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Objective: Breast cancer is highly heterogeneous, presenting challenges in
prognostic assessment. Developing a universally applicable prognostic model
could simplify clinical decision-making. This study aims to develop and validate a
novel breast cancer prognosis model using coagulation-related genes with broad
clinical applicability.

Methods: A total of 203 genes related to coagulation were obtained from the
KEGG database, and the mRNA data of 1,099 tumor tissue samples and
572 samples of normal tissue were retrieved from the TCGA-BRCA cohort
and GTEx databases. The R package “limma” was utilized to detect variations
in gene expression related to coagulation between the malignancies and normal
tissue. A model was constructed in the TCGA cohort through a multivariable Cox
regression analysis, followed by validation using the GSE42568 dataset as the
testing set. Constructing a nomogram incorporating clinical factors to enhance
the predictive capacity of the model. Utilizing the ESTIMATE algorithm to
investigate the immune infiltration levels in groups with deferent risk.
Performing drug sensitivity analysis using the “oncoPredict” package.

Results: A risk model consisting of six coagulation-associated genes (SERPINA1,
SERPINF2, C1S, CFB, RASGRP1, and TLN2) was created and successfully tested for
validation. Identified were 6 genes that serve as protective factors in the model’s
development. Kaplan-Meier curves revealed a worse prognosis in the high-risk
group compared to the low-risk group. The ROC analysis showed that the model
accurately forecasted the overall survival (OS) of breast cancer patients at 1, 3, and
5 years. Nomogram accompanied by calibration curves can also provide better
guidance for clinical decision-making. The low-risk group is more likely to
respond well to immunotherapy, whereas the high-risk group may show
improved responses to Gemcitabine treatment. Furthermore, individuals in
distinct risk categories displayed different responses to various medications
within the identical therapeutic category.

Conclusion: We established a breast cancer prognostic model incorporating six
coagulation-associated genes and explored its clinical utility. This model offers
valuable insights for clinical decision-making and drug selection in breast cancer
patients, contributing to personalized and precise treatment advancements.
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1 Introduction

Breast cancer is a global health problem on the rise that affects
women of different ages in various countries. The most recent global
cancer statistics from the World Health Organization (WHO) show
that breast cancer has a prevalence of 11.6% worldwide, placing it in
second position after lung cancer. Breast cancer has a mortality rate
of 15.4% in women, leading to the highest number of cancer-related
deaths among women (Siegel et al., 2024). Breast cancer exhibits
diversity at the biological level, with prognosis being impacted by a
range of factors such as molecular subtypes, age at diagnosis, and
histopathological features (Brown et al., 2023). Recent
advancements in early detection methods for breast cancer and
the ongoing progress in treatment options have greatly enhanced the
outlook for patients with this disease (Will et al., 2023; Brown et al.,
2024). Especially as people’s understanding of the immune
microenvironment deepens, the utility of immunotherapy in
breast cancer treatment continues to ascend. However, due to the
substantial heterogeneity of the disease and intrinsic or acquired
drug resistance, current clinical treatments still face significant
challenges.

The tumor microenvironment (TME), serving as both a driving
force and a regulatory factor in cancer development, facilitates
tumor proliferation, migration, and treatment resistance (Gao
et al., 2022; Shahzad et al., 2022; Xing et al., 2022). New evidence
suggests that there is a close association between the coagulation
process and the tumor microenvironment (Xu et al., 2022; Wei et al.,
2023). Malignant solid tumors typically activate coagulation directly
by releasing procoagulants like tissue factor (TF, encoded by the
F3 gene). This establishment of a hypercoagulable state can lead to
venous thromboembolism, resulting in local hypoxia and necrosis,
thus reshaping the tumor microenvironment. This reshaping
includes the accumulation of immunosuppressive immune cells,
microvascular proliferation, and tumor cell migration, all of which
promote tumor growth and metastasis (Riedl et al., 2017; Gofrit and
Shavit-Stein, 2019; Feinauer et al., 2021). A comprehensive analysis
across multiple types of cancer revealed a strong correlation between
elevated levels of the fibrinolysis gene cluster and characteristics of
the tumor microenvironment (TME), including the presence of
monocytes and increased expression of immune checkpoint markers
(Saidak et al., 2021). Additionally, research has shown that platelets
have the ability to hinder the function of immune cells (such as by
dampening the cytotoxic effects of Nature Killer cells and T cells)
through the release of growth factors, cytokines, and coagulation
factors, ultimately facilitating immune escape during tumor
progression (Dann et al., 2018). More than just platelets, Graf’s
research indicates that FX synthesized by myeloid cells can also
promote immune evasion in tumors. The group discovered that the
utilization of a coagulation factor FX inhibitor could boost the
presence of dendritic cells (DCs) and cytotoxic T cells in the tumor
location (Graf et al., 2019). They also discovered that combining the
FX inhibitor with anti-PD-L1 inhibitor significantly improved anti-
tumor immunity. The investigations above demonstrate a tight
interplay between the coagulation process and TME, this
connection has a constantly impact on tumor initiation,
progression, and regulating anti-tumor immune responses.

Different types of cells interact harmoniously in the tumor
microenvironment (Pitt et al., 2016). Local recruitment of

leukocytes and activation of inflammation in the TME intricately
regulate coagulation and fibrin formation. The tumor coagulome, a
molecular effector network favored by cancer, contributes to
thrombosis or bleeding, has emerged as a hot topic in cancer
research (Wahab et al., 2023). Recent studies (Tinholt et al.,
2024) have revealed the crucial role of coagulation-related genes
in the tumor microenvironment of breast cancer, particularly in
predicting patient prognosis and response to chemotherapy. These
findings suggest that targeted therapy strategies against coagulation
group genes have the potential to enhance the efficacy of
immunotherapy and reduce the risk of thrombosis, thereby
opening up new avenues for breast cancer treatment. Based on
the findings, it is essential to further explore the prognostic potential
of coagulation group genes in breast cancer and their impact on
clinical treatment decisions. This will facilitate a more
comprehensive understanding and utilization of these genes as
potential biomarkers and therapeutic targets.

With the benefit of latest progress in bioinformatics and
genomic information, we are able to investigate the connection
between tumor coagulome and TME in breast cancer with greater
accuracy and thoroughness. By using the COX regression analyses,
we identified important prognostic genes from coagulation-related
genes (CRGs) in breast cancer, creating a detailed prognostic model.
This model includes 6 key genes and integrates clinical pathological
features. Through the model, we identified differences in prognosis,
immune microenvironment, and drug sensitivity among different
risk groups. This provides personalized recommendations for
clinical treatment of breast cancer and guidance for identifying
beneficiaries of immunotherapy in breast cancer.

2 Materials and methods

2.1 Patients and mRNA sequences data
acquisition

Acquired cancer tissues mRNA-seq information in TPM form
from The Cancer Genome Atlas (TCGA) and the mRNA data of
normal tissues from Genotype-Tissue Expression (GTEx) database.
Extracted data corresponding to 1,099 cases of invasive breast cancer
from TCGA, along with 113 adjacent normal tissue samples, and
459 normal tissues data from GTEx. Retrieved the microarray data
set GSE42568 from the Gene Expression Omnibus (GEO) database.
All samples were included in the analysis of gene expression
differences and correlations. Cases with complete clinical and
pathological data were used for clinical correlation and
prognosis analysis.

2.2 Selection and analysis of genes related to
coagulation for differential expression

To identify a subset of coagulation-related genes from a vast
pool of candidates, we leveraged the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database. KEGG is a comprehensive
repository housing detailed functional information on genes,
genomes, chemical molecules, and cellular processes. By
delineating pathways and networks involving genes and their
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products, KEGG facilitates researchers in comprehending cellular
functions and disease mechanisms. Employing pathway data from
KEGG allowed us to pinpoint genes already implicated in the
coagulation cascade, thereby streamlining our investigation and
directing focus towards genes most pertinent to our research
inquiry. The tumor tissues from the TCGA-BRCA cohort were
used as experimental group samples, while the control group
consisted of 113 adjacent-tumor samples and 459 normal tissue
samples from GTEx. The “limma” package was utilized to generate a
matrix of gene expression differences, with a threshold set at
adjusted p-value <0.05 and |LogFC |>1 to identify differentially
expressed mRNAs. Visualizing differential gene expression using the
“pheatmap” package.

2.3 Analysis of functional enrichment

Functional enrichment analysis was performed on data to
confirm the intrinsic functionality of differentially expressed
genes. The Gene Ontology (GO) serves as a prevalent method for
gene annotation, encompassing molecular function (MF), biological
pathways (BP), and cellular components (CC). After the initial
KEGG analysis, we identified coagulation-related genes.
Subsequently, we conducted another enrichment analysis using
the KEGG database to further explore the functional validation
and mechanisms of the differentially expressed coagulation genes.
This step represents the validation of differential coagulation gene
functions and the exploration of their mechanisms. It aids in
uncovering the potential roles of these genes in the occurrence
and development of breast cancer, as well as their interactions and
impact on the disease progression.

The KEGG database is a useful resource for gaining a deep
understanding of genome-wide functionality. By performing
Gene Set Enrichment Analysis (GSEA), we identified pathways
that were enriched in the differential genes between the high-risk
and low-risk groups. To fully comprehend the target mRNA
carcinogenesis, we employed the “ClusterProfiler” to examine
GO function, enrich KEGG pathway, and conduct GSEA.
Visualizations of enrichment analysis results were generated
using the ggplot2 package.

2.4 Analysis of protein-protein interactions
(PPI) networks and identification of
central genes

The CRGs that showed differential expression were analyzed for
protein-protein interactions using the STRING database, with a
minimum interaction score of 0.7. Central genes were extracted with
the degree centrality algorithm in Cytoscape software (version 3.8.2)
with the assistance of the “cytoHubba” plugin for network
visualization. According to this algorithm, the degree of nodes in
the network can be calculated, which refers to the number of edges
directly connected to a node. The higher the degree of a node, the
greater its importance in the network. Node degree ranking is
arranged in descending order according to the degree of nodes,
with higher-ranking nodes having greater influence. Subnetworks
were identified using the MCODE plugin.

2.5 Development and validation of the
prognostic model

The prognostic significance of 59 differentially expressed CRGs
was investigated using univariate Cox regression. With the aid of
multivariate Cox regression analysis, a prognostic model was
developed based on those prognostic related CRGs. The risk
score was calculated using the regression coefficients and the
values of gene expression with the following formula:

Risk score � ∑
i

Coefficient of i( ) × Expression ofgene i( )

Using the patients from the TCGA-BRCA cohort as the training
set, the risk score for each patient was calculated using the above
formula. Patients were stratified into high-risk and low-risk
categories based on the medium cut-off value of risk scores.
Kaplan-Meier (K-M) survival analysis was conducted using the
Log-rank test. The “pROC” package was employed to execute
receiver operating characteristic (ROC) analysis. The model’s
accuracy on predicting OS was evaluated using AUC values from
the ROC curve. The “timeROC” in R software was utilized to
generate ROC curves for 1-year, 3-year, and 5-year periods, and
Kaplan-Meier survival analysis was performed using the calculated
risk scores. To enhance the credibility of the model, we validated it
using the dataset GSE42568. After normalizing the expression of
differential CRGs, the risk score was calculated. Likewise, individuals
were categorized into different risk categories followed by the
Kaplan-Meier survival analysis.

2.6 Construction of prognosis nomogram
and establishment of calibration curve

Using the “survival” package for proportional hazards analysis.
Using clinical factors including age, clinical T stage, clinical N stage,
pathological stage, and risk score in both univariate and multivariate
Cox independent prognosis analyses and presenting the results with a
forest plot generated by “forestplot” package. Utilizing the outcomes of
proportional hazards (PH) analysis, create a nomogram with the
assistance of the “rms” to estimate the OS at each period. Creating
calibration graphs for 1-, 3-, and 5-year endpoints to evaluate the
agreement between endpoint occurrences and observed outcomes.

2.7 Immune checkpoint and immune
infiltration

Evaluating the relationship between risk score and different
immune checkpoints and various types of immune cells using
Spearman correlation analysis. Using ssGSEA to assess immune
infiltration, applying the GSVA algorithm in R software, and
determining the immune infiltration condition of high-risk and
low-risk groups usingmarkers of 24 immune cell types (Bindea et al.,
2013). Utilizing the ESTIMATE algorithm to calculate immune cell
scores for various risk categories, thus deducing the composition of
immune cells. Employing the “stats” package along with the “car”
package to conduct Wilcoxon rank sum tests and utilizing “ggplot2”
for visualizing the results.
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2.8 Drug sensitivity analysis

“OncoPredict” package was employed to forecast drug response
in cancer patients (Maeser et al., 2021). Predicting drug responses
using the IC50 values of 198 compounds tested on 809 cell lines from
the GDSC database version 2 as the training dataset. Through
computation, the OncoPredict package can generate sensitivity
scores for individual drugs, which exhibit a positive correlation
with IC50 values. Pearson correlation analysis was utilized to
evaluate the relationship between risk scores and different drug
sensitivities. The Mann-Whitney U test was employed to access the
variations in drug responses of popular breast cancer treatments
among the risk categories.

2.9 Statistical analysis

R software (version 4.2.2) was used for data analysis. The Mann-
Whitney U test was utilized to assess variations between two sets of
continuous variables that were not normally distributed. The
Pearson test or Spearman test was used to examine the

correlation between continuous variables. Chi-square and Fisher’s
exact test were employed to compare the differences between
categorical variables. Statistics were analyzed using two-sided p
values with a p-value of 0.05 defining statistical significance.

3 Results

3.1 Determination of differentially expressed
CRGs and functional enrichment analysis

Totally 203 genes were collected from the KEGG database,
derived separately from hsa04610 (complement and coagulation
cascades) and hsa04611 (platelet activation). Define these genes as
coagulation-related genes (Supplementary Table S1). The mRNA
sequences data were gathered from the TCGA-BRCA cohort
(including 1,099 cancer samples and 113 adjacent normal tissue
samples) and GTEx (459 normal tissues samples). In breast cancer
tissues, a total of 59 coagulation-related genes were found to have
differential expression, with 31 showing decreased levels and
28 showing increased levels (see Supplementary Table S2 for

FIGURE 1
The outcomes of differentially analysis of CRGs and the analysis of functional enrichment. (A,B) the Volcano plot and heatmap of determined
differential CRGs. (C,D) the GO and KEGG enrichment analysis outcomes of differential CRGs.
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details). Figure 1A displayed the top ten genes with the most
significant differential expression based on logFC, while
Figure 1B showed the expression heatmap of differentially
expressed CRGs.

The analysis of the 59 differentially expressed CRGs using
Gene Ontology (GO) showed that aside from hemostasis and
blood coagulation, these genes are also involved in biological
processes like immune response activation and leukocyte-
mediated immunity. CRGs are abundant in blood
microparticles, serine-type peptidase complex, endoplasmic
reticulum lumen, and extracellular matrix containing collagen

when it comes to cellular components. Serine-type
endopeptidase/peptidase activity, serine hydrolase activity, and
complement binding are all enriched in molecular functions, as
shown in Figure 1C. The outcomes of KEGG pathways
enrichment conveyed that the distinct genes are enriched not
only in Complement and coagulation cascades and Platelet
activation, but also in pathways like VEGF signaling, Estrogen
signaling, PI3K-Akt signaling, TNF signaling, EGFR tyrosine
kinase inhibitor resistance, Apoptosis, and MAPK signaling.
These pathways control different physiological processes such
as cell growth and cell death. Furthermore, it was noted that these

FIGURE 2
The Molecular interactions analysis of differential CRGs based on PPI. (A) The PPI network diagram of 59 differential CRGs. The degree of nodes is
sorted by color depth. This PPI network contains 58 nodes and 166 edges. (B) The top ten differentially expressed genes selected by the degree centrality
algorithm are SRC, C3, C4B, C4A, ITGB2, PIK3CA, F3, ITGA2, C1S, and AKT3. (C) The subnetwork consists of 10 nodes and 33 edges selected by the
MCODE plugin. (D,E) Enrichment Analysis of the genes in the subnetwork.
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distinct genes play a role in the expression of PD-L1/PD-
1 checkpoint pathway, as well as in controlling the
differentiation of Th1 and Th2 immune lymphocytes

(Figure 1D). The results above indicated the involvement of
differential coagulation genes in signaling pathways and the
regulation of the immune microenvironment.

FIGURE 3
The Kaplan-Meier survival curves of 6 integrated genes from TCGA-BRCA cohort. (A) Curve of SERPINF2 (p = 0.012, HR = 0.665, 95%CI (0.483,
0.915). (B) Curve of SERPINA1(p = 0.001, HR = 0.584, 95%CI (0.422, 0.808). (C) Curve of TLN2 (p = 0.003, HR = 0.607, 95%CI (0.438, 0.842). (D) Curve of
RASGRP1 (p = 0.007, HR = 0.647, 95%CI (0.471, 0.890). (E) Curve of CFB (p = 0.034, HR = 0.709, 95%CI (0.515, 0.976). (F) Curve of C1s (p = 0.010, HR =
0.652, 95%CI (0.471, 0.903).
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3.2 Molecular interactions analysis of
differential CRGs

The PPI network that was produced contains 58 nodes and
166 edges, as shown in Figure 2A. Through node analysis, we
identified SRC, C3, C4A, C4B, ITGB2, ITGA2, PIK3CA, F3, C1S,
and AKT3 as the top 10 genes interacting most with other
differentially expressed genes. By utilizing Cytoscape, we
implemented the degree centrality algorithm to identify hub
genes, choosing the top 10 genes based on their node degree
ranking. These genes are SRC, C3, C4B, C4A, ITGB2, PIK3CA,
F3, ITGA2, C1S, and AKT3, which are consistent with the top genes
identified in the node analysis (Figure 2B). The PPI network revealed
intricate interactions among the differentially expressed CRGs in

breast cancer. Next, we identified a subnetwork using the MCODE
plugin, which consists of 10 nodes and 33 edges (Figure 2C).
Analysis of the genes in the subnetwork showed enrichment in
various signaling pathways that control cell growth and apoptosis, as
depicted in Figures 2D, E. This suggests that hub genes associated
with coagulation may involve in controlling the onset and
progression of breast cancer.

3.3 Establishment of breast cancer
prognostic model based on CRGs

Using univariate Cox regression analysis, 6 genes were identified
as prognostically significant out of a pool of 59 differential genes.

FIGURE 4
(A) Forest plot of 6 integrated genes. (B) The expression of 6 genes in TCGA-BRCA cohort andGTEx database. The red box represents the expression
of genes in the tumor group, whereas the blue box indicates the expression of genes in normal control. (C,D) The risk predictor plot and the Kaplan-Meier
survival curve of the model. (E) the ROC curve for model’s predictive precision. (*p < 0.05, **p < 0.01, ***p < 0.001).
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These genes include SERPINA1, SERPINF2, C1S, CFB, RASGRP1,
and TLN2. Prognostic analyses were conducted on each of these
6 genes to observe their efficacy as prognostic biomarkers in breast
cancer. Based on the median gene expression, patients from the
TCGA-BRCA cohort were categorized into groups with high or low
gene expression, and then Kaplan-Meier curves were generated.
Kaplan-Meier curves indicate that increased levels of the six genes
are linked to improved prognosis (HR < 1, Log-rank p < 0.05)
(Figures 3, 4A). Indicated that all six genes are protective factors for
breast cancer. The AUC values for the 1-, 3-, and 5-year overall
survival (OS) of breast cancer patients are all greater than 0.5 for the
six specified genes. Among them, SERPINA1, RASGRP1, and CFB
demonstrated the highest prognostic efficacy. Additional analysis of
the 6 genes in breast cancer showed notable variations in expression
levels between tumor and healthy tissues. Specifically, tumor tissues
show increased expression of SERPINA1, RASGRP1, and CFB
compared to normal tissues, whereas C1S, SERPINF2, and

TLN2 display the opposite pattern (Figure 4B). The prognostic
model was established with the regression coefficient of the
6 genes. The model yielded an AIC (Akaike information
criterion) of 1733.7347. The final formula settled as follows: Risk
score = (−0.1377) * SERPINA1 + (−0.0524) * SERPINF2 + (−0.0014)
*C1S + (−0.0565) * CFB + (−0.108) * RASGRP1 + (−0.0724) * TLN2.

Following this, patients from the TCGA-BRCA cohort were
stratified into high- and low-risk categories according to the median
cut-off value of the risk score. Those classified in the high-risk
category showed decreased overall survival rates in comparison to
those in the low-risk category, as demonstrated by the Kaplan-Meier
curve (p = 7.88*10-6, HR = 2.115, 95% CI 1.523–2.938) (Figures 4C,
D). ROC analysis over time showed that the model’s predictive
precision was 0.712 (0.636–0.787) for 1-year OS, 0.668
(0.614–0.722) for 3-year OS, and 0.645 (0.587–0.703) for five-
year OS (Figure 4E). Overall, our model demonstrated stable
prognostic prediction accuracy in the training dataset.

FIGURE 5
(A–F) TheWilcoxon rank sum tests results to illustrate the expression of 6 genes in the test set. The red box represents for the tumor group, whereas
the blue box indicates for normal control. [(A) SERPINA1. (B) RASGRP1. (C) CFB. (D) C1S. (E) SERPINF2. (F) TLN2]. (G) The K-M curves of the model in test
set. (H) the ROC curve for model’s predictive precision in test set. (*p < 0.05, **p < 0.01, ***p < 0.001, ns: no significance).
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3.4 Validating the model in the test set

To validate the model’s generalizability, we obtained data from
104 breast cancer patients in the GSE42568 as the test set. Risk scores

were computed utilizing an identical formula, leading to the
classification of patients into high-risk (52 cases) and low-risk
(52 cases) groups. Initially, 6 genes’ expression in the test group
were examined and we observed that except for SERPINF2, other

FIGURE 6
(A) the forest plot of the univariate independent prognostic analysis. (B) the forest plot of the multivariate independent prognostic analysis. (C) the
Nomogram that integrating age, clinical T stage, clinical N stage, and risk score. (D) the calibration curves of the Nomogram. (E) ROC curves of Age, T
stage, N stage, pathological stage, and risk score.
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five genes exhibited similar expression patterns as the training set. As
shown in Figures 5A–F, it demonstrated a notably elevated expression
of SERPINA1, RASGRP1, and CFB in tumor tissues, while C1S and
TLN2 showed significantly higher expression in normal tissues. There
were no notable variations in the SERPINF2 expression, possibly due
to the limited sample size. The KM curves indicated extended survival
in the low-risk individuals (p = 0.013) (Figure 5G). ROC analysis over
time showed that the predictive precision was 0.46 (0.184–0.7403) for
1-year overall survival, 0.628 (0.5061–0.7505) for 3-year overall
survival, and 0.654 (0.5367–0.7722) for five-year overall survival
(Figure 5H). The findings indicate that our model has a degree of
precision in forecasting the outcome of breast cancer survival rates at
3 and 5 years.

3.5 Coagulation-related model serve as an
independent prognostic factor in
breast cancer

The univariate independent prognostic analysis indicates that
features associated with overall survival (OS) include age at
diagnose, pathological stage after surgery, clinical T stage, clinical
N stage and risk score (Figure 6A). When it comes to the multivariate
independent prognostic analysis, it is evident that the risk score along
with age, and pathological stage can all serve as independent
prognostic indicators for breast cancer patients (Figure 6B).
Nomogram has been developed by integrating age, clinical T stage,
clinical N stage, and risk score to provide clinicians with a quantitative
method of predicting BRCA patients’ prognosis (Figure 6C) and the
calibration curves show good survival prediction capability
(Figure 6D). Furthermore, compared to traditional prognostic
scoring systems, our risk model exhibits a higher AUC value
(AUC = 0.613) (Figure 6E) which demonstrated that the risk score
makes a substantial contribution to prognosis prediction.

3.6 Clinicopathological features and
risk score

No variations in age and N stage were observed between high
and low-risk individuals, as shown in Supplementary Table S3.
Nevertheless, there are notable variances in T stage (p = 0.004),
M stage (p = 0.020), pathological stage (p = 0.016), HER2 status (p <
0.001), ER status (p < 0.001), and PR status (p < 0.001) between the
risk groups. The low-risk group have a higher proportion of
individuals at T1 stage than the high-risk group. Conversely, the
high-risk group has more patients with T2, T3, and T4 stage.
Furthermore, the high-risk patients appear to be more prone to
distant metastasis and individuals in this group typically exhibit
elevated pathological stages. Low-risk patients typically show
hormone receptor (HR)-positive status and low HER2 expression,
whereas high-risk patients exhibit the opposite (HR-/HER2 high
expression). The findings of the prognostic efficacy suggest that
individuals classified as high-risk have worse overall survival rates in
different subcategories (Figure 7). Nevertheless, the variation in
operating systems within subcategories with M1 metastasis did not
show a notable discrepancy, potentially as a result of the small
sample size of M1 individuals, hindering statistical distinction.

3.7 Enrichment analysis of genes that differ
between risk groups showed unique
pathway enrichments

The GSEA of differentially expressed genes in risk groups identified
unique pathway enrichments shown in Figures 8A, B. Significant
enrichments in pathways such as ASCORBATE_AND_
ALDARATE_METABOLISM, PENTOSE_AND_GLUCURONATE_
INTERCONVERSIONS, OXIDATIVE_PHOSPHORYLATION,
DNA_REPLICATION, MISMATCH_REPAIR, and CELL_CYCLE
were observed within the low-risk group. In contrast, the group at
high risk showed enhancements in pathways linked to T cell receptor
signaling, Toll-like receptor signaling, JAK-STAT and MAPK signaling
pathway, B cell receptor signaling, and apoptosis. These pathways are
related to tumorigenesis, inflammation, immune responses, and cellular
apoptosis. An association between the risk score and the tumor
environment has been indicated.

3.8 Disparities in the TME compositions and
immune infiltration across risk categories

It is a negative correlation between risk score and six types of
immune cell. The expression levels of immune cells decrease along
as the risk score increases (Figure 8F). The strongest correlation was
found with Neutrophils (Spearman coefficient −0.32), with CD4+

T cells, myeloid DCs, and CD8+ T cells following closely behind.
Following this, we performed ssGSEA on individual samples and
identified notable variances in immune infiltration levels among
high and low-risk categories. Immune cells, aside from B cells, Tgd
cells, and Treg cells, did not display variations between risk groups,
while the remaining showed significant statistical variances between
the two risk categories. In the high-risk group, there was a notable
increase in Th2 cell infiltration compared to the group of low risk,
which had higher infiltration of other immune cells (Figure 8C).
Next, the outcomes of ESTIMATE algorithm containing Immune
score, Stromal score, and ESTIMATE score were considered for
inferring the composition of immune cells. Since increased scores
suggest greater presence of infiltrating elements within the tumor
microenvironment, this study found that the individuals of low-risk
group exhibited higher infiltration of both stromal (p = 8.88*10-10)
and immune (p = 1.49*10-11) components compared to the high-
risk group (Figure 8D).

3.9 Differences in immune response and
drug sensitivity among risk groups

Examining the relationship between risk score and the activity of
Immune checkpoint genes to forecast response to immunotherapy in
various risk categories. The results indicate that not only the classic
immune checkpoints (PDCD1, CTLA4, and PDCD1LG2) but also the
emerging target genes (SIGLEC15, TIGIT, CD274, HAVCR2) are
highly expressed in patients from the low-risk group (Figure 8E).

Correlations between the IC50 values of 4 drugs and the risk
score were identified through with a threshold of |cor| < 0.3 and p <
0.05. These drugs are Gefitinib_1010, GSK2606414_1618,
Ribociclib_1632, and Pyridostatin. A negative correlation was
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observed between Gefitinib and the risk score, suggesting that higher
risk scores are linked to lower drug sensitivity scores for Gefitinib.
Significant variations in drug sensitivity were observed among the
groups for the four drugs analyzed (Figure 9A). The sensitivity score
calculation shows a positive correlation with the IC50 value of the
drugs, indicating that patients classified as low-risk demonstrate
increased resistance to Gefitinib and heightened sensitivity to the
remaining three drugs.

Next, we explored the differences in sensitivity to several commonly
used or hot-spot drugs in breast cancer patients. The low-risk

individuals exhibited greater resilience to Cisplatin and
Cyclophosphamide than those in the high-risk category when it
came to chemotherapy medications. Conversely, the low-risk
individuals exhibited greater sensitivity to Oxaliplatin and Docetaxel.
No notable distinction was observed in the sensitivity to Paclitaxel,
Gemcitabine, and Epirubicin between the high and low-risk groups
(Figure 9B). In the realm of endocrine treatments, Tamoxifen was
found to be more effective for high-risk patients, while Fulvestrant
illustrated better results for low-risk group patients. Furthermore,
individuals classified as low-risk exhibited increased responsiveness

FIGURE 7
The K-M curves of the risk score across different subgroups. Subgroups of patients with (A) age ≤60 ; (B) age >60; (C) clinical pathological stage I-II;
(D) clinical pathological stage III-IV; (E) tumor stage T1-T2; (F) tumor stage T3-T4; (G) nodal stage N0-N1; (H) nodal stage N2-N3; (I)metastasis stage M0.
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to CDK4/6 inhibitors Palbociclib and Ribociclib in comparison to those
in the high-risk category (Figure 9C). Individuals classified as low-risk
showed notably higher resilience to the EGFR inhibitor Gefitinib in
comparison to those categorized as high-risk. In Figure 9D, patients
classified as low risk showed increased sensitivity to the PARP inhibitor
Olaparib. Zoledronate is frequently prescribed for breast cancer patients
who have bone metastases. Individuals classified as high-risk showed a

notably higher response to Zoledronate in comparison to those
categorized as low risk. Finally, we also investigated Mitoxantrone, a
chemotherapy drug currently used as a tracer in sentinel lymph node
biopsy during the breast cancer surgery. A notable variation in drug
sensitivity toMitoxantronewas also noted between the risk groups, with
the low-risk group showing increased sensitivity and the high-risk
group displaying greater resistance (Figure 9D).

FIGURE 8
(A)GSEA of differentially expressed genes in low-risk individuals. (B)GSEA of differentially expressed genes in high-risk individuals. (C) The infiltration
condition of 24 types of immune cells based on the specific immune markers among the risk group. (D) Immune score, Stromal score, and ESTIMATE
score of ESTIMATE algorithm. (E) Comparison of immune checkpoint genes expression between high and low-risk groups (F) The correlation analysis
between risk score and the counts of immune cells calculated by TIMER. (*p < 0.05, **p < 0.01, ***p < 0.001).

Frontiers in Molecular Biosciences frontiersin.org12

Lei et al. 10.3389/fmolb.2024.1394585

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1394585


4 Discussion

The intimate relationship between malignant tumors and the
coagulation process is widely observed. Patients with malignant
tumors often experience a hypercoagulable state, which is typically
attributed to an imbalance in the coagulation process caused by
increased procoagulant activity and decreased anticoagulant factors

(Falanga et al., 2015). The abnormal expression of genes related to
coagulation is a key factor in this phenomenon. Several studies have
demonstrated that coagulation-related genes play distinct roles in
various types of cancers. In hepatocellular carcinoma, X. Ai et al.
discovered that PIK3R1 is expressed abnormally, leading to
heightened proliferation and invasion of tumor cells, as well as
the suppression of apoptosis (Ai et al., 2018). L. Ma and others found

FIGURE 9
(A) Variations in drug sensitivity score of the top four drugs with the highest correlation between IC50 values and risk score. (B) Differences in
sensitivity score to several chemotherapymedications. (C)Differences in sensitivity score to endocrine treatments and CDK4/6 inhibitors. (D)Differences
in sensitivity score to Gefitinib, Olaparib, Zoledronate and Mitoxantrone (*p < 0.05, **p < 0.01, ***p < 0.001).
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that high expression of ITGA2 can promote ovarian cancer cell
proliferation and resistance to paclitaxel through the AKT/
FOXO1 signaling axis (Ma et al., 2020). Additionally, studies
have shown that the majority of thrombogenic tumors
themselves express high levels of F3 mRNA, leading to tumor-
associated thrombosis and increased mortality (Timp et al., 2013).

Nevertheless, there is insufficient research on the impact of
coagulation-related genes on breast cancer cells. The goal of this
study is to develop a predictive model focusing on genes attached to
coagulation activity in patients with breast cancer, examining how
they affect the advancement of tumors, evaluation of prognosis,
changes in the immune environment, and responsiveness to
treatments.

In this study, to encompass as many comprehensive coagulation-
related genes as possible, we retrieved gene sets from the KEGG
pathway database using keywords such as platelet, coagulation, and
fibrinolysis. Specifically, we selected gene sets from hsa04610
(complement and coagulation cascades) and hsa04610 (platelet
activation) for further investigation. Data from the TCGA-BRCA
cohort and the GTEx databases revealed 59 differential genes related
to coagulation, which were found to be enriched in various classical
signaling pathways including the VEGF pathway, PI3K-Akt signaling
pathway, and TNF pathway. Multiple studies have verified the
participation of specific coagulation genes in controlling signaling
pathways: TF can enhance VEGF levels and drive cancer
advancement through PAR2 activation, while changes in
PIK3R1 expression can lead to oncogenic transformations in
different cancers via PI3K-Akt pathway activation (Hisada and
Mackman, 2021; Chakraborty et al., 2022). The extensive and
complex interplay between coagulation genes and signaling pathway
regulation is evident (Taniguchi et al., 2010; Cizkova et al., 2013).
Additional examination showed that distinct coagulation genes were
involved in controlling the expression of PD-L1/PD-1 checkpoint
pathway, along with the regulation of immune lymphocyte
differentiation like Th1 and Th2, highlighting the complex
connection between coagulation genes and the immune
microenvironment of tumors. This study conducted GO and KEGG
enrichment analyses on differentially expressed coagulation-related
genes, revealing their multifaceted roles in breast cancer. It is
noteworthy that our research involved two rounds of KEGG
analysis, each with distinct objectives and emphases despite utilizing
the same database resource. In the first stage, KEGG analysis was
employed to filter a set of genes associated with coagulation, laying the
foundation for our study and enabling us to focus on genes closely
related to the research topic. The second stage aimed to functionally
validate and explore the mechanisms of these filtered genes, unveiling
their involvement not only in the coagulation process but also in
regulating various signaling pathways and the immune
microenvironment in breast cancer. This multi-tiered analytical
approach provides us with a more comprehensive and in-depth
understanding of the roles of coagulation genes in the occurrence
and development of breast cancer, thereby aiding in the construction of
more accurate prognostic models and the formulation of effective
treatment strategies.

A predictive model was developed through the analysis of six
genes (SERPINA1, SERPINF2, C1S, CFB, RASGRP1, and TLN2)
using multivariate cox regression. Surprisingly, all the involving
genes were prognostic protective factors.

SERPINA1, a key component of the serine protease inhibitor group,
produces an anti-trypsin that is vital for regulating cell balance through
the irreversible inhibition of different serine endopeptidases. Its
prognostic value was observed across multiple cancer types, yet its
role varies among different malignancies. A recent study by Kuai X.
et al. found that increased SERPINA1 expression is linked to improved
overall survival rates in BRCA, COAD, SARC, and SKCM, but worse
survival rates in GBMLGG, HNSC, LGG, LIHC, and LUSC (Kuai et al.,
2023). This research further confirmed its important function as a
standalone predictor in forecasting the outcome of breast cancer.
Moreover, in the context of breast cancer, current research has
illuminated an association between reduced expression of
SERPINA1 and more aggressive tumor phenotypes, poorer
prognosis, and tumor metastasis. This hints at a potential tumor-
suppressive function of SERPINA1 in breast cancer, whereby its
diminished expression may facilitate tumor progression and
metastasis (Chan et al., 2015; Zhao et al., 2018). Belonging to the
same family as SERPINA1, SERPINF2 specifically enriches in
hepatocytes (Hou, 2022; Desoteux et al., 2023). Previous studies
have indicated a correlation between SERPINF2 with unfavorable
outcomes in advanced serous ovarian cancer, and laboratory tests
have confirmed its crucial involvement in tumor growth and spread
(Huh et al., 2022). Although the prognostic efficacy is relatively low, our
study found certain value of it in breast cancer. C1S participates in the
formation of the C1 complex, which serves as the initiator of the
classical complement activation pathway (Kim et al., 2013; Riihilä et al.,
2020). C1S triggers complement activation and independently
modulates tumor cell phenotype and tumor microenvironment,
thereby promoting tumor progression (Daugan et al., 2021).
Activation of the C1 receptor on monocytes can trigger a series of
events that result in cell migration into tissues and transformation into
macrophages or dendritic cells, ultimately promoting adaptive
immunity and creating a tumor-promoting microenvironment. The
high tumorigenicity of C1s has been noted in both renal cell carcinoma
and cutaneous squamous cell carcinoma, highlighting its promise as a
target for cancer therapy (Riihilä et al., 2020; Liu et al., 2021). Given that
FDA has approved C1S antibodies for treatment in patients with cold
agglutinin disease (a rare autoimmune disease), further clinical research
is needed to confirm its efficacy in cancer therapy (Röth et al., 2021).

The complement factor B encoded by the CFB is a component of
the alternative pathway of complement activation (Akhlaghpour
et al., 2023). Its subunits cleaved by factor D associated with the
proliferation and differentiation of pre-activated B lymphocytes,
rapid expansion of peripheral blood monocytes, stimulation of
lymphocyte follicle formation, and erythrocyte lysis. Mutations in
the CFB gene cause reduced activation of B cells, resulting in changes
in the tumor immune environment, potentially playing a role in its
correlation with unfavorable outcomes in breast and lung cancer
(He et al., 2021). RASGRP1 is also an important gene in this model.
Belonging to the Ras superfamily guanine nucleotide exchange
factor (GEF) gene family, this gene possesses the capacity to
stimulate the Erk/MAP kinase cascade, regulate the proliferation,
homeostasis, and differentiation of T cells and B cells, and exhibits
significant potential as a therapeutic target for cancer. Cong Wang
has unveiled, through experimentation and observation, the dual
role of RASGRP1 in regulating acute inflammatory responses and
inhibiting inflammation-related cancers and its promising
prognostic value (Wang et al., 2022). The final gene in the
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model, TLN2, encodes a protein associated with talin 1, which is a
cell-skeletal protein playing a crucial role in the assembly of actin
filaments and the dispersion and migration of various cells
(including fibroblasts and osteoclasts). Prior research indicated
that TLN2 suppressed kidney cancer by inhibiting the Wnt/β-
catenin signaling pathway (Cai et al., 2022), Yet Fang’s study
contradicted this finding. Suggested that the presence of
TLN2 was linked to the cancer-causing potential of liver cancer
cells (Fang et al., 2016). Overall, the predictive significance of the six
coagulation genes in breast cancer is significant, and additional
experimental validation is needed to clarify their impact on the onset
and progression of breast cancer. Notably, their direct role in
immune microenvironment regulation holds the potential to
become new targets for immunotherapy in the future.

In this study, we constructed an innovative breast cancer prognosis
model based on six prognostic-related genes. The model demonstrated
considerable accuracy in predicting overall survival (OS) of breast cancer
patients. ThroughROC analysis, we found that themodel achievedAUC
values of 0.712, 0.668, and 0.645 for 1-year, 3-year, and 5-year survival
rates, respectively, in the training set. These results reveal the model’s
robust performance, particularly in short-term (especially 1-year and 3-
year) predictions. However, we also acknowledge that the AUC values of
the model did not reach our expected optimal level, which may indicate
some limitations in predictive performance. These limitations could
stem from the imbalance in sample distribution or the failure to
incorporate all biologically relevant biomarkers closely associated with
breast cancer prognosis during feature selection. To address these issues,
we are actively exploring various strategies to optimize the model
performance, including the application of more advanced feature
selection techniques, experimentation with different machine learning
algorithms, and fine-tuning of model parameters. Additionally, we plan
to conductmore in-depth datamining to identify and integrate potential
biomarkers that may have been overlooked by the current model. We
also plan to validate the model in a broader and more diverse patient
population to assess its applicability and limitations across different
populations, which is crucial for the clinical translation of the model.
While the AUC value is a key metric for evaluating the predictive ability
of the model, we believe that the clinical utility of the model extends far
beyond this. Our model not only provides risk stratification for breast
cancer patients but also reveals differences in immune
microenvironment and drug sensitivity among patients in different
risk groups. In the following discussion, we will delve into these
differences and their potential implications for personalized treatment
strategies.

The treatment for breast cancer involves multidisciplinary
collaboration, and the combination with immunotherapy promises
to be a new therapeutic strategy. Several clinical studies are currently
underway, however the number of patients benefiting from
immunotherapy in breast cancer remains limited (Ye et al., 2023).
In order to identify potential beneficiaries, we investigated the
differences in the immune microenvironment between the risk
groups. The findings showed that the primary distinction between
the two groups is in howTh1 andTh2 cells are distributed. The group at
high risk displayed increased Th2 cell infiltration, while low-risk group
hadmore Th1 cell infiltration. Th1 and Th2 cell both have the ability to
release cytokines that support their own growth while suppressing the
growth of the other subset (Jia et al., 2021). Additionally, they participate
in regulating the activation of helper B cells and contributing to

humoral immunity. Typically, there is a harmonious equilibrium
between Th1 and Th2 cells. However, when there are abnormalities
in bodily functions, this balance may be disrupted, leading to a
phenomenon known as “Th1/Th2 shift.” Many cancer patients
exhibit Th1/Th2 shift in the body, typically leaning towards
Th2 dominance (Ruterbusch et al., 2020). The reason for this
imbalance could be the capacity of Th2 cells to facilitate immune
avoidance in tumors (Frafjord et al., 2021). Changes in TH1/TH2 cell
cytokines were discovered to be linked to various molecular subtypes in
breast cancer research (Hong et al., 2013). In TNBC, the secretion of
cytokines from Th2 cells like IL-4, IL-5, and IL-10 increases, causing a
change in the balance between TH1 and TH2 towards a higher ratio of
TH2/TH1 cytokines. On the other hand, ER+ and other Luminal type
breast cancer exhibit lower levels of Th2 cell cytokines and generally
shift towards Th1 immune response. Regarding disease prognosis, the
ratio of TH1/TH2 is associated with improved prognosis in ER+/PR +
breast cancer, but worse OS in Basel like breast cancer. Thus, creating a
shift towards anti-tumor TH1 responses may be a new treatment
strategy aimed at improving the prognosis of tumor patients with
high Th2 infiltration. It is essential to control the infiltration of Th2 cells
to preserve the immune responses targeted against tumors. The
research indicated that elevated Th2 cell infiltration in the high-risk
group may contribute to immune evasion, while the heightened
presence of Th1 and other immune cells with substantial infiltration
in the low-risk group implies a heightened level of immune activation,
potentially leading to a more favorable prognosis. The research also
discovered that low-risk patients exhibited higher expression of various
immune checkpoint genes, suggesting that those with low-risk profiles
may respond more favorably to immune therapy.

To better facilitate clinical translation, we explored the potential
of the model in assisting drug administration decisions and
discovered the therapeutic benefits of Gefitinib for high-risk
patients. Gefitinib is an orally administered targeted therapy
drug, known as an inhibitor of the tyrosine kinase receptor for
the epidermal growth factor (EGFR). Frequently utilized for the
management of NSCLC, especially in individuals with activating
mutations in the EGFR gene (Hosomi et al., 2020). Although there
was literature reported EGFR as a potential therapeutic target in
TNBC(Corkery et al., 2009), to date, there is still insufficient clinical
trial evidence demonstrating significant efficacy of Gefitinib in
breast cancer treatment. Several studies have also investigated the
efficacy of Gefitinib when used in conjunction with other forms of
treatment, including chemotherapy and hormonal therapy
medications. Carine M. and her team covalently linked Gefitinib
and Tamoxifen to develop a new anti-cancer drug conjugate, which
showed promising effects in various types of breast cancer cells
(Abdelmalek et al., 2022). Studies by other scientists have
demonstrated that the joint use of Gefitinib and HER3 antibody
can notably decrease the phosphorylation of HER3, EGFR, Akt, and
ERK1/2 in TNBC cells, leading to successful growth suppression and
cell death (Lyu et al., 2023). The research conducted on cells
establishes a groundwork for the medical application of Gefitinib,
confirming its therapeutic possibilities for breast cancer patients at
high risk and setting the stage for upcoming clinical trials.

Breast cancer patients are mainly treated with chemotherapy,
hormone therapy, targeted therapy, and radiation therapy, which are
proven effective methods (Ben-Dror et al., 2022). Through drug
sensitivity analysis in this study, we stratified breast cancer patients
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using coagulation genes in a manner distinct from traditional
molecular subtyping. Patients with diverse risk scores showed
different responses to identical medications. This provides
personalized recommendations for clinical drug administration,
potentially reducing the occurrence of drug resistance and
enhancing drug efficacy to some extent.

5 Conclusion and perspective

This study has utilized bioinformatics approaches to identify six
coagulation-related genes with prognostic significance in breast cancer.
By developing a risk-scoring model, we have demonstrated its potential
in predicting breast cancer outcomes and its utility in assessing the
immune environment, response to immunotherapies, and drug
sensitivities. This model serves as a valuable tool for the personalized
treatment of breast cancer patients. However, the study’s findings are
based on data from public sources, and the model’s validation on real-
world datasets remains a crucial next step. Looking ahead, several
research directions and challenges present themselves to further
advance the field: 1) Real-World Data Validation: Future research
should focus on validating the prognostic model using real-world
clinical data to confirm its applicability and generalizability in diverse
patient populations. 2) Multi-Dataset Analysis: Expanding the model’s
validation to additional independent datasets, including those from
different ethnicities and geographical regions, will enhance the
robustness of the model and its predictive accuracy. 3) Functional
Studies of Genes: In-depth experimental studies are needed to
elucidate the biological functions of the identified coagulation-related
genes in breast cancer progression. This includes investigating their roles
in tumor growth, metastasis, and response to therapies. 4) Integration of
Omics Data: Combining the current gene expression data with other
omics data, such as proteomics andmetabolomics, could provide amore
comprehensive understanding of the molecular mechanisms underlying
the prognostic value of coagulation-related genes. 5) Clinical Trial
Design: Future clinical trials should consider incorporating the risk
scores derived from our model to stratify patient populations and
evaluate the efficacy of targeted therapies and personalized treatment
strategies. 6) Technological Advancements: Keeping abreast of emerging
technologies and bioinformatics tools will be essential for refining the
model and incorporating new insights into the complex interplay
between coagulation and cancer. By addressing these challenges and
directions, we aim to contribute to the evolving landscape of precision
medicine in breast cancer. We are committed to furthering our research
to provide more targeted and effective treatment options for patients.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and institutional
requirements. Written informed consent to participate in this study
was not required from the participants or the participants’ legal
guardians/next of kin in accordance with the national legislation and
the institutional requirements.

Author contributions

CL: Conceptualization, Data curation, Formal Analysis,
Writing–original draft. YL: Conceptualization, Data curation,
Writing–original draft. HY: Investigation, Software,
Writing–review and editing. KZ: Formal Analysis, Project
administration, Writing–original draft. WL: Methodology, Project
administration, Writing–review and editing. NW: Resources,
Supervision, Writing–review and editing. LX: Funding
acquisition, Resources, Supervision, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work was
supported by the Chinese Academy of Medical Sciences Clinical and
Translational Medicine Research Innovation Fund Project (No. 2022-
I2M-C&T-A-013), and the Chinese Academy of Medical Sciences
Clinical and Translational Medicine Research Fund Project (No.
2019XK320067).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmolb.2024.1394585/
full#supplementary-material

References

Abdelmalek, C. M., Hu, Z., Kronenberger, T., Küblbeck, J., Kinnen, F. J. M., Hesse, S.
S., et al. (2022). Gefitinib-tamoxifen hybrid ligands as potent agents against triple-

negative breast cancer. J. Med. Chem. 65 (6), 4616–4632. doi:10.1021/acs.jmedchem.
1c01646

Frontiers in Molecular Biosciences frontiersin.org16

Lei et al. 10.3389/fmolb.2024.1394585

https://www.frontiersin.org/articles/10.3389/fmolb.2024.1394585/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1394585/full#supplementary-material
https://doi.org/10.1021/acs.jmedchem.1c01646
https://doi.org/10.1021/acs.jmedchem.1c01646
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1394585


Ai, X., Xiang, L., Huang, Z., Zhou, S., Zhang, S., Zhang, T., et al. (2018).
Overexpression of PIK3R1 promotes hepatocellular carcinoma progression. Biol.
Res. 51 (1), 52. doi:10.1186/s40659-018-0202-7

Akhlaghpour, M., Haritunians, T., More, S. K., Thomas, L. S., Stamps, D. T.,
Dube, S., et al. (2023). Genetic coding variant in complement factor B (CFB) is
associated with increased risk for perianal Crohn’s disease and leads to impaired
CFB cleavage and phagocytosis. Gut 72 (11), 2068–2080. doi:10.1136/gutjnl-2023-
329689

Ben-Dror, J., Shalamov, M., and Sonnenblick, A. (2022). The history of early breast
cancer treatment. Genes (Basel) 13 (6), 960. doi:10.3390/genes13060960

Bindea, G., Mlecnik, B., Tosolini, M., Kirilovsky, A., Waldner, M., Obenauf, A. C.,
et al. (2013). Spatiotemporal dynamics of intratumoral immune cells reveal the immune
landscape in human cancer. Immunity 39 (4), 782–795. doi:10.1016/j.immuni.2013.
10.003

Brown, R. B., Bigelow, P., Dubin, J. A., and Mielke, J. G. (2023). High dietary
phosphorus is associated with increased breast cancer risk in a U.S. Cohort of middle-
aged women. Nutrients 15 (17), 3735. doi:10.3390/nu15173735

Brown, R. B., Bigelow, P., Dubin, J. A., and Neiterman, E. (2024). Breast cancer,
alcohol, and phosphate toxicity. J. Appl. Toxicol. 44 (1), 17–27. doi:10.1002/jat.
4504

Cai, J., Huang, Z., Zhou, J., Wu, W., and Ye, Y. (2022). TLN2 functions as a
tumor suppressor in clear cell renal cell carcinoma via inactivation of the Wnt/β-
catenin signaling pathway. Transl. Androl. Urol. 11 (1), 39–52. doi:10.21037/tau-
21-914

Chakraborty, G., Nandakumar, S., Hirani, R., Nguyen, B., Stopsack, K. H., Kreitzer, C.,
et al. (2022). The impact of PIK3R1 mutations and insulin-PI3K-glycolytic pathway
regulation in prostate cancer. Clin. Cancer Res. 28 (16), 3603–3617. doi:10.1158/1078-
0432.Ccr-21-4272

Chan, H. J., Li, H., Liu, Z., Yuan, Y. C., Mortimer, J., and Chen, S. (2015). SERPINA1 is
a direct estrogen receptor target gene and a predictor of survival in breast cancer
patients. Oncotarget 6 (28), 25815–25827. doi:10.18632/oncotarget.4441

Cizkova, M., Vacher, S., Meseure, D., Trassard, M., Susini, A., Mlcuchova, D., et al.
(2013). PIK3R1 underexpression is an independent prognostic marker in breast cancer.
BMC Cancer 13, 545. doi:10.1186/1471-2407-13-545

Corkery, B., Crown, J., Clynes, M., and O’Donovan, N. (2009). Epidermal growth
factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann.
Oncol. 20 (5), 862–867. doi:10.1093/annonc/mdn710

Dann, R., Hadi, T., Montenont, E., Boytard, L., Alebrahim, D., Feinstein, J., et al.
(2018). Platelet-derived MRP-14 induces monocyte activation in patients with
symptomatic peripheral artery disease. J. Am. Coll. Cardiol. 71 (1), 53–65. doi:10.
1016/j.jacc.2017.10.072

Daugan, M. V., Revel, M., Russick, J., Dragon-Durey, M. A., Gaboriaud, C., Robe-
Rybkine, T., et al. (2021). Complement C1s and C4d as prognostic biomarkers in renal
cancer: emergence of noncanonical functions of C1s. Cancer Immunol. Res. 9 (8),
891–908. doi:10.1158/2326-6066.Cir-20-0532

Desoteux, M., Maillot, B., Bévant, K., Ferlier, T., Leroux, R., Angenard, G., et al.
(2023). Transcriptomic evidence for tumor-specific beneficial or adverse effects of TGFβ
pathway inhibition on the prognosis of patients with liver cancer. FEBS Open Bio 13 (7),
1278–1290. doi:10.1002/2211-5463.13647

Falanga, A., Schieppati, F., and Russo, D. (2015). Cancer tissue procoagulant
mechanisms and the hypercoagulable state of patients with cancer. Semin. Thromb.
Hemost. 41 (7), 756–764. doi:10.1055/s-0035-1564040

Fang, K. P., Dai, W., Ren, Y. H., Xu, Y. C., Zhang, S. M., and Qian, Y. B. (2016).
Both Talin-1 and Talin-2 correlate with malignancy potential of the human
hepatocellular carcinoma MHCC-97 L cell. BMC Cancer 16, 45. doi:10.1186/
s12885-016-2076-9

Feinauer, M. J., Schneider, S. W., Berghoff, A. S., Robador, J. R., Tehranian, C.,
Karreman, M. A., et al. (2021). Local blood coagulation drives cancer cell arrest and
brain metastasis in a mouse model. Blood 137 (9), 1219–1232. doi:10.1182/blood.
2020005710

Frafjord, A., Buer, L., Hammarström, C., Aamodt, H., Woldbæk, P. R., Brustugun, O.
T., et al. (2021). The immune landscape of human primary lung tumors is Th2 skewed.
Front. Immunol. 12, 764596. doi:10.3389/fimmu.2021.764596

Gao, Y., Zhou, H., Liu, G., Wu, J., Yuan, Y., and Shang, A. (2022). Tumor
microenvironment: lactic acid promotes tumor development. J. Immunol. Res. 2022,
3119375. doi:10.1155/2022/3119375

Gofrit, S. G., and Shavit-Stein, E. (2019). The neuro-glial coagulonome: the thrombin
receptor and coagulation pathways as major players in neurological diseases. Neural
Regen. Res. 14 (12), 2043–2053. doi:10.4103/1673-5374.262568

Graf, C., Wilgenbus, P., Pagel, S., Pott, J., Marini, F., Reyda, S., et al. (2019). Myeloid
cell-synthesized coagulation factor X dampens antitumor immunity. Sci. Immunol. 4
(39), eaaw8405. doi:10.1126/sciimmunol.aaw8405

He, C., Li, Y., Zhang, R., Chen, J., Feng, X., and Duan, Y. (2021). Low CFB expression
is independently associated with poor overall and disease-free survival in patients with
lung adenocarcinoma. Oncol. Lett. 21 (6), 478. doi:10.3892/ol.2021.12739

Hisada, Y., and Mackman, N. (2021). Tissue factor and extracellular vesicles:
activation of coagulation and impact on survival in cancer. Cancers (Basel) 13 (15),
3839. doi:10.3390/cancers13153839

Hong, C. C., Yao, S., McCann, S. E., Dolnick, R. Y., Wallace, P. K., Gong, Z., et al.
(2013). Pretreatment levels of circulating Th1 and Th2 cytokines, and their ratios, are
associated with ER-negative and triple negative breast cancers. Breast Cancer Res. Treat.
139 (2), 477–488. doi:10.1007/s10549-013-2549-3

Hosomi, Y., Morita, S., Sugawara, S., Kato, T., Fukuhara, T., Gemma, A., et al. (2020).
Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with
mutated epidermal growth factor receptor: NEJ009 study. J. Clin. Oncol. 38 (2),
115–123. doi:10.1200/jco.19.01488

Hou, M. (2022). Exploring novel independent prognostic biomarkers for
hepatocellular carcinoma based on TCGA and GEO databases. Med. Baltim. 101
(43), e31376. doi:10.1097/md.0000000000031376

Huh, S., Kang, C., Park, J. E., Nam, D., Kim, S. I., Seol, A., et al. (2022). Novel
diagnostic biomarkers for high-grade serous ovarian cancer uncovered by data-
independent acquisition mass spectrometry. J. Proteome Res. 21 (9), 2146–2159.
doi:10.1021/acs.jproteome.2c00218

Jia, Y., Kodumudi, K. N., Ramamoorthi, G., Basu, A., Snyder, C., Wiener, D., et al.
(2021). Th1 cytokine interferon gamma improves response in HER2 breast cancer by
modulating the ubiquitin proteasomal pathway. Mol. Ther. 29 (4), 1541–1556. doi:10.
1016/j.ymthe.2020.12.037

Kim, M. K., Breitbach, C. J., Moon, A., Heo, J., Lee, Y. K., Cho, M., et al. (2013).
Oncolytic and immunotherapeutic vaccinia induces antibody-mediated complement-
dependent cancer cell lysis in humans. Sci. Transl. Med. 5 (185), 185ra63. doi:10.1126/
scitranslmed.3005361

Kuai, X., Lv, J., Zhang, J., Xu, M., and Ji, J. (2023). Serpin family A member 1 is
prognostic and involved in immunological regulation in human cancers. Int. J. Mol. Sci.
24 (14), 11566. doi:10.3390/ijms241411566

Liu, L., Du, X., Fang, J., Zhao, J., Guo, Y., Zhao, Y., et al. (2021). Development
of an interferon gamma response-related signature for prediction of survival in
clear cell renal cell carcinoma. J. Inflamm. Res. 14, 4969–4985. doi:10.2147/jir.
S334041

Lyu, H., Shen, F., Ruan, S., Tan, C., Zhou, J., Thor, A. D., et al. (2023). HER3 functions
as an effective therapeutic target in triple negative breast cancer to potentiate the
antitumor activity of gefitinib and paclitaxel. Cancer Cell Int. 23 (1), 204. doi:10.1186/
s12935-023-03055-w

Ma, L., Sun, Y., Li, D., Li, H., Jin, X., and Ren, D. (2020). Overexpressed
ITGA2 contributes to paclitaxel resistance by ovarian cancer cells through the
activation of the AKT/FoxO1 pathway. Aging (Albany NY) 12 (6), 5336–5351.
doi:10.18632/aging.102954

Maeser, D., Gruener, R. F., and Huang, R. S. (2021). oncoPredict: an R package
for predicting in vivo or cancer patient drug response and biomarkers from cell
line screening data. Brief. Bioinform 22 (6), bbab260. doi:10.1093/bib/bbab260

Pitt, J. M., Marabelle, A., Eggermont, A., Soria, J. C., Kroemer, G., and Zitvogel, L.
(2016). Targeting the tumor microenvironment: removing obstruction to anticancer
immune responses and immunotherapy. Ann. Oncol. 27 (8), 1482–1492. doi:10.1093/
annonc/mdw168

Riedl, J., Preusser, M., Nazari, P. M., Posch, F., Panzer, S., Marosi, C., et al. (2017).
Podoplanin expression in primary brain tumors induces platelet aggregation and
increases risk of venous thromboembolism. Blood 129 (13), 1831–1839. doi:10.1182/
blood-2016-06-720714

Riihilä, P., Viiklepp, K., Nissinen, L., Farshchian, M., Kallajoki, M., Kivisaari, A., et al.
(2020). Tumour-cell-derived complement components C1r and C1s promote growth of
cutaneous squamous cell carcinoma. Br. J. Dermatol 182 (3), 658–670. doi:10.1111/bjd.
18095

Röth, A., Barcellini, W., D’Sa, S., Miyakawa, Y., Broome, C. M., Michel, M., et al.
(2021). Sutimlimab in cold agglutinin disease. N. Engl. J. Med. 384 (14), 1323–1334.
doi:10.1056/NEJMoa2027760

Ruterbusch, M., Pruner, K. B., Shehata, L., and Pepper, M. (2020). In vivo CD4(+)
T cell differentiation and function: revisiting the Th1/Th2 paradigm. Annu. Rev.
Immunol. 38, 705–725. doi:10.1146/annurev-immunol-103019-085803

Saidak, Z., Soudet, S., Lottin, M., Salle, V., Sevestre, M. A., Clatot, F., et al. (2021). A
pan-cancer analysis of the human tumor coagulome and its link to the tumor immune
microenvironment. Cancer Immunol. Immunother. 70 (4), 923–933. doi:10.1007/
s00262-020-02739-w

Shahzad, M. H., Feng, L., Su, X., Brassard, A., Dhoparee-Doomah, I., Ferri, L. E., et al.
(2022). Neutrophil extracellular traps in cancer therapy resistance. Cancers (Basel) 14
(5), 1359. doi:10.3390/cancers14051359

Siegel, R. L., Giaquinto, A. N., and Jemal, A. (2024). Cancer statistics, 2024. CA Cancer
J. Clin. 74 (1), 12–49. doi:10.3322/caac.21820

Taniguchi, C. M., Winnay, J., Kondo, T., Bronson, R. T., Guimaraes, A. R., Alemán,
J. O., et al. (2010). The phosphoinositide 3-kinase regulatory subunit p85alpha can exert
tumor suppressor properties through negative regulation of growth factor signaling.
Cancer Res. 70 (13), 5305–5315. doi:10.1158/0008-5472.Can-09-3399

Frontiers in Molecular Biosciences frontiersin.org17

Lei et al. 10.3389/fmolb.2024.1394585

https://doi.org/10.1186/s40659-018-0202-7
https://doi.org/10.1136/gutjnl-2023-329689
https://doi.org/10.1136/gutjnl-2023-329689
https://doi.org/10.3390/genes13060960
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.3390/nu15173735
https://doi.org/10.1002/jat.4504
https://doi.org/10.1002/jat.4504
https://doi.org/10.21037/tau-21-914
https://doi.org/10.21037/tau-21-914
https://doi.org/10.1158/1078-0432.Ccr-21-4272
https://doi.org/10.1158/1078-0432.Ccr-21-4272
https://doi.org/10.18632/oncotarget.4441
https://doi.org/10.1186/1471-2407-13-545
https://doi.org/10.1093/annonc/mdn710
https://doi.org/10.1016/j.jacc.2017.10.072
https://doi.org/10.1016/j.jacc.2017.10.072
https://doi.org/10.1158/2326-6066.Cir-20-0532
https://doi.org/10.1002/2211-5463.13647
https://doi.org/10.1055/s-0035-1564040
https://doi.org/10.1186/s12885-016-2076-9
https://doi.org/10.1186/s12885-016-2076-9
https://doi.org/10.1182/blood.2020005710
https://doi.org/10.1182/blood.2020005710
https://doi.org/10.3389/fimmu.2021.764596
https://doi.org/10.1155/2022/3119375
https://doi.org/10.4103/1673-5374.262568
https://doi.org/10.1126/sciimmunol.aaw8405
https://doi.org/10.3892/ol.2021.12739
https://doi.org/10.3390/cancers13153839
https://doi.org/10.1007/s10549-013-2549-3
https://doi.org/10.1200/jco.19.01488
https://doi.org/10.1097/md.0000000000031376
https://doi.org/10.1021/acs.jproteome.2c00218
https://doi.org/10.1016/j.ymthe.2020.12.037
https://doi.org/10.1016/j.ymthe.2020.12.037
https://doi.org/10.1126/scitranslmed.3005361
https://doi.org/10.1126/scitranslmed.3005361
https://doi.org/10.3390/ijms241411566
https://doi.org/10.2147/jir.S334041
https://doi.org/10.2147/jir.S334041
https://doi.org/10.1186/s12935-023-03055-w
https://doi.org/10.1186/s12935-023-03055-w
https://doi.org/10.18632/aging.102954
https://doi.org/10.1093/bib/bbab260
https://doi.org/10.1093/annonc/mdw168
https://doi.org/10.1093/annonc/mdw168
https://doi.org/10.1182/blood-2016-06-720714
https://doi.org/10.1182/blood-2016-06-720714
https://doi.org/10.1111/bjd.18095
https://doi.org/10.1111/bjd.18095
https://doi.org/10.1056/NEJMoa2027760
https://doi.org/10.1146/annurev-immunol-103019-085803
https://doi.org/10.1007/s00262-020-02739-w
https://doi.org/10.1007/s00262-020-02739-w
https://doi.org/10.3390/cancers14051359
https://doi.org/10.3322/caac.21820
https://doi.org/10.1158/0008-5472.Can-09-3399
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1394585


Timp, J. F., Braekkan, S. K., Versteeg, H. H., and Cannegieter, S. C. (2013).
Epidemiology of cancer-associated venous thrombosis. Blood 122 (10), 1712–1723.
doi:10.1182/blood-2013-04-460121

Tinholt,M., Tekpli, X., Torland, L. A., Tahiri, A., Geisler, J., Kristensen, V., et al. (2024). The
breast cancer coagulome in the tumor microenvironment and its role in prognosis and
treatment response to chemotherapy. J. Thromb. Haemost. doi:10.1016/j.jtha.2024.01.003

Wahab, R., Hasan, M. M., Azam, Z., Grippo, P. J., and Al-Hilal, T. A. (2023). The role
of coagulome in the tumor immune microenvironment. Adv. Drug Deliv. Rev. 200,
115027. doi:10.1016/j.addr.2023.115027

Wang, C., Li, X., Xue, B., Yu, C., Wang, L., Deng, R., et al. (2022). RasGRP1 promotes
the acute inflammatory response and restricts inflammation-associated cancer cell
growth. Nat. Commun. 13 (1), 7001. doi:10.1038/s41467-022-34659-x

Wei, F., Su, Y., Quan, Y., Li, X., Zou, Q., Zhang, L., et al. (2023). Anticoagulants
enhance molecular and cellular immunotherapy of cancer by improving tumor
microcirculation structure and function and redistributing tumor infiltrates. Clin.
Cancer Res. 29 (13), 2525–2539. doi:10.1158/1078-0432.Ccr-22-2757

Will, M., Liang, J., Metcalfe, C., and Chandarlapaty, S. (2023). Therapeutic resistance
to anti-oestrogen therapy in breast cancer. Nat. Rev. Cancer 23 (10), 673–685. doi:10.
1038/s41568-023-00604-3

Xing, X., Hu, Y. H., Wang, Y., Shao, Y., and Zou, M. (2022). No effect on
tumorigenesis in MG63 cells induced by Co-cultured mesenchymal stem cells.
J. Oncol. 2022, 4202439. doi:10.1155/2022/4202439

Xu, L., Li, X., Li, X., Wang, X., Ma, Q., She, D., et al. (2022). RNA profiling of blood
platelets noninvasively differentiates colorectal cancer from healthy donors and
noncancerous intestinal diseases: a retrospective cohort study. Genome Med. 14 (1),
26. doi:10.1186/s13073-022-01033-x

Ye, F., Dewanjee, S., Li, Y., Jha, N. K., Chen, Z. S., Kumar, A., et al. (2023).
Advancements in clinical aspects of targeted therapy and immunotherapy in breast
cancer. Mol. Cancer 22 (1), 105. doi:10.1186/s12943-023-01805-y

Zhao, Z., Ma, J., Mao, Y., Dong, L., Li, S., and Zhang, Y. (2018). Silence of α1-
antitrypsin inhibits migration and proliferation of triple negative breast cancer cells.
Med. Sci. Monit. 24, 6851–6860. doi:10.12659/msm.910665

Frontiers in Molecular Biosciences frontiersin.org18

Lei et al. 10.3389/fmolb.2024.1394585

https://doi.org/10.1182/blood-2013-04-460121
https://doi.org/10.1016/j.jtha.2024.01.003
https://doi.org/10.1016/j.addr.2023.115027
https://doi.org/10.1038/s41467-022-34659-x
https://doi.org/10.1158/1078-0432.Ccr-22-2757
https://doi.org/10.1038/s41568-023-00604-3
https://doi.org/10.1038/s41568-023-00604-3
https://doi.org/10.1155/2022/4202439
https://doi.org/10.1186/s13073-022-01033-x
https://doi.org/10.1186/s12943-023-01805-y
https://doi.org/10.12659/msm.910665
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1394585

	Unraveling breast cancer prognosis: a novel model based on coagulation-related genes
	1 Introduction
	2 Materials and methods
	2.1 Patients and mRNA sequences data acquisition
	2.2 Selection and analysis of genes related to coagulation for differential expression
	2.3 Analysis of functional enrichment
	2.4 Analysis of protein-protein interactions (PPI) networks and identification of central genes
	2.5 Development and validation of the prognostic model
	2.6 Construction of prognosis nomogram and establishment of calibration curve
	2.7 Immune checkpoint and immune infiltration
	2.8 Drug sensitivity analysis
	2.9 Statistical analysis

	3 Results
	3.1 Determination of differentially expressed CRGs and functional enrichment analysis
	3.2 Molecular interactions analysis of differential CRGs
	3.3 Establishment of breast cancer prognostic model based on CRGs
	3.4 Validating the model in the test set
	3.5 Coagulation-related model serve as an independent prognostic factor in breast cancer
	3.6 Clinicopathological features and risk score
	3.7 Enrichment analysis of genes that differ between risk groups showed unique pathway enrichments
	3.8 Disparities in the TME compositions and immune infiltration across risk categories
	3.9 Differences in immune response and drug sensitivity among risk groups

	4 Discussion
	5 Conclusion and perspective
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


