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Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized
by senile plaques (SPs), which are caused by amyloid beta (Aβ) deposition and
neurofibrillary tangles (NFTs) of abnormal hyperphosphorylated tau protein. The receptor
for advanced glycation end products (RAGE) binds to advanced glycation end products
deposited during vascular dysfunction. Alzheimer’s disease may occur when RAGE
binds to Aβ and releases reactive oxygen species, further exacerbating Aβ deposition
and eventually leading to SPs and NFTs. As it is involved in early AD, RAGE may
be considered as a more potent biomarker than Aβ. Positron emission tomography
provides valuable information regarding the underlying pathological processes of AD
many years before the appearance of clinical symptoms. Thus, to further reveal the role
of RAGE in AD pathology and for early diagnosis of AD, a tracer that targets RAGE is
needed. In this review, we first describe the early diagnosis of AD and then summarize
the interaction between RAGE and Aβ and Tau that is required to induce AD pathology,
and finally focus on RAGE-targeting probes, highlighting the potential of RAGE to be
used as an effective target. The development of RAGE probes is expected to aid in AD
diagnosis and treatment.
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INTRODUCTION

Alzheimer’s disease (AD) is the first major neurodegenerative disease with irreversible, occult, and
rapid progression. With aging of the population, AD has become a major disease affecting public
health (Nebel et al., 2018; Bo et al., 2019). The etiology and pathogenesis of AD are not fully
understood, and currently, there is no specific treatment. More importantly, early diagnosis of
AD is limited. The cost of treatment and care for AD is enormous, imposing a heavy burden on
patients, families, and the society. Therefore, brain function imaging, developed on the basis of
brain metabolism research targeting AD pathogenesis, plays an increasingly important role in the
study of pathological processes in the AD brain.

The pathological features of AD are senile plaques (SPs), containing neurotoxic amyloid beta
(Aβ) as the main component, and neurofibrillary tangles (NFTs), with abnormally activated tau as
the main component in nerve cells. Neurofibrillary tangles and SPs are currently recognized as the
earliest pathological changes in AD, with SPs reaching their maximum deposition in the early stage
of AD, termed the “capping effect,” which allows for amyloid plaque imaging in vivo. Tracking
the slow progress of AD is difficult (Dubois et al., 2018). Therefore, an in-depth exploration of

Frontiers in Aging Neuroscience | www.frontiersin.org 1 August 2020 | Volume 12 | Article 227

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2020.00227
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnagi.2020.00227
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2020.00227&domain=pdf&date_stamp=2020-08-04
https://www.frontiersin.org/articles/10.3389/fnagi.2020.00227/full
http://loop.frontiersin.org/people/878733/overview
http://loop.frontiersin.org/people/933072/overview
http://loop.frontiersin.org/people/438726/overview
http://loop.frontiersin.org/people/470717/overview
http://loop.frontiersin.org/people/499888/overview
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-00227 July 31, 2020 Time: 15:58 # 2

Kong et al. RAGE Molecular Imaging in AD

AD pathogenesis with the development of new radioactive probes
that detect pathological changes earlier to Aβ deposition is
currently a hotspot in AD research.

The receptor for advanced glycation end products (RAGE)
belongs to the immunoglobulin superfamily of cell surface
molecules and is situated in the major histocompatibility complex
class III locus (Xue et al., 2011; Han et al., 2014). It binds to
its ligand, advanced glycation end products (AGEs), through its
V-type region, which is a key site that mediates intracellular
signal transduction (Kim et al., 2013; Abedini et al., 2018).
While mild hypoperfusion can increase the levels of neuronal
Aβ and NFTs, expressed as paired helix filaments, increasing
evidence shows that RAGE levels are significantly elevated in
patients with AD and AD models (Cai et al., 2016; Chellappa and
Rani, 2020; Paudel et al., 2020). Receptor for advanced glycation
end products-mediated Aβ-injured tight junctions may also be
associated with a variety of intracellular signal transduction
pathways, Ca2+, or inflammatory damage (Nelson et al., 2016;
Cai et al., 2017; Sole et al., 2019). Further, immunohistochemical
evidence shows that the distribution of RAGE abnormalities is
consistent with that of NFTs and SPs. In addition, glycosylated
tau can induce significant oxidative stress and cause neuronal
insufficiency or death (Srikanth et al., 2011; Cai et al., 2016).
Receptor for advanced glycation end products may play an
important role in the occurrence and development of AD, yet its
underlying mechanism is still unclear. Thus, it is necessary to lay
emphasis on the role of RAGE in AD pathology.

Early Progression of AD
The etiology of AD is complex, and there are currently no specific
drugs and methods to treat AD. Many drugs can only achieve
remission (Wong et al., 2019). Positron emission tomography
(PET), as a molecular imaging technique, can reflect pathological
changes at the molecular level and can non-invasively detect
the distribution of radionuclides in the body, which reflects
physiological, biochemical, metabolic, and receptor changes, as
well as gene expression and other abnormal changes (Hannestad,
2018; Mankoff and Katz, 2018). Thus, it is an important
auxiliary tool for AD research. At present, there are several
types of AD PET imaging agents (Bao et al., 2017) targeting
glucose metabolism, receptors, or transmitters, Aβ, Tau protein,
neuroinflammation, and monoamine oxidase. However, these
agents have certain limitations for the early diagnosis of AD.

In recent years, research on AD has mainly focused on the
two major pathological features of AD: Aβ and tau. However,
although some individuals show Aβ or Tau deposition as
detected on medical images, they exhibit no dementia symptoms
(Hardy and Selkoe, 2002). Moreover, studies have shown that
Aβ deposition is slow and protracted, likely lasting over 20
years, while the association of Aβ accumulation with cognitive
impairments is weak (Villemagne et al., 2013). Additionally, the
current probes cannot distinguish among the six subtypes of Tau
protein, and their off-target effects are more serious (Robertson
et al., 2017). Therefore, finding new targets and developing
the corresponding probes for AD are particularly important
for AD research.

Current studies have shown that in early vascular dysfunction
of AD, inflammatory mediators, such as tumor necrosis factor
alpha (TNF-α), in brain microvascular endothelial cells (BMECs),
are released, thus increasing cerebral vascular permeability (Qiu
et al., 2016), enabling AGEs and other neurotoxicants to cross
the blood–brain barrier (BBB) and cause AGE deposition.
This leads to a significant upregulation of RAGE in BMECs
(Liang et al., 2015), which leads to an inflammatory response
by vascular endothelial and nerve cells, activates the release
of reactive oxygen species (ROS), which promotes oxidative
stress, and results in the secretion of nitric oxide synthase and
further increases Aβ deposition in the brain. Aβ increases the
activation of microglia, which, in turn, accelerates nerve vessel
dysfunction. Neuronal dysfunction promotes the pathogenesis of
NFTs, thus causing the formation of additional SPs and NFTs,
disturbing the balance in the chemical components of the neuro-
microenvironment. This further promotes neuronal dysfunction,
injury, and loss (Wells et al., 2015; Cai et al., 2016) (see Figure 1).
Based on the above, RAGE and AGEs could play an important
role in the early pathological changes of AD.

AGE-Related RAGE Processes and NFTs
Abnormally activated tau is the main component of NFTs, and
NFT deposition in the hippocampus and entorhinal cortex is
correlated with the severity of behavioral degeneration in the
progression of dementia (Saint-Aubert et al., 2017). Advanced
glycation end products are the final products of the non-
enzymatic glycation of proteins, which is irreversible. The non-
enzymatic saccharification processes accompanying neuronal
metabolism have far-reaching effects despite the slow and
insignificant cell damage they cause (Kamynina et al., 2018). In
AD, AGEs have been shown to induce tau hyperphosphorylation
in SK-N-SH cells, primary hippocampal neurons, and rat
brains through the RAGE/GSK-3 pathway (Li X.H. et al.,
2012; Son et al., 2012). As AGEs downregulate the brain-
derived neurotrophic factor–tyrosine receptor kinase B pathway
in rat brains and N2A cells (Li X.H. et al., 2012), they could
activate glycogen synthase kinase 3 at Ser9, thus regulating
its phosphorylation, which was found to be a trigger of tau
hyperphosphorylation (Wu et al., 2019). Simultaneously, in situ
techniques have shown that the major structures recognized
by anti-AGE antibodies, hydroxymethyl lysine (CML) and
glycosylated precursor hexitol-lysine, increase in the NFTs of
patients with AD. In these patients, CML colocalizes with the tau
protein. Immunostaining experiments have shown that almost all
AGE-immunoreactive neurons contain the hyperphosphorylated
tau protein, confirming the role of AGE aggregation in early
NFT formation and neuronal degeneration (Qi et al., 2017) (see
Figure 2). As an increase in AGEs causes an upregulation of
RAGE, the connection between AGEs and NFTs indicates a
strong link between RAGE and tau hyperphosphorylation.

The deposition of AGEs in the brain participates in the
pathogenesis of AD through RAGE and cross-links with NFTs.
This deposition activates microglia and nicotinamide adenine
dinucleotide phosphate oxidase, leading to ROS release and
the formation of peroxynitrite, a potent oxidant of proteins,
lipids, and DNA (Nam et al., 2012), ultimately causing nerve
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FIGURE 1 | Receptor of advanced glycation end products (RAGE) mediates the possible mechanism of Alzheimer’s disease (AD). Interaction of RAGE with
advanced glycation end products (AGEs) and β-amyloid (Aβ) allows them to cross the blood–brain barrier and enter the brain. Aβ deposition in the brain promotes
the expression of tumor necrosis factor α (TNF-α), interleukin (IL)-1, and IL-6, and exacerbates the inflammatory response. Increased binding of Aβ to RAGE after
entering the brain can also upregulate RAGE expression, resulting in increased release of reactive oxygen species (ROS) and upregulation of Aβ expression, which
then promotes the generation of senile plaques (SPs). The upregulation of RAGE exacerbates phosphorylation of tau protein and promotes the generation of
neurofibrillary tangles (NFTs). AGEs and RAGE phosphorylate glycogen synthase kinase 3 (GSK-3β), which, in turn, exacerbates the phosphorylation of tau protein
and promotes the generation of NFTs. Upregulation of Aβ and tau protein levels promote the occurrence and development of AD.

destruction. Therefore, treating AGEs may become a new
way to treat AD.

Role of the Interaction Between RAGE
and Aβ in AD
A growing body of evidence suggests that RAGE is an important
regulator of Aβ neurotoxicity. Aβ-damaged BMECs and the
destruction of the BBB may be new characteristic pathological
changes in AD (Lv et al., 2014). In AD, RAGE expression is
significantly upregulated in areas where Aβ is deposited (Wang
et al., 2009). Receptor for advanced glycation end products is
a pattern recognition receptor, and Aβ, as one of its ligands,
was shown to interact with it (Paudel et al., 2020); however, the
specific mechanism underlying this interaction and its role in
patients with AD need further clarification.

The interaction of RAGE with Aβ activates inflammatory
signaling pathways, releases ROS to produce oxidative stress,
and causes neuroinflammation, thus inducing the dysfunction of

mitochondria and neurons (Deane et al., 2008), as well as changes
in various signaling mechanisms such as the mitogen-activated
protein kinase pathway (Deane, 2012). Further, RAGE accelerates
the uptake and transport of Aβ, which causes Aβ to cross the BBB
and enter the central nervous system through endocytosis (Deane
et al., 2003), causing cerebrovascular dysfunction, eventually
leading to neurovascular inflammation and subsequent synaptic
toxicity (Deane and Zlokovic, 2007), thereby affecting the normal
activity of the central nervous system (Zhang et al., 2011; Galasko
et al., 2014; Wang et al., 2014; Cai et al., 2016; Fang et al., 2018).
The interaction between RAGE and Aβ is harmful to the body.
Studies have found that, in transgenic mice with defective RAGE
expression, Aβ in the brain is completely inhibited from crossing
the BBB (Deane and Zlokovic, 2007).

High expression of RAGE is also harmful to the body. First, it
activates the nuclear factor κB, further increasing the expression
of RAGE and forming a positive feedback effect on inflammation
(Wan et al., 2015; Fang et al., 2018). Second, it increases
the expression of nuclear factor-1 in activated T-cells and of
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FIGURE 2 | Receptor of advanced glycation end products (RAGE) mediates the possible mechanism of neurofibrillary tangle (NFT) formation in the pathogenesis of
dementia complicated with Alzheimer’s disease.

amyloid precursor protein (APP) β-site cleavage enzyme 1 (also
known as BACE1), an important enzyme that cleaves amyloid
precursors (Yan et al., 1996; Fang et al., 2010; Guglielmotto et al.,
2012; Galasko et al., 2014). Increased BACE1 activity increases
Aβ production (Maesako et al., 2019). In addition, Aβ can
activate RAGE, increasing the expression of pro-inflammatory
cytokines like TNF-α, interleukin 6 (IL-6), and macrophage
colony-stimulating factor (Dukic-Stefanovic et al., 2003). In turn,
RAGE activation exacerbates the production and aggregation of
Aβ and the formation of NFTs and destroys synaptic transmission
and neurons (Cai et al., 2016) (see Figure 3), which promote the
occurrence and development of AD.

Inhibition of RAGE can prevent Aβ damage in nerve cells
and cerebral vasculature. The possible mechanism of RAGE
function in AD provides a theoretical basis and new ideas for
the early diagnosis of AD and development of new drugs for the
prevention and treatment of AD.

RAGE and RAGE-Targeting Brain
Imaging
Many studies have shown that AGEs are important in
neurodegenerative diseases (Li J. et al., 2012; Nenna et al., 2015),
while in vitro and in vivo studies have demonstrated the potential
of RAGE as a receptor for AGE and as a therapeutic target in
neurodegeneration (Sparvero et al., 2009; Deane et al., 2012;
Nasser et al., 2015; Ray et al., 2016). Receptor for advanced

glycation end products PET imaging has also been proven
to assist in the diagnosis and treatment of neurodegenerative
diseases (Kim et al., 2018; Konopka et al., 2018; Goldklang et al.,
2019). The full-length human RAGE consists of three domains,
namely, the extracellular, the hydrophobic transmembrane, and
the cytoplasmic domains, while the main binding domain
structure V is located on the extracellular part of the receptor
(Bongarzone et al., 2017). Receptor for advanced glycation end
products is expressed in a regulated manner, at low levels, in
most differentiated adult cells, whereas its expression is high in
embryonic cells (Demling et al., 2006). Moreover, RAGE is highly
expressed in many inflammation-related pathological states such
as vascular disease, diabetes, and neurodegeneration (Hudson
et al., 2008; Sparvero et al., 2009). It is important in Aβ-mediated
neurotoxicity (Piras et al., 2014), and its signaling pathway is
also essential in AGE-induced tau phosphorylation and spatial
memory impairment (Choi et al., 2014). Studies using murine
models of chronic disease have demonstrated the involvement
of RAGE in pathophysiological processes by means of a receptor
decoy of soluble RAGE (Bierhaus et al., 2005). Moreover, RAGE
was found to be relatively increased on the membrane of neurons
and microglia in AD-related neuronal dysfunction (Yan et al.,
1996; Cai et al., 2016). Considering the key functions of RAGE,
there is a need for molecular imaging agents to measure RAGE
expression in neurodegenerative diseases.

For developing novel RAGE inhibitors as potential AD
therapeutics, Han et al. (2014) designed and synthesized a
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FIGURE 3 | Receptor of advanced glycation end products (RAGE) mediates the possible mechanism of Aβ in the pathogenesis of Alzheimer’s disease.

series of pyrazole-5-carboxamides to screen for excellent RAGE
inhibitors. Screening identified a 4-fluorophenoxy analog with
significant brain Aβ-lowering effects, as well as favorable aqueous
solubility named 40, which were determined to be excellent
RAGE inhibitors. Deane et al. (2012) synthesized a high-affinity
RAGE-specific inhibitor, FPS-ZM1, which was selected after
screening a second-generation library of compounds designed
based on the common structural features of three leading
compounds in a primary screen. Compared to other analogs
(e.g., FPS1, FPS2, and FPS3), the functional groups of the leading
tertiary amides in FPS-ZM1 were altered to reduce the molecular
weight to less than 450 Da and decrease the number of hydrogen
bonds. FPS-ZM1 has a molecular weight of 327 Da and 1 H-bond
(see Table 1). The authors verified its effect using APPsw/0 mice,
an AD model, and found that it can cross the BBB, acts on
the V-type region of RAGE, and can still bind to RAGE after
crossing the BBB, thereby blocking the role of intracranial RAGE
(Lv et al., 2015; Hong et al., 2016). These results indicated the
guaranteed binding ability of FPS-ZM1. In addition, FPS-ZM1
was shown to completely restore cerebral blood flow, inhibit
neurotoxicity, microglial activity, and the neuroinflammatory
response and improve cognitive behavior. Moreover, FPS-ZM1
has a wide safety range, with no toxic effects, even when using
doses 500 times higher than the therapeutic dose (Deane et al.,
2012). The above suggest that FPS-ZM1 is a potent multimodal

RAGE blocker that effectively controls the progression of Aβ-
mediated neurodegeneration and, thus, may be used as a disease-
modifying agent for AD.

Based on the importance of the RAGE signaling pathway
in AGE-induced tau phosphorylation and spatial memory
impairment, research and development of imaging agents with
characteristics that can reflect the early pathological mechanism
of AD is a highly active field. According to the above
characteristics of FPS-ZM1, Cary et al. (2016) synthesized the first
small-molecule BBB-permeable PET radioligand for RAGE, [18F]
RAGER, and conducted a preliminary preclinical study. Micro-
PET imaging in rodents and non-human primates indicated
that [18F] RAGER clusters in the expression area of RAGE,
while further molecular docking experiments determined the
binding site of RAGER, indicating that [18F] RAGER and RAGE
distribution area colocalization may have a binding effect. Kong
et al. (2016) identified a new [18F]-FPS-ZM1 probe targeting
RAGE among thousands of small molecules by testing different
radiolabeling methods. The probe was radioactively synthesized
with a purity of up to 99% and an activity of 30 mCi/ml
and was shown to be lipophilic. The authors also studied the
probe’s hemodynamics and verified its safety by performing
animal experiments. They found that the low-molecular-weight
[18F]-FPS-ZM1 is stable, electrically neutral, lipophilic, and
weight independent. Micro-PET imaging and autoradiography
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TABLE 1 | Features of FPS1-3 and FPS-ZM1.

MW 530 548 458 327

Ki (nM) 208 ± 12A 146 ± 21A 50 ± 9 25 ± 9A

Ki/Kd 2.78 ± 0.17A 1.94 ± 0.21A 0.66 ± 0.09 0.34 ± 0.04A

PS product (µl/g/min) ND ND 0.35 ± 0.10 18.67 ± 2.78

Brain uptake (%) ND ND 0.71 ± 0.20 37.34 ± 5.56

MW, molecular weight; Ki, inhibitory constant; Kd, dissociation constant; PS, permeability surface area.

TABLE 2 | PET and SPECT radioligands for imaging RAGE.

Radiotracer Method Leading compound Applied disease References

99mTc-F(ab′)2 SPECT Polyclonal antibody to RAGE Atherosclerosis and peripheral
arterial disease

Shan, 2004; Tekabe et al., 2010

18F-S100 PET A multigenic family of Ca2+-modulated
proteins (S100)

No related reports Hoppmann et al., 2008; Wolf et al., 2011

64Cu-Rho-G4-CML PET Carboxymethyl-lysine-modified human
serum albumin

Cancer Konopka et al., 2018

18F-FPS-ZM1/18FRAGER PET RAGE-specific inhibitor (FPS-ZM1) Alzheimer’s disease Lv et al., 2015; Kong et al., 2016

RAGE, receptor of advanced glycation end products; SPECT, single-photon emission computed tomography; PET, positron emission tomography.

results also indicated that [18F]-FPS-ZM1 is a promising RAGE-
specific probe.

Several studies have documented other PET imaging probes
for early AD diagnosis, such as those aimed at various targets,
including Aβ, tau, and others. Tau-targeting imaging probes
such as [18F]-THK-5351, [18F]-THK-5117, and [18F]-AV-1451
show a high uptake in the patients’ cortex (Harada et al., 2015;
Lemoine et al., 2015; Passamonti et al., 2017; Kobayashi et al.,
2018; Valotassiou et al., 2018), which means that they can
accurately detect NFTs, thus helping in the early diagnosis of
AD. At the same time, [11C] PiB, an analog of thioflavin-T and a
benzothiazole derivative, was the first probe specifically targeting
Aβ (Rabinovici et al., 2007; Lim et al., 2014; Lemoine et al., 2015;
Kobayashi et al., 2018). Since then, many new probes targeting Aβ

have appeared, including [18F]-florbetapir, [18F]-florbetaben, and
[18F]-flutemetamol, all showing high affinity and specificity for
Aβ (Valotassiou et al., 2018). These tau and Aβ-targeting probes
can also be used for quantification analysis to further validate the
role of RAGE in the pathogenesis of AD (Fang et al., 2018). As
RAGE overexpression precedes Aβ plaque formation (Luzi et al.,
2020), [18F]-FPS-ZM1 PET/CT imaging is expected to be more
sensitive than traditional Aβ imaging. It can monitor changes in
cerebrovascular function over time and thus provide accurate,

reliable, and reproducible non-invasive in vivo quantitative data
for local or whole-brain pathological changes.

Although many tracers have been developed to aid in
the diagnosis and treatment of AD, including those targeting
tau, P2X7, phosphodiesterase PDE10A, and synaptic vesicle
glycoprotein 2A (McCluskey et al., 2020), only few RAGE-
targeting imaging tracers are currently available apart from [18F]-
FPS-ZM1, and they all have certain limitations in the diagnosis
of AD. Available RAGE probes include the 99mTc-F(ab′)2 anti-
RAGE fragment developed by Tekabe et al. (Shan, 2004; Tekabe
et al., 2010), which has only been applied in atherosclerosis and
peripheral arterial disease, but not in AD. Another probe was
developed by Hoppmann et al. (2008) on the basis of a multigenic
family of Ca2+-modulated proteins, namely, S100, as RAGE
ligands. However, compared with the high affinity and specificity
of FPS-ZM1 for RAGE, this probe lacks stability and has low
affinity for RAGE (Wolf et al., 2011). Recently, another RAGE-
targeting probe, 64Cu-Rho-G4-CML, was developed by Konopka
et al. (2018), which may be the best RAGE-targeting imaging
agent currently available for cancer. However, its size prevents it
from crossing the BBB, rendering it ineffective for neurological
assessments (Konopka et al., 2018). Compared with these three
probes, [18F]-F PS-ZM1 is expected to be more potent and
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could greatly improve early diagnosis, prevention, screening, and
evaluation of AD and could help develop an imaging agent with
appropriate characteristics that can reflect the early pathological
mechanism of AD (Table 2).

CONCLUSION

There is currently no breakthrough drug treatment for AD, which
has become a serious social and economic problem. Although
the progression of AD cannot be prevented or reversed, the
availability of radioactive tracers for RAGE PET imaging will
allow us to monitor RAGE brain expression levels in AD.
Receptor for advanced glycation end products has an important
role in the development of AD, but the kind of state RAGE
exists in AD and the way it acts on Aβ and tau have yet to be
determined. It is unclear whether increased RAGE expression
affects the behavior and pathophysiology of AD models. Thus, an
in-depth study of the mechanism of action of RAGE is essential
for the further understanding of neurological diseases.

In this review, we introduced the RAGE-targeting probe
[18F]-FPS-ZM1. Compared with probes targeting Aβ and the
tau protein, [18F]-FPS-ZM1 has advantages in exploring the

involvement of RAGE in AD pathogenesis. Due to its high
specificity and affinity for RAGE, [18F]-FPS-ZM1 is believed
to provide accurate and reliable in vivo data for studying
local or whole-brain pathological changes. Thus, [18F]-FPS-
ZM1 could greatly promote the early diagnosis and evaluation
of AD and provide a way to reflect the early pathological
mechanism of AD.
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