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Alzheimer’s disease (AD) is pathologically characterized by beta-amyloid (Aβ)
plaques and Tau pathology. It is well-established that Aβ plaques are surrounded
by reactive astrocytes, highly expressing glial fibrillary acidic protein (GFAP). In
order to study the cellular interaction of reactive astrocytes with Aβ plaques,
we crossbred mice overexpressing amyloid precursor protein (APP) with the
Swedish-Dutch-Iowa mutations (APP-SweDI) with mice expressing green fluorescent
protein (GFP) under the GFAP-promotor. Three-dimensional confocal microscopy
revealed a tight association and intense sprouting of astrocytic finely branched
processes towards Aβ plaques in 12 month old mice. In order to study
phagocytosis, 110 µm thick brain slices from 12 month old crossbred mice were
cultured overnight, however, we found that the GFP fluorescence faded, distal
processes degenerated and a complete loss of astrocytic morphology was seen
(clasmatodendrosis). In summary, our data show that GFP+ reactive astrocytes
make intense contact with Aβ plaques but these cells are highly vulnerable for
degeneration.
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INTRODUCTION

Alzheimer’s disease (AD) comes along with a severe cognitive decline and is characterized by the
extracellular deposition of beta-amyloid (Aβ) plaques, intraneuronal Tau pathology, synaptic loss
resulting in cholinergic neuronal cell death and inflammatory processes such as the activation of
astrocytes and microglia (Selkoe, 2001). It is well-established that Aβ plaques in AD are surrounded
by reactive gial-fibrillary acidic protein (GFAP)+ astrocytes (Sofroniew and Vinters, 2010;
Colangelo et al., 2014; Pekny et al., 2014). Recent studies suggest also beneficial roles for astrogliosis
in AD. In fact, reactive astrocytes surrounding plaques can release matrix-metalloproteinases or
neprilysin causing degradation of Aβ plaques (Yan et al., 2006; Lim et al., 2011;Webster et al., 2014).

Abbreviations: Aβ, Beta-amyloid; AD, Alzheimer’s disease; APP, Amyloid precursor protein; GFAP, Glial fibrillary
acidic protein; GFP, Green fluorescent protein.
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Moreover, there is evidence that reactive astrocytes can also
phagocyte Aβ plaques, as shown by incorporating FITC-labeled
Aβ peptides (Wyss-Coray et al., 2003; Jones et al., 2013).
However, so far to our best knowledge, a detailed 3-Dimensional
confocal imaging of the cellular interaction between reactive
astroglia and plaques has not yet been shown.

We recently reported that in an AD mouse model reactive
astrocytes in proximity to plaques express a calcium channel
subunit, as well as neuropeptides, possibly playing a role in
angiogenic responses (Daschil et al., 2013, 2015). To gain more
cellular insight into the role of reactive astrocytes surroundingAβ

plaques we cross-bred the same transgenic AD mice with mice
expressing green fluorescent protein (GFP) under the GFAP-
promotor. By means of immunohistochemistry and 3D confocal
microscopy we aimed to characterize these GFP+ reactive
astrocytes surrounding Aβ plaques in the cortex. Further, we
aimed to culture brain slices of these mice to follow up
the morphology of these GFP+ cells, especially to test for
phagocytosis.

MATERIALS AND METHODS

Transgenic Alzheimer mice were purchased from MMRRC
(USA). These animals express the human amyloid precursor
protein (APP) harboring the Swedish K670N/M671L, Dutch
E693Q and Iowa D694N mutations and have been extensively
characterized (Davis et al., 2004). Generation of APP-SweDI
× GFP-GFAP mice was established by crossing the animals
previously mentioned to mice expressing enhanced GFP (eGFP)
under the promotor of GFAP (Nolte et al., 2001; kindly
provided by Prof. Kettenmann, Berlin). All experiments were
performed in accordance to Austrian animal protection and
welfare act.

Twelve month old mice were anesthetized (Ketamin
100 mg/kg/ Xylazine 10 mg/kg) and subsequently
transcardially perfused with phosphate-buffered saline and 4%
paraformaldehyde immersed in 20% sucrose. Brains were frozen
in a CO2 stream and cut into coronal sections of 40 µm with a
cryostat. Immunohistochemistry was performed as described in
detail (Daschil et al., 2013, 2015). After pretreatment, sections
were incubated with primary antibodies (Aβ, 1:1000, Sigma
A8978; GFAP, 1:2000, Millipore AB5541) for 2–3 days at
4◦C. Sections were rinsed and incubated with the secondary
antibody (1:400; Alexa Fluor 546, Invitrogen). Fluorescent
sections were analyzed using an Olympus BX61 (ProgRes
C14 camera) microscope equipped with an OpenLab 5.5.0
imaging software. Z-stacks were recorded by using a SP5
confocal microscope (Leica Microsystems, Wetzlar, Germany)
with a HCX PL APO 63×/1.3 NA glycerol objective. Imaging
of eGFP and Alexa 546 was performed using an argon laser
and a DPSS561 laser, respectively. Emission of fluorophores
was detected from 493 to 556 nm (eGFP) and 566 to 628 nm
(Alexa546). Images were acquired by using the LAS AF
acquisition software (Version 2.1.), further deconvoluted with
the Huygens Professional software (Scientific Volume Imaging,
Netherlands) and finalized with the Imaris 8 software (Bitplane
AG, Switzerland).

To study cultured GFP+ astrocytes some brains
were sectioned using a cooled vibratome as described
in detail for organotypic brain slices (Ullrich et al.,
2011). The animals were sacrificed and the brains were
dissected. Vibrosections (110 µm) were sagittally cut and
incubated in slice medium overnight at 37◦C, 5% CO2.
Live cell imaging was performed with a Leica DM IRB
inverse microscope and photos were taken after 0–6 h of
incubation.

Western blot analysis was carried out as described previously
(Hochstrasser et al., 2011). Brain extracts were loaded onto
polyacrylamide gels and electrophoresis was performed for
35 min at 200 V. Protein was subsequently electrotransferred
to nylon PVDF Immobilon-PSQ membranes. For detection,
the Western Breeze Chemiluminescent System (Invitrogen) was
used. Blots were incubated with the primary anti-eGFP (1:1000,
Abcam ab184601), anti-GFAP (1:2000, Millipore, AB5541) or
anti-actin (1:500; Sigma, A2066) antibodies.

RESULTS

Association of GFP+ Reactive Astrocytes
with Aβ Plaques
In order to study GFP+ reactive astrocytes surrounding Aβ

plaques we established a new mouse model (the crossbred APP-
SweDI × GFP-GFAP mice). As expected, the Aβ plaque density
was very high in 12 month old mice in the cortex, amygdala,
thalamic nuclei and to a lesser extent in hippocampi (data
not shown). GFP+ astrocytes were expressed predominantly in
cortical and thalamic areas (data not shown). However, approx.
30–45% of all animals did not show GFP+ cells. The GFP+

astrocytes were highly positive for GFAP (Figures 1A–C) but also
several GFP negative astrocytes were observed (Figures 1A–C).
3D Confocal microscopy confirmed the colocalization of GFP+

and GFAP+ astrocytes (Figures 1D,E). Interestingly, GFAP
was predominantly distributed in the main branches and
perinuclear region of astrocytes whereas GFP was additionally
expressed in fine ramified processes (Figures 1D,E). Some
double positive astrocytes were surrounded by single GFAP+

astroglia (Figure 1D). By means of confocal microscopy
and subsequent 3D-imaging, we could demonstrate a tight
association between reactive GFP+ astrocytes and some Aβ

plaques. Interestingly, thick branches of astrocytes directly
extended towards Aβ deposits (Figures 2A–C). An extensive
spreading of numerous thin and ramified processes was
observed in all directions but particularly towards Aβ plaques
(Figure 2B).

Morphology of GFP+ Astrocytes in Culture
The culturing of vibratome brain slices over 24 h caused
a dramatic change in astrocytic shape, a process which
is termed ‘‘clasmatodendrosis’’ (Figure 3B). In comparison,
those brain slices which were not cultured overnight showed
healthy GFP+ astrocytes with intense arborization (Figure 3A).
Immunohistochemistry revealed the presence of GFAP in a few
GFP+ astrocytes affected by clasmatodendrosis (Figure 3C).
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FIGURE 1 | Colocalization of green fluorescent protein (GFP)+ and glial fibrillary acidic protein (GFAP)+ astrocytes. Sections of amyloid precursor protein
(APP)-Swedish-Dutch-Iowa (SweDI) × GFP-GFAP mice were immunohistochemically stained for GFAP (B–E). In a cluster of reactive astroglia, many cells were
double positive for both GFP (green, A) and GFAP (red, indicated by an arrow, A–C). However, some astrocytes were positive for either GFP or GFAP (A–C).
Confocal microscopy of brain sections clearly shows double positive astrocytes (indicated by a thick arrow D,E) adjacent to an astrocyte being merely positive for
GFAP (indicated by thin arrows, D). Scale bar = 35 µm (A–C), 6 µm (D,E).

FIGURE 2 | GFP+ astrocytes extend towards beta-amyloid (Aβββ) plaques
in 12 month old APP-SweDI × GFP-GFAP mice. 3D-imaging reveals the
tight association of reactive astrocytes (green) with Aβ plaques (red; A,C).
Thick astrocytic branches extend towards Aβ plaques and fine processes
showed intense arborization (B). Scale bar = 5 µm (A), 7 µm (B,C).

GFP+ astrocytes almost completely and rapidly lost fluorescence
during culturing as seen in experiments using live cell imaging
(Figures 3E–H). This fading of GFP fluorescence was also

observed by means of Western blot analysis, clearly showing
a strong decrease of GFP protein after an incubation period
of 1 day compared to control protein levels analyzed on day
0 (Figure 3D). Additionally, we observed an increase in the
molecular weight of GFAP (from 40 to 80 kDa) after 24 h
of incubation suggesting an aggregation of this intermediate
filament protein (Figure 3D).

DISCUSSION

By employing confocal microscopy together with 3D imaging
we reveal a close interaction between reactive astrocytes and
Aβ plaques. In this study we could show that reactive astroglia
extend their processes towards extracellular deposits of Aβ

protein in the brain of transgenic AD mice. Further analyses
demonstrate that prolonged in-vitro culture of brain slices results
in clasmatodendrosis of reactive astrocytes.

Reactive GFP+ Astrocytes Surrounding
Aβ Plaques
It is well-established that Aβ plaques are surrounded by reactive
GFAP+ astrocytes in AD mouse brains (Nagele et al., 2004;
Olabarria et al., 2010; Daschil et al., 2013, 2015; Serrano-Pozo
et al., 2013; Rodríguez-Arellano et al., 2016). In order to study
the morphology of reactive astrocytes in proximity to Aβ plaques
we cross-bred APP-SweDI mice (Davis et al., 2004) with GFP-
GFAP mice (Nolte et al., 2001), harboring GFP in astrocytes.
Reminiscent to previous studies (Nolte et al., 2001) 30–45% of the
mouse offspring did not harbour GFP+ astrocytes, nevertheless
all littermates were fully viable. The reason for the loss of
GFP in these crossbred mice is not known, however, an active
metabolism and turnover of GFP and loss of fluorescence, an
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FIGURE 3 | Clasmatodendrosis in cultured astrocytes of 12 month old APP-SweDI × GFP-GFAP mice. Healthy astrocytes were detected in 110 µm
vibratome brain slices immediately fixed after sectioning. Note the distinct processes and arborization (A). However, 24 h after culturing cells dramatically changed
their morphology resulting in the loss of distal processes as well as the generation of isolated fluorescent bodies with no connection to the former cell (B). Some
clasmatodendritic cells still showed the presence of a few slight glial fibrilllary acidic protein (GFAP)+ branches (C). Western blot analysis revealed a decrease in GFP,
whereas the GFAP protein was enhanced in size after 24 h of culturing (D). Size marker are given in kDa. In vitro live cell imaging shows that many GFP+ cells
degenerate already within 3 h of culturing (E–H). Scale bar = 5 µm (A,B), 7 µm (C), 40 µm (E–H).

enhanced GFP toxicity or an increased sensitivity of GFP+

astrocytes for cell death may occur. We could show that all
animals exhibited severe plaque load in 12 month old mice
as shown previously (Daschil et al., 2013). Interestingly, GFP+

astrocytes also appeared in areas with less or even no Aβ plaques,
which is in line with Simpson et al. (2010). In accordance with
Nolte et al. (2001) GFP did not completely overlap with GFAP+

astrocytes. This is due to the different expression patterns of
these proteins, since GFP is expressed in the cytoplasm and
fine processes. On the other hand, GFAP is mainly localized in
cytoskeletal perinuclear domains and thick processes arranged in
intermediate filament bundles (Nolte et al., 2001; Suzuki et al.,
2003).

GFP+ Reactive Astrocytes Make Contact
with Aβ Plaques
Several studies have proven an association and sometimes even
a penetration of reactive astrocytes with Aβ plaques (Serrano-
Pozo et al., 2013). In the majority of cases, astroglia were

visualized by an antibody directed against GFAP since this
is the most appropriate marker to detect reactive astrocytes
(Sofroniew and Vinters, 2010). However, we could show now
for the first time a clear extension of thick and particularly
finely branched astrocytic processes which were GFP positive
and directed towards Aβ plaques by means of 3D confocal
microscopy. In addition, we could nicely demonstrate that
the astrocytic processes not just penetrated but also clasped
around Aβ deposits. Since GFAP expression is predominantly
restricted to perinuclear domains andmain branches, thismarker
is not suitable to visualize the finely arborized processes of
astroglia.

Culturing of GFP+ Astrocytes and
Clasmatodendrosis
It has been shown that reactive astrocytes are capable of
phagocytosing Aβ deposits or dead cells after brain injury and
thereby protecting surrounding healthy neurons from cell death
(Wyss-Coray et al., 2003; Lööv et al., 2012; Jones et al., 2013). The
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occurrence of lysosomes additionally strengthens the hypothesis
that astrocytes are involved in phagocytosis (Jones et al.,
2013). In order to study phagocytosis of GFP+ astrocytes,
we cultured brain sections of 12 month old mice overnight.
However, we observed a gradual degradation of astrocytic
morphology and a loss of GFP fluorescence upon prolonged
in vitro culturing already 3 h after dissection of cortical
brain slices. For that reason it was difficult to perform
extensive analysis of phagocytosis by astrocytes. We found
that GFP+ astrocytes entirely lost their distal processes giving
rise to isolated fluorescent bodies resulting in a process
termed clasmatodendrosis. There are clear indications that
astrocytes undergo clasmatodendrosis after hyperglycemia or
ischemia or acidosis (Duchen, 1992; Hulse et al., 2001) but
also in AD (Tomimoto et al., 1997; Sahlas et al., 2002;
Mercatelli et al., 2016). Our data show that GFP+ astrocytes
undergo clasmatodendrosis already within 3 h, which was
surprising, because we used a well-defined serum medium
and conditions which are neither acidic nor ischemic. Such a
medium has been proven to be suitable to culture astroglia
in organotypic brain slices for several weeks. Thus, it can be
concluded that these GFP+ astrocytes are very sensitive for cell
death.

Taken together, our data show for the first time a detailed
cellular 3D confocal imaging of reactive astrocytes around

plaques, showing small ramified processes towards Aβ plaques.
By culturing organotypic brain slices we could observe a severe
change in morphology such as the complete loss of astrocytic
processes as well as the generation of isolated fluorescent bodies.
In conclusion, this study provides insights into the cellular
interaction of activated astrocytes in relation with plaques,
further supporting the phagocytic role of reactive astrocytes
in AD.
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