-B
loadings distinguishing between normal and impaired cognition
in PD that involve RTF-Beta are generally less strong while those
involving RTF-Delta are generally stronger.

To address whether qEEG features associated with PDN vs.
PDD status might also be associated with the motor or disease
state, we used linear regression to evaluate if B.PC1 – B.PC5
scores were associated with scores on UPDRS-III or with H&Y
stage. These analyses did not reveal any significant associations
(UPDRS-III: B.PC1, p = 0.498, R2

= 0.0259; B.PC2, p = 0.587,
R2
= 0.0167; B.PC3, p = 0.233, R2

= 0.0267; B.PC4, p = 0.536,
R2
= 0.0216; B.PC5, p = 0.449, R2

= 0.322. H&Y stage: B.PC1,
p = 0.186, R2

= 0.168; B.PC2, p = 0.950, R2
= 0.0004; B.PC3,

p = 0.961, R2
= 0.0002; B.PC4, p = 0.722, R2

= 0.0132; B.PC5,
p= 0.282, R2

= 0.115).

DISCUSSION

Here we present a retrospective, cross-sectional analysis of
standard EEG recordings in a cohort of PD patients and healthy
controls from a clinical practice setting. We demonstrate that the
novel application of a wavelet-based transform to these routinely
gathered clinical data identifies a qEEG signature that may assist
in predicting cognitive dysfunction in PD patients. The EEG
data can contain one or more independent spectral components
that may exhibit rapid variation in their frequency based on the
underlying cortical dynamics. The wavelet transform method can
capture these rapid changes in frequency and can help derive
the instantaneous frequency of the EEG signal at multiple time
scales (Indic and Narayanan, 2011). As such, the wavelet-based
analysis used in our study has the advantage of more accurately
reflecting the dynamic character of non-stationary EEG signal at
any given time, in comparison to the Fourier or Hilbert transform
(Wacker and Witte, 2013).

Our results are in full agreement with previous reports
indicating that qEEG has utility in distinguishing the
parkinsonian state from healthy controls, as well as characterizing
the presence of cognitive impairment. In a review of 23 studies
assessing cognition in PD, Geraedts et al. (2018) reported
that in cross-sectional studies, EEG slowing correlated
with cognitive impairment, whereas in longitudinal studies,
decreased dominant frequency and increased theta power
correlated with cognitive impairment and predicted future
cognitive deterioration.

Logistic regression showed that arithmetic combinations of
RTF-band values at occipital and parietal locations such as (RTF-
Alpha + RTF-Beta)/(RTF-Delta + RTF-Theta) can distinguish
between the PD and control states. Furthermore, PCA using
RTF-band values from both control and PD subjects identified
a PC with contributions from RTF-Theta and RTF-Beta at all
scalp locations that can distinguish between PD and control
state with an AUC of 0.78. A separate PCA using RTF-band
values only from PD subjects identified a PC able to distinguish
between PDN and PDD with an AUC of 0.8929. Compared to
the PC associated with PD vs. control status, the PC associated
with PDN vs. PDD cognitive status had differing contributions
from RTF-Delta and RTF-Beta originating in the frontal and
occipital regions.

Our analysis highlights the contribution of different EEG
dynamics to the parkinsonian vs. non-disease state and
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TABLE 3 | Results of logistic regression-based classification of cognitive status in the parkinsonian state by B.PC1, B.PC2, disease duration, age and sex.

Independent variables Model P Variable* β 95% CI P-value Area under
ROC curve

Classification McFadden’s
adjusted R2

AIC Link test

Correct (%) Sensitivity (%) Specificity (%)

Disease duration 0.444 Duration 0.134 –0.239, 0.507 0.401 0.5179 70.0 100.0 0.0 –0.140 27.849 Fail

Age 0.634 Age 0.029 –0.093, 0.153 0.637 0.5595 70.0 100.0 0.0 –0.154 28.208 Fail

Sex 0.112 Sex −1.609 –3.66, 0.446 0.125 0.690 70.0 100.0 0.0 –0.060 25.903 Fail

PC1 0.0340 PC1 −0.236 –0.494, –0.0213 0.072 0.7381 70.0 85.71 33.33 0.020 23.942 Fail

B.PC1 + Disease Duration 0.0945 PC1 −0.231 –0.491, 0.039 0.082 0.7500 70.0 85.71 33.33 –0.052 25.716 Fail

Duration 0.084 –0.280, 0.449 0.652

B.PC1 + Age 0.0242 PC1 −0.369 –0.711, –0.026 0.035 0.8571 85.0 92.86 66.67 0.059 22.994 Fail

Age 0.155 –0.048, 0.358 0.134

B.PC1 + Sex 0.0282 PC1 −0.297 –0.646, –0.052 0.095 0.8333 70.0 85.71 33.33 0.047 23.298 Fail

Sex −1.971 –4.594, 0.653 0.141

B.PC1 + Disease
Duration + Age + Sex*

0.0095 PC1 −0.643 –1.302, 0.0376 0.064 0.9405 85.0 92.86 66.67 0.139 21.04 Fail

Duration −0.395 –1.303, 0.512 0.393

Age 0.389 –0.177, 0.955 0.178

Sex −5.00 –12.29, 2.29 0.179

B.PC2 0.0020 PC2 0.922 0.019, 1.925 0.045 0.8929 90.0 92.86 83.33 0.226 18.921 Pass

B.PC2 + Disease Duration 0.0085 PC2 0.985 –0.228, 1.833 0.056 0.8929 90.0 92.86 83.33 0.144 20.984 Pass

PC2 + Age 0.0041 PC2 1.295 0.0151, 2.575 0.047 0.9048 90.0 85.7 66.67 0.205 19.417 Pass

Age −0.1424 –0.406, 0.121 0.289

PC2 + Sex 0.0067 PC2 0.813 –0.100, 1.734 0.084 0.9048 85.0 85.71 83.3 0.164 20.425 Pass

Sex −0.957 –3.611, 1.696 0.479

PC2 + Disease Duration +
Age + Sex

0.0250 PC2 1.270 –0.224, 2,765 0.096 0.9048 90.0 92.86 83.33 0.044 23.36 Fail

Duration −0.051 –0.588, 0.475 0.850

Age −0.132 –0.420, 0.156 0.368

Sex −0.392 –3.98, 3.19 0.830

*In all models, the intercept was not significantly different from zero.
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cognitive impairment within the parkinsonian state. Comparing
the loadings of the PCs associated with each of these
dichotomous states reveals positive associations of RTF-Theta
and negative associations of RTF-Delta and RTF-Beta in
both the parkinsonian state and cognitive impairment within
the parkinsonian state, however, relative to the associations
distinguishing the parkinsonian and control state, the negative
associations with cognitive impairment in parkinsonian subjects
are relatively stronger for RTF-Delta and relatively weaker
for RTF-Beta. More specifically, the associations of cognitive
impairment with RTF-values in frontal, temporal and occipital
locations appear to be relatively stronger for RTF-Delta and
relatively weaker for RTF-Beta (Figure 5). These findings suggest
that the EEG state associated with disease status is not identical
to that of cognitive impairment. This difference appears to be
specific to the cognitive state as there is no association to the
severity of the motor state or disease stage.

Beta oscillations in the basal ganglia have been associated
with an anti-kinetic motor state in PD (Little and Brown, 2014).
Sustained synchronization between the subthalamic nucleus
(STN) and premotor-cortical oscillations likely disrupts normal
movement in PD (Sharott et al., 2018). Furthermore, reduction
of basal-ganglia beta oscillations by STN deep-brain stimulation
(STN-DBS) has been associated with symptomatic improvement
(Yin et al., 2021). It is conceivable that the decreased RTF-Beta
we observe reflects impaired synchrony between the basal ganglia
and the cortex. Cole et al. (2017) showed that non-sinusoidal
beta oscillations may underlie cortical pathophysiology in PD and
may reflect input synchrony onto the cortex. In that context, it is
conceivable that Fourier-based methods fail to fully capture the
temporal localization of the frequencies due to the non-stationary
nature of EEG data, and so represent the frequencies as present
throughout the recording duration. Similarly, the amplitude
corresponding to the represented frequencies was depicted as
being smooth and present throughout the recording duration.
While our study was not designed to assess the role of cortical
beta oscillations, the wavelet transform that we used can capture
rapid and discrete changes in frequency and as such may more
accurately capture the underlying cortical functional state.

Our study has several limitations: One is its retrospective
cross-sectional design and a second is its modest sample size.
Longitudinal follow-up of the non-demented patients with
assessment of the qEEG variables and cognitive status at
annual intervals could help confirm the findings of this pilot
study. Our measures of effect size will be useful to evaluate
sample-size requirements for a larger prospective study. A third
limitation is the lack of detailed characterization of the cognitive
status of the controls. The controls were selected from the
electronic medical record (EMR) and were based on the following
criteria: normal EEG, a diagnosis of syncope and absence of
a diagnosis of neurological disorder or cognitive impairment.
These controls were not clinically assessed and therefore, subtle
symptoms associated with later onset of a neurological disease
may have been missed.

A fourth limitation is that the PD subjects were on
dopaminergic medications when EEGs were recorded. The
potential contribution of dopaminergic therapy on brain activity

and consequently on the EEG in either the parkinsonian or
healthy state cannot be excluded. Dopamine has been shown
to modulate cortico-subthalamic activity in in the parkinsonian
state and dopaminergic medications lead to coherence in the
delta/theta range in the medial and orbitofrontal cortex (Sharma
et al., 2021). Furthermore, dopamine can have an effect in the
healthy brain by modulating brain dynamics (Braun et al., 2021).
Beta oscillations are associated with motor symptoms in PD
(van Wijk et al., 2016). Dopaminergic medication can induce
changes in phase-amplitude coupling and distributed coherence,
which are correlated with changes in rigidity in PD subjects
(Miller et al., 2019), so such medication impacts the elevated
synchronization seen in PD. Also, dopaminergic medications can
be associated with cognitive impairment that may be both brain-
region-specific (MacDonald et al., 2011), and dose-dependent
(Macdonald and Monchi, 2011). The potential for multifaceted
actions of dopamine in the healthy and parkinsonian state does
not allow for a clear prediction of how dopaminergic medications
would impact RTF-band values in a qEEG analysis. Therefore, the
extent to which dopaminergic therapy impacts our findings with
respect to cognition warrants further study.

In conclusion, the findings of this retrospective study provide
support for the utility of using the novel application of a wavelet-
based transform qEEG method to distinguish the parkinsonian
state and identify qEEG parameters that can serve as a biomarker
for the declining cognitive status in PD patients. Longitudinal
assessment of these qEEG parameters and correlation with
detailed clinical phenotyping as well as CSF and imaging
biomarkers in a larger cohort will provide further insight into PD
progression, the progression of cognitive impairment within PD,
and the underlying neurodegenerative process.
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