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Purpose: To investigate the dynamic functional connectivity (DFC) and static parameters

of graph theory in individuals with subjective cognitive decline (SCD) and the associations

of DFC and topological properties with cognitive performance.

Methods: Thirty-three control subjects and 32 SCD individuals were enrolled in

this study, and neuropsychological evaluations and resting-state functional magnetic

resonance imaging scanning were performed. Thirty-three components were selected

by group independent component analysis to construct 7 functional networks. Based

on the sliding window approach and k-means clustering, distinct DFC states were

identified. We calculated the temporal properties of fractional windows in each state,

the mean dwell time in each state, and the number of transitions between each pair

of DFC states. The global and local static parameters were assessed by graph theory

analysis. The differences in DFC and topological metrics, and the associations of the

altered neuroimaging measures with cognitive performance were assessed.

Results: The whole cohort demonstrated 4 distinct connectivity states. Compared

to the control group, the SCD group showed increased fractional windows and an

increased mean dwell time in state 4, characterized by hypoconnectivity both within

and between networks. The SCD group also showed decreased fractional windows

and a decreased mean dwell time in state 2, dominated by hyperconnectivity within

and between the auditory, visual and somatomotor networks. The number of transitions

between state 1 and state 2, between state 2 and state 3, and between state 2 and

state 4 was significantly reduced in the SCD group compared to the control group. No

significant differences in global or local topological metrics were observed. The altered

DFC properties showed significant correlations with cognitive performance.

Conclusion: Our findings indicated DFC network reconfiguration in the SCD stage,

which may underlie the early cognitive decline in SCD subjects and serve as sensitive

neuroimaging biomarkers for the preclinical detection of individuals with incipient

Alzheimer’s disease.

Keywords: subjective cognitive decline, dynamic functional connectivity, independent component analysis, graph
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INTRODUCTION

Individuals with subjective cognitive decline (SCD), a self-
perceived worsening of cognitive function without objectively
detected deficits, have been considered at higher risk of
developing Alzheimer’s disease (AD) dementia in the future
compared to those without cognitive complaints (Reisberg et al.,
2010; Jessen et al., 2014). AD is a progressive neurodegenerative
disorder that has three stages: the preclinical stage, mild cognitive
impairment (MCI), and dementia (Sperling et al., 2011). SCD
corresponds to the preclinical stage of the AD spectrum and
has the potential to be an effective symptomatic indicator for
future cognitive impairment (Dubois et al., 2016; López-Sanz
et al., 2017). Due to the lack of effective therapeutic methods
targeting late-stage AD patients, it is critical to investigate brain
alterations in the SCD stage to pave the way for early diagnosis
and intervention (Rabin et al., 2017; Jessen et al., 2020).

Resting-state functional magnetic resonance imaging (rs-
fMRI), which reflects intrinsic brain activity, has been proven
to be an effective and non-invasive approach for exploring the
neural mechanisms underlying neurological disorders (Biswal
et al., 1995; Lau et al., 2016). More specifically, functional
connectivity (FC), which is defined as the temporal correlation

of blood oxygenation level-dependent (BOLD) signals between

voxels or brain regions, indicates information processing and
transference across functionally coordinated brain networks (Fox
et al., 2005). Cognitive impairment could be partly attributable to
altered functional coupling in brain-wide networks, and previous
studies have reported aberrant FC and disrupted brain networks
in AD dementia and MCI patients (Delli Pizzi et al., 2019;
Franzmeier et al., 2019). Studies conducted in the SCD cohort
have also revealed decreased average FC in the posterior memory
system and between the retrosplenial cortex and precuneus
(Viviano et al., 2019), reduced FC in cortical midline structures
(Yasuno et al., 2015), increased FC between the retrosplenial
cortex and frontal cortex (Dillen et al., 2016), and increased
occipital and parietal FC associated with the severity of memory
complaints compared to normal controls (NCs) (Kawagoe et al.,
2019). Therefore, altered FC could be the neural basis underlying
early cognitive decline and serve as an objective imaging marker
to identify preclinically at-risk AD patients.

To date, most aforementioned rs-fMRI studies have focused
on static FC (SFC); however, researchers have suggested that the
brain is intrinsically a dynamic system with discrete FC patterns
switching rapidly during acquisition (Allen et al., 2014; Vidaurre
et al., 2017). Thus, the dynamic characteristics of FC provide
a novel perspective on the temporal aspects of information
processing across brain networks compared to SFC analysis
(Peraza et al., 2015; Schumacher et al., 2019). Currently, dynamic
FC (DFC) analysis has been proven to be a promising approach
for exploring neural substrates for a variety of neuropsychological
disorders, including Parkinson’s disease (Díez-Cirarda et al.,
2018; Fiorenzato et al., 2019), schizophrenia (Damaraju et al.,
2014), and AD (Jones et al., 2012; Córdova-Palomera et al., 2017;
Demirtaş et al., 2017; Brenner et al., 2018). More specifically,
AD dementia patients were suggested to spend less time in brain
functional states with strong posterior default mode network

(DMN) region contribution and more time in states with greater
anterior DMN region contribution compared to NCs (Jones et al.,
2012), and show alterations in local DFC within the temporal,
frontal-superior and default-mode networks, as well as decreased
global metastability between functional states compared to
patients with mild or subjective cognitive impairment and
NCs (Córdova-Palomera et al., 2017; Demirtaş et al., 2017). In
addition, studies have shown that amnestic MCI patients were
more likely to reveal a single dominant state and spent greater
time in a costly state relative to the most common state, which
may be attributable to reduced flexibility in resource allocation
(Brenner et al., 2018). Furthermore, studies have revealed higher
accuracy using DFC features to distinguish AD dementia or MCI
patients from NCs than SFC features (De Vos et al., 2018; Jie
et al., 2018). Alterations in functional network dynamics have
been suggested to be related to variations in the subclinical
range of memory performance, increased iron accumulation, and
the genetic risk of AD (Quevenco et al., 2017). However, few
studies have investigated DFC characteristics in SCD individuals.
A recent DFC study has shown changes in centrality frequency
(the proportion of time a hub with a high degree centrality
appeared across the entire time window) in the DMN in SCD
individuals, the abnormality of which was related to cognitive
performance (Xie et al., 2019). Another recent work has observed
higher classification accuracies in distinguishing SCD individuals
fromNCs using temporal flexibility and spatiotemporal diversity,
two measures of DFC, than static parameters of graph theory and
structural metrics of voxel-based morphometry analysis (Dong
et al., 2020). However, studies employing the DFC temporal
properties of fractional windows, mean dwell time, and the
number of transitions to SCD subjects are still lacking; these
features have been commonly described and proven to be
associated with cognition, behavior, and clinical variables in other
neuropsychological diseases (Kim et al., 2017; Li et al., 2017; Liu
et al., 2017; Díez-Cirarda et al., 2018; Fiorenzato et al., 2019).

Graph theory has been widely used in the investigation
of topological features of brain functional networks (Watts
and Strogatz, 1998). AD is described as a disconnection
syndrome, and previous studies have demonstrated disrupted
communication in peripheral regions and preserved organization
in rich-club regions in SCD participants (Yan et al., 2018). A
recent study based on the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) has observed higher nodal topological
properties (nodal strength, nodal global efficiency, and nodal
local efficiency) in SCD individuals than in NCs, and the altered
graphic parameters were significantly correlated with amyloid-β
and memory function, indicating the compensatory mechanism
of the functional connectome underlying SCD (Chen et al.,
2020). These findings have suggested the vulnerability of network
topology in the SCD stage.

In the present study, we aimed to investigate neuroimaging
biomarkers in SCD subjects from both dynamic and static rs-
fMRI perspectives and to explore whether temporal properties
of DFC were more sensitive than static parameters of graph
theory in the SCD stage. We also endeavored to determine
the relationships between rs-fMRI measures and cognitive
performance. Accordingly, we hypothesized that altered DFC
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temporal properties of fractional windows, mean dwell time,
and state transitions would be observed in SCD subjects, which
may improve the present understanding of the neural basis
underlying early cognitive decline and provide more promising
neuroimaging biomarkers for the detection of incipient AD
patients than global and local graphic parameters of SFC.

METHODS

Subjects
The present study included 32 SCD individuals matched for age,
gender, and years of education with 33 NCs. All participants
were recruited from the Drum Tower district of Nanjing by
advertisement. Individuals could participate in this study if they
were 55–75 years old, right-handed, and had at least 9 years
of education; in contrast, individuals with a history of stroke,
other neuropsychiatric disorders (Parkinson’s disease, epilepsy,
brain tumor, etc.), severe anxiety or depression, and MRI
contraindications were excluded. Individuals showing objective
impairment in the following cognitive evaluations were also
excluded from the present study (Li et al., 2019). Specifically,
three cognitive domains each containing two subtests were
assessed: auditory verbal learning test (AVLT) long-delayed
memory and AVLT recognition for episodic memory; trail
making test part A (TMT-A) and part B (TMT-B) for executive
function; and Boston naming test (BNT) and animal fluency
test (AFT) for language ability. Participants were considered
MCI patients if they had scores >1 standard deviation (SD)
below the normative means in both subtests within one cognitive
domain or>1 SD below the normative means in three single tests
in three different domains. Subjects with memory complaints
within the last 5 years and expressed worries associated with
memory decline were assigned to the SCD group; those without
memory complaints and cognitive impairments were recruited
as NCs. The study was conducted according to the Declaration of
Helsinki and approved by the institutional review boards of the
Nanjing Drum Tower Hospital. Written informed consent was
acquired from each participant after a detailed introduction of
the study procedure involved.

Neuropsychological Assessment
The standardized cognitive evaluation was performed by an
experienced psychologist. The mini-mental state examination
(MMSE) was used to assess global cognition. Another five
cognitive domains were evaluated: (1) episodic memory
measured with the AVLT, including immediate memory,
short-delayed memory, long-delayed memory, cued recall, and
recognition; (2) executive function tested with the TMT-A and
TMT-B; (3) language function evaluated with the BNT and AFT;
(4) processing speed tested with the symbol digit modalities test
(SDMT); (5) visuospatial ability assessed with the clock drawing
test (CDT).

Image Acquisition
Imaging data were acquired on a 3T Philips Achieva TX MRI
scanner using an 8-channel head coil in the Nanjing DrumTower
Hospital. The parameters of rs-fMRI were set as follows: field of

view (FOV) = 192 × 192 mm2; slice thickness = 4mm; matrix
size = 64 × 64; repetition time (TR) = 2000ms; echo time
(TE) = 30ms; flip angle = 90◦; number of slices = 35; voxel
size = 3 × 3 × 4mm with no gap. In total, 230 volumes were
acquired. Participants were instructed to lie quietly with their
eyes closed and stay awake during rs-fMRI scanning. The T1-
weighted images were obtained with the following parameters:
TR = 7,600ms; TE = 3,400ms; flip angle = 8◦; FOV = 256 ×

256× 192 mm3 and slice thickness= 1 mm.

Image Pre-processing
Pre-processing for rs-fMRI data was performed using the Data
Processing Assistant for rs-fMRI advanced edition (DPARSFA,
vision 4.3, http://www.restfmri.net) (Chao-Gan and Yu-Feng,
2010). Slice timing, realignment, nuisance regression (white
matter and cerebrospinal fluid (CSF) signals and Friston 24
head motion parameters), and spatial normalization to standard
Montreal Neurological Institute (MNI) space were carried out.
Then all images were smoothed with a 6mm full-width at half-
maximum (FWMH) Gaussian kernel. Realignment parameters
were checked, and none showed displacement above 3.0mm or
angular rotation higher than 3.0◦ among included participants.
Two-sample t-tests indicated no significant differences in the
mean framewise displacement (Jenkinson) (Jenkinson et al.,
2002) between the NC and SCD groups (0.11± 0.06mm vs. 0.11
± 0.07mm, p= 0.916).

Group Independent Component Analysis
After data pre-processing, spatial group independent component
analysis (ICA) was conducted to decompose the data into seven
functional networks using the Group ICA of fMRI Toolbox
(GIFT) (Calhoun et al., 2001a). Two data reduction steps were
performed in the principal component analysis (Allen et al.,
2014). First, subject-specific data were reduced to 120 principal
components and were concatenated across time. Then, the
group-level data were decomposed into 100 components with
the expectation-maximization algorithm (Roweis, 1998). We
repeated the Infomax ICA algorithm in ICASSO 20 times to
ensure stability and reliability (Himberg et al., 2004). Subject-
specific spatial maps and time courses were extracted by the back-
construction approach (GICA) implemented in GIFT software
(Calhoun et al., 2001b).

Among the resulting 100 components, we identified 33
of them to construct seven functional networks following a
previously described procedure (Allen et al., 2014). First, we
manually checked whether the peak activation coordinates were
mainly located in gray matter, showing low spatial overlap with
vascular, ventricular, or edge regions corresponding to artifacts.
Then, only components showing time courses dominated by
low-frequency fluctuations were selected (Cordes et al., 2000).
Based on the spatial correlation values between the components
and the network template (Shirer et al., 2012), we sorted and
rearranged the retained 33 independent components into seven
functional networks (Figure 1): 2 to the basal ganglia network
(BG), 2 to the auditory network (AUD), 7 to the visual network
(VIS), 4 to the sensorimotor network (SMN), 6 to the cognitive

Frontiers in Aging Neuroscience | www.frontiersin.org 3 February 2021 | Volume 13 | Article 646017

http://www.restfmri.net
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Chen et al. DFC Alterations in SCD Subjects

executive network (CEN), 8 to the DMN, and 4 to the cerebellar
network (CB).

Postprocessing steps of the time courses of 33 components
were performed according to Allen et al. (2014), including
detrending, despiking with AFNI’s 3dDespike algorithm, and
filtering using a fifth-order Butterworth filter with a 0.15Hz high
frequencies cut-off.

Dynamic Functional Connectivity Analysis
Sliding Window Approach
The DFC analysis was performed with the sliding window
approach using the DFC network toolbox in GIFT. Consistent
with previous studies, the rs-fMRI data were divided into
windows of 22 TR in size with a Gaussian of σ = 3 TRs, in steps
of 1 TR (Allen et al., 2014). The regularized inverse covariance
matrix was used to reduce the impact of insufficient information
on short time series (Varoquaux et al., 2010). We applied an L1
penalty on the precisionmatrix to promote sparsity in the graphic
LASSO framework with 100 repetitions (Friedman et al., 2008).
The FC matrices were z-transformed to stabilize the variance.

Clustering Analysis and Calculation of Temporal

Properties
All windowed FC matrices across all subjects were used to
estimate the DFC states. The k-means clustering analysis was
repeated 100 times, and the Euclidean distance was used to
measure the similarity between FC matrices and regroup them
into distinct clusters (Díez-Cirarda et al., 2018). Four was
determined as the optimal number of clusters following the elbow
criteria (Damaraju et al., 2014).

We investigated the temporal properties of DFC states
by calculating the fractional windows (the number of total

windows belonging to a given state), mean dwell time (the
number of consecutive windows belonging to a given state),
and the number of transitions (the number of transitions
between each pair of states) (Fiorenzato et al., 2019). The
differences in dynamic properties were computed by two-sample

TABLE 1 | Demographic and clinical data.

NC (n = 33) SCD (n = 32) Statistics p

Age 64.55 ± 5.33 65.22±5.02 t(63) = 0.524 0.602

Gender (M/F) 8/25 5/27 χ
2
(1) = 0.754 0.385

Education years 12.97 ± 3.34 12.25 ± 2.62 t(63) = −0.965 0.338

MMSE 28.97 ± 1.31 28.66 ± 1.31 t(63) = −0.964 0.339

AVLT immediate 17.55 ± 4.57 16.94 ± 4.77 t(63) = −0.525 0.601

AVLT short

delayed

5.27 ± 2.79 4.78 ± 2.32 t(63) = −0.771 0.444

AVLT long delayed 5.00 ± 2.86 4.56 ± 2.38 t(63) = −0.669 0.506

AVLT cued recall 4.70 ± 2.32 4.53 ± 2.05 t(63) = −0.305 0.762

AVLT recognition 21.91 ± 1.44 21.50 ± 1.34 t(63) = −1.181 0.242

AFT 19.18 ± 4.00 18.38 ± 4.80 t(63) = −0.737 0.464

BNT 27.39 ± 2.45 27.03 ± 2.63 t(63) = −0.575 0.567

TMT_A 58.24 ± 21.32 60.44 ± 16.66 t(63) = 0.462 0.646

TMT_B 131.42 ± 29.66 164.06 ± 64.81 t(63) = 2.624 0.011*

SDMT 41.94 ± 9.22 36.84 ± 10.55 t(63) = −2.075 0.042*

CDT 27.91 ± 1.99 26.75 ± 3.04 t(63) = −1.825 0.073

APOE (ε3ε3/ε3ε4) 17/5 23/5 χ
2
(1) = 0.183 0.669a

Values are the mean ± standard deviation. MMSE, mini-mental state examination; AVLT,

auditory verbal learning test; AFT, animal fluency test; BNT, Boston naming test; TMT-A,

trail making test part A; TMT-B, trail making test part B; SDMT, symbol digit modalities

test; CDT, clock drawing test; APOE, apolipoprotein E. *p < 0.05, aAPOE ε4 status not

determined for the whole cohort.

FIGURE 1 | Independent components (n = 33) identified by group independent component analysis. (A) Independent component spatial maps divided into seven

functional networks. (B) Group averaged static functional connectivity matrix between pairs of independent components. BG, basal ganglia; AUD, auditory; VIS,

visual; SMN, sensorimotor; CEN, cognitive executive; DMN, default mode; CB, cerebellar.
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t-tests, except for the state distribution compared by the chi-
square test.

Graph Theory Analysis
Graph theory parameters were analyzed using GRETNA
software (http://www.nitrc.org/projects/gretna) based on the 33
independent components obtained in the ICA (Wang et al.,

2015). The sparsity value of 0.34 was selected to maximize
global and local efficiency (Achard and Bullmore, 2007). The
global network metrics measured were global efficiency (the
efficiency of parallel information transfer in a network) and the
clustering coefficient (the mean of clustering coefficients of each
node in a network) (Wang et al., 2011). The nodal network
metrics measured were clustering coefficients (the likelihood

FIGURE 2 | The four states identified by k-means clustering analysis and the corresponding cluster centroids. The total number and percentage of the reoccurrence

times of each state are listed above each cluster (A), and the 5% strongest connections of each state are shown (B). BG, basal ganglia; AUD, auditory; VIS, visual;

SMN, sensorimotor; CEN, cognitive executive; DMN, default mode; CB, cerebellar.

FIGURE 3 | The four dynamic functional connectivity patterns of the two groups. (A) The centroid matrices for the normal controls. (B) The centroid matrices for the

subjective cognitive decline participants.
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that the neighborhoods of a given node are connected), shortest
path (the mean distance between a given node and all the
other nodes in the network), local efficiency (how efficient the
communication is among the first neighbors of a given node
when it is removed), and degree centrality (the information
communication ability of a given node in the functional network)
(Wang et al., 2011). The group differences in graph theory
parameters were compared with two-sample t-tests with false
discovery rate (FDR) correction.

Apolipoprotein E Genotyping
DNA extraction from 300 µL of whole blood per subject
was performed using an SK2884 DNA extraction kit (Sangon
Biotech, Shanghai, China). Apolipoprotein E (APOE) single
nucleotide polymorphism (SNP) genotyping was performed for
rs429358 and rs7412 using polymerase chain reaction (PCR)
technology. We determined the APOE ε4 status for 50 of
the 65 participants (22/33 of the NC group and 28/32 of the
SCD group).

Statistical Analysis
Age, years of education, and cognitive scores were compared
using two-sample t-tests, while gender and APOE ε4 status were
calculated by chi-square tests.We further calculated the Pearson’s
correlations between the altered DFC temporal properties,
graph theory parameters, and cognitive measures, adjusting for
age, gender, and years of education. Statistical analyses were
performed with SPSS version 21.0, and p < 0.05 was set as the
threshold for statistical significance.

RESULTS

Demographic and Cognitive
Characteristics
No significant differences in terms of age, gender, or years of
education were found between the SCD andNC groups. The SCD
participants showed abilities comparable to the controls in the
global cognition, episodic memory, language, and visuospatial
domains. The SCD group performed worse on the TMT-B [t(63)

FIGURE 4 | Temporal properties of dynamic functional connectivity states between the two groups. (A) Fractional windows in each state. (B) Mean dwell time in each

state. (C) The number of transitions between pairs of states. The parameters of each individual in the normal control (NC) and subjective cognitive decline (SCD)

groups are presented in blue and khaki dots respectively. The black lines indicate the mean values, and the light gray rectangles cover the data within one standard

error above and below the mean. *p < 0.05; **p < 0.01.
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= 2.624, p = 0.011] and SDMT [t(63) = −2.075, p = 0.042].
Detailed demographic and clinical information is shown in
Table 1.

Dynamic Functional Connectivity
Differences
Four DFC states of the whole cohort were identified (Figure 2)
as follows: (1) state 1, 21% of the windows, characterized by
partly strongly connected components within the VIS, CEN and
DMN, and anti-related correlations between the DMN and the
other networks; (2) state 2, 16% of the windows, distinguished
by the predominance of strong positive intra-network and
inter-network FC in the AUD, VIS, and SMN, while negative
correlations between the AUD-VIS-SMN regions and other
networks; (3) state 3, 12% of the windows, a highly connected
state demonstrating positive couplings of intra-network and
inter-network connections involving components of nearly the
whole brain; and (4) state 4, 52% of the windows, a hypo-
connected state showing sparsely connected patterns located
mostly within each network and between each pair of networks,
except for moderate FC within the VIS and DMN.

The state- and group-specific centroids of clusters for the NC
and SCD groups are shown in Figures 3A,B, respectively. The
proportion of the state differed significantly between the two
groups [χ2

(3) = 973.444, p < 0.001]. More specifically, in the
SCD group, state 1 occurred slightly less frequently than it did in
the NC group (19.85 vs. 21.40%) as did state 3 (10.10 vs. 13.35%).
Also, state 2 occurred less frequently (6.94 vs. 23.98%), whereas
state 4 occurred more often (63.12 vs. 41.27%) in the SCD group
compared to the NC group. Regarding the temporal properties

(Figure 4A), the SCD group was observed to have significantly
reduced fractional windows in state 2 [t(63) =−3.053, p= 0.003],
and increased fractional windows in state 4 [t(63) = 3.153, p =

0.002]. The SCD group also showed a significantly reduced mean
dwell time in state 2 [t(63) =−2.736, p= 0.008] and an increased
mean dwell time in state 4 [t(63) = 3.079, p= 0.003] (Figure 4B).
Additionally, significant reductions in the transitions between
state 1 and state 2 [t(63) =−2.005, p= 0.049], between state 2 and
state 3 [t(63) = −2.307, p = 0.024], and between state 2 and state
4 were observed in the SCD group compared to the NC group
[t(63) =−2.099, p= 0.040] (Table 2 and Figure 4C).

Graph Topological Parameters
After FDR correction, we observed no significant differences
either in the global or in the nodal network metrics between the
NC and SCD groups.

Relationships Between Altered
Neuroimaging Measures and Cognitive
Function
Significant associations between altered neuroimaging
measures and cognitive variables are summarized in
Supplementary Table 1. In the whole cohort, the number
of fractional windows and mean dwell time of state 4 both
showed significant positive correlations with the time spent
on the TMT-A (r = 0.343, p = 0.006; r = 0.255, p = 0.045,
respectively). The transitions between state 1 and state 2 showed
positive correlations with AVLT immediate memory scores (r =
0.265, p = 0.037), and the transitions between state 2 and state

TABLE 2 | Dynamic functional connectivity temporal properties.

NC

(n = 33)

SCD

(n = 32)

Statistics p Cohen’s d

Fractional windows State 1 44.52 ± 46.40 41.28 ± 48.41 t(63) = −0.275 0.784 0.068

State 2 49.88 ± 56.26 14.44 ± 34.37 t(63) = −3.053 0.003* 0.760

State 3 27.76 ± 43.88 21.00 ± 45.64 t(63) = −0.609 0.545 0.151

State 4 85.85 ± 56.06 131.28 ± 60.10 t(63) = 3.153 0.002* 0.782

Fractional windows (%) State 1 1469 (21.40) 1321 (19.85)

State 2 1646 (23.98) 462 (6.94)

State 3 916 (13.35) 672 (10.10) χ
2
(3) = 973.444 <0.001*

State 4 2833 (41.27) 4201 (63.12)

Dwell time (windows) State 1 16.22 ± 13.72 16.52 ± 16.93 t(63) = 0.078 0.938 0.019

State 2 17.38 ± 19.17 6.49 ± 11.97 t(63) = −2.736 0.008* 0.681

State 3 12.21 ± 12.77 8.68 ± 15.14 t(63) = −1.015 0.314 0.252

State 4 26.04 ± 18.19 58.41 ± 57.52 t(63) = 3.079 0.003* 0.759

Number of transitions State 1-2 0.48 ± 1.06 0.09 ± 0.30 t(63) = −2.005 0.049* 0.501

State 1-3 0.30 ± 0.77 0.19 ± 0.40 t(63) = −0.757 0.452 0.179

State 1-4 2.82 ± 2.71 3.06 ± 2.63 t(63) = 0.369 0.713 0.090

State 2-3 0.82 ± 1.61 0.13 ± 0.55 t(63) = −2.307 0.024* 0.574

State 2-4 2.00 ± 2.26 0.97 ± 1.64 t(63) = −2.099 0.040* 0.522

State 3-4 1.03 ± 1.69 1.00 ± 1.70 t(63) = −0.072 0.943 0.018

Values are the mean ± standard deviation. *p < 0.05.
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3 were positively correlated with AVLT recognition scores (r =
0.257, p= 0.044).

In the NC group, both more fractional windows of state 4 and
longer time dwelt in state 4 correlated with lower MMSE scores
(r = −0.499, p = 0.005; r = −0.420, p = 0.021). The transitions
between state 1 and state 2 showed positive correlations with
AVLT immediate memory scores (r= 0.410, p= 0.025) and BNT
scores (r = 0.364, p= 0.048).

In the SCD group, more fractional windows in state 4 were
associated with longer time spent on the TMT-A (r = 0.370, p
= 0.048), whereas longer time dwelt in state 2 predicted higher
AVLT recognition scores (r = 0.392, p = 0.036). The transitions
between state 1 and state 3, and between state 2 and state 4 were
positively correlated with the AVLT recognition scores (r= 0.409,
p= 0.028; r = 0.376, p= 0.045).

DISCUSSION

In the present study, we combined the ICA, DFC, and graph
theory approaches to investigate the dynamic characteristics
and global/local network topology of intrinsic connectivity
networks in SCD individuals. The results revealed altered
DFC temporal properties of fractional windows, mean dwell
time, and the number of transitions in SCD subjects, which
showed significant associations with cognitive performance. No
significant differences in static parameters of graph theory were
observed. These findings shed light on the role of DFC in
the early detection of subjects with potential AD, and the
alterations in DFC may suggest the neural basis underlying early
cognitive decline.

As noted above, four distinct connectivity configurations were
identified across the entire cohort. Consistent with previous
findings (Allen et al., 2014; Kim et al., 2017; Viviano et al.,
2017; Schumacher et al., 2019; Gu et al., 2020), the hypo-
connected state occurred most frequently, that is, state 4 in the
present study, characterized by a sparse connectivity pattern
with relatively weak connections and the absence of strong
correlations. This state profile was considered the baseline
connectivity pattern, while other states with strong positive or
negative connections may reflect neuropsychological processes
(Viviano et al., 2017). The high occurrence of state 4 may indicate
that, on the whole, the human brain prefers to be in a state with
less information transfer but a more energy reservation pattern
(Gu et al., 2020). In comparison with the NC group, state 2,
showing hyperconnectivity within and between the AUD, VIS,
and SMN, occurred 17.04% less frequently in the SCD group. In
contrast, state 4 occurred 21.85% more often in SCD participants
than in the NCs. The differences in state distribution suggested
that the SCD group was more inclined to be in a state with
reduced intra-network and inter-network interaction rather than
that dominated by high AUD-VIS-SMN communication.

Variability in temporal properties of brain states during the
time of the experimentally unconstrained scanning session was
detected. The SCD group showed significantly fewer fractional
windows and shorter mean dwell time in state 2 than the NC
group, suggesting decreased within-network connectivity and

reduced AUD-VIS-SMN network integration in the SCD stage.
Increasing evidence has suggested that auditory, visual, and
sensorimotor dysfunctions are commonly involved during AD
progression and may precede the onset of cognitive impairments
and dementia (Albers et al., 2015; Deng et al., 2016). Our
results of weak connectivity in sensory domains may provide
an explanation for these deficits in the earliest stages of AD.
In addition, the reduced interaction among AUD-VIS-SMN
networks was consistent with the concept that cognitive decline
in AD is a disconnection syndrome closely associated with the
functional segregation of coordinated brain networks (Delbeuck
et al., 2003). A recent DFC study has shown significantly lower
temporal variability involving the regions of the SMN and VIS
in AD dementia patients, which could be related to reduced
flexibility in sensory, motor, and visual functions (Gu et al.,
2020). Another study has observed a significant reduction in the
frequency and mean dwell time in the state characterized by
strong positive correlations within and between the visual and
motor networks in AD dementia patients (Schumacher et al.,
2019). The present study extends previous findings by showing
that brain network reorganization in SCD individuals presents a
similar pattern to that of AD dementia patients.

The SCD group also showed significantly increased fractional
windows and a significant increase in mean dwell time in state
4 compared to the NC group. A previous study has observed
that AD dementia patients spent more time than NCs in
sparse connectivity configurations, indicating their inability to
switch out of states with low inter-network connectivity into
more highly and specifically connected network configurations;
this deficiency might be related to cognitive deterioration
(Schumacher et al., 2019). Our results of more time spent in
the sparsely connected state in the SCD group supported the
concept that SCD was a preclinical stage of the AD spectrum
from the perspective of DFC state patterns. Notably, the SCD
group showed fractional windows and a mean dwell time in
state 3 similar to those of NCs, which was dominated by strong
connections within and between distinct functional networks.
The SCD group also showed similar fractional windows and a
similar mean dwell time in state 1, which was characterized by
anti-correlations between the DMN and other networks; these
anti-correlations have been shown to be crucial for cognitive
processes (Fox et al., 2005; Baggio et al., 2015). The absence of this
antithetic association has been reported inMCI andADdementia
patients (Esposito et al., 2018; Schumacher et al., 2019). We
speculated that contrary to the symptomatic AD stage, the strong
connections in the whole brain networks and the antagonism
between the DMN and task-positive networks may remain stable
in the SCD stage to support objectively unimpaired cognition,
and this speculation remains to be further validated.

Regarding the number of transitions between distinct states,
the SCD group demonstrated significantly reduced transitions
between state 1 and state 2, between state 2 and state
3, and between state 2 and state 4 in the present study.
State transitions are believed to reflect neural metastability,
which enables multiple brain regions to engage and disengage
flexibly in coordination without being locked into fixed
interaction patterns (Li et al., 2017). Frequent transitions between
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discrete connectivity patterns also facilitate flexible information
integration and intensive information exchange across multiple
specialized subnetworks (Li et al., 2017). The configurations
of multiple brain regions interacting in complex and flexible
communication patterns may be disrupted in SCD individuals.
These results elucidated the vulnerability of rs-fMRI networks in
the SCD stage and emphasized the importance of investigating
the dynamic characteristics of the brain.

We observed significant associations between DFC properties
and cognitive performance. The more time participants spent
in state 4, the worse executive and general cognitive function
they had. State 4 represents the most hypo-connected networks
among all 4 states, including weak intra-network connectivity
in the CEN and weak inter-network connectivity between
the CEN and other brain modules, which may contribute to
ineffective information transfer and processing, thus resulting
in worse executive and general cognitive ability. The more
frequent transitions between states predicted better performance
on immediate and recognition memory tests, which may imply
potential relationships between neural flexibility and memory
function. A previous study has revealed a reduction in brain
metastability related to cognitive impairments in cognitive
flexibility, speed of information processing, and associative
memory (Hellyer et al., 2015). The inflexibility of functional
networks may result in the loss of memory encoding and retrieval
efficiency in SCD individuals. We also observed a significant
association between longer time dwelt in state 2 and better
recognition memory performance in the SCD group, indicating
that functional integration of the AUD-VIS-SMN may help
strengthen memory function. In addition, increased switches
between distinct dynamic FC states may also contribute to better
language ability. These findings provide evidence that altered
dynamic functional brain organization is linked to cognitive
function, which may further serve as the neural substrates
underlying cognitive decline in the SCD stage. Notably, the
relationships between DFC temporal properties and the cognitive
variables reported above did not survive multiple comparison
corrections and further research is needed to confirm these
exploratory results.

In contrast to the remarkable dynamic FC alterations, we
did not find differences in either global or local topological
parameters by graph theory approaches. Previous studies have
shown topological alterations in SCD subjects (Chen et al., 2020;
Xu et al., 2020), and we speculated that the discrepancies may
be attributable to the different diagnostic criteria for SCD, the
variations in demographics of the cohorts, and methodological
aspects (Wang et al., 2020). These studies also revealed no group
differences in the static analysis of global and local efficiency
between AD dementia patients and NCs (Peraza et al., 2015;
Schumacher et al., 2019). Our findings provide further evidence
that DFC, which captures the temporal variations of FC, may be
a more informative representation of functional brain networks
than SFC for the preclinical detection of incipient AD patients.

Several limitations in the present work should be considered.
First, this is a cross-sectional study conducted in a small cohort,
while AD is a progressive neurodegenerative disorder; therefore,
longitudinal studies with large cohorts are needed to elucidate the
role of DFC in the whole AD spectrum. Second, the acquisition

time of rs-fMRI data was 8min 7 s, though researchers have
suggested that DFC analysis should be performed with rs-fMRI
acquisition times> 10min. Third, no pathological evidence from
amyloid or tau positron emission tomography (PET) and CSF
was available. The impact of AD pathology on the interaction
and modulation of brain functional networks needs to be further
investigated. Notably, the p values in the correlational analysis
may not remain significant if multiple comparison corrections
were applied, and the large number of zero values may have an
impact on the results; thus, the associations between altered DFC
parameters and cognitive variables were exploratory results and
warrant further validation. Furthermore, the APOE ε4 genotype
may have an impact on the fMRI measures, thus in our future
study with a larger sample size of APOE ε4 carriers, we will
investigate differences in DFC properties between APOE ε4
carriers and non-carriers in SCD subjects.

CONCLUSION

In the present study, we investigated alternations in DFC
temporal properties in SCD individuals, with a focus on the
fractional windows, mean dwell time, and state transitions. We
observed increased fractional windows and mean dwell time in a
hypo-connected state and a reduced number of state transitions
in the SCD group compared to the NC group. Furthermore,
the altered DFC measures were significantly correlated with
cognitive variables. Our findings suggested that DFC analysis
may provide novel insights into the organization principles
of brain networks underlying early cognitive decline in the
SCD stage and benefit the preclinical detection of incipient
AD patients.
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