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Gastrointestinal (GI) cancers account for one-fourth of the global cancer
incidence and are incriminated to cause one-third of cancer-related deaths.
GI cancer includes esophageal, gastric, liver, pancreatic, and colorectal cancers,
mostly diagnosed at advanced stages due to a lack of accurate markers for early
stages. The invasiveness of diagnostic methods like colonoscopy for solid biopsy
reduces patient compliance as it cannot be frequently used to screen patients.
Therefore, minimally invasive approaches like liquid biopsy may be explored for
screening and early identification of gastrointestinal cancers. Liquid biopsy
involves the qualitative and quantitative determination of certain cancer-
specific biomarkers in body fluids such as blood, serum, saliva, and urine to
predict disease progression, therapeutic tolerance, toxicities, and recurrence by
evaluatingminimal residual disease and its correlation with other clinical features.
In this review, we deliberate upon various tumor-specific cellular and molecular
entities such as circulating tumor cells (CTCs), tumor-educated platelets (TEPs),
circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), exosomes, and exosome-
derived biomolecules and cite recent advances pertaining to their use in
predicting disease progression, therapy response, or risk of relapse. We also
discuss the technical challenges associated with translating liquid biopsy into
clinical settings for various clinical applications in gastrointestinal cancers.
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1 Introduction

Gastrointestinal (GI) cancers, encompassing colorectal, stomach, esophageal, liver, and
pancreatic cancers, exhibit varying global incidences and mortality rates (Siegel et al.,
2023a). A recent estimate reports that gastrointestinal cancers contribute to one in three
cancer incidences and one in three cancer-related deaths globally and are expected to
increase in the coming years (Sathishkumar et al., 2022; Kayali et al., 2023). Gastrointestinal
tract cancers also result in the impairment of almost all quality of life (QOL) parameters,
and therefore, it is essential to enhance cancer care and clinical outcomes for these cancer
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types (Dalhammar et al., 2022; Siddiqui et al., 2023). Among all GI
tract cancers, colorectal cancer (CRC) stands as one of the most
prevalent cancers worldwide, with mortality rates gradually
decreasing due to improved treatments and early detection
(Siegel et al., 2023b). Stomach or gastric cancer (GC), while
experiencing a decrease in incidence in many regions, still
presents significant mortality rates influenced by the stage of
diagnosis and treatment accessibility (Iwu and Iwu-Jaja, 2023).
The global incidence of esophageal cancer varies, with mortality
rates often high due to late-stage detection (Joseph et al., 2022). Liver
cancer (hepatocellular carcinoma, HCC) incidence is linked to
factors like viral infections and lifestyle choices, resulting in high
mortality rates, often due to late-stage diagnosis (Rattanasupar et al.,
2021). Pancreatic cancer, which is challenging to treat and
frequently diagnosed at advanced stages, registers lower survival
rates among gastrointestinal cancers (Li C. et al., 2022). Efforts
toward early detection through screenings, lifestyle modifications,
and advancements in treatment remain pivotal in mitigating
mortality rates across these cancers (Kayali et al., 2023).

Colorectal cancer is a major global health concern due to its high
incidence rates and considerable fatality figures. It is rated as the
third most typical cancer among those who are diagnosed in both
men and women worldwide. Recent data show that CRC had a
global incidence of 1.93 million and caused approximately
0.93 million deaths in 2020, which is expected to increase to
3.2 million new cases in 2040 (Siegel et al., 2023a; Siegel et al.,
2023b). In addition to this, lower survival statistics describe the
difficult environment that patients with colorectal cancer and
clinicians must navigate. Despite improvements in medical
treatment, this type of cancer frequently poses a significant
barrier to increased life expectancy. Multiple variables, including
late-stage detection, aggressive tumor behavior, and a lack of
effective treatments for advanced patients, contribute to reduced
survival rates (Siegel et al., 2023a; Siddiqui et al., 2023). The
American Cancer Society reports that the colorectal cancer 5-year
survival rate varies greatly depending on the stage at diagnosis.
Patients with localized tumors (stages I–II) have a 5-year survival
rate of nearly 90%, while those with stage III have a survival rate of
nearly 72% compared to a much lower rate for those with stage IV
and distant metastases, which is around 14% (Padilla-Ruiz et al.,
2022; Siegel et al., 2023b). This discrepancy underlines the crucial
significance of early detection using methods that can overcome
difficulties presented by conventional diagnostic approaches and
enhance the general prognosis for those affected by these illnesses. In
the search for a minimally invasive and extremely sensitive method
for detection, liquid biopsy has emerged as a new strategy in the
diagnosis of many malignancies.

2 Prognostic cues captured through
liquid biopsy have useful clinical
importance

Liquid biopsies analyze circulating biomarkers, including DNA,
RNA, proteins, and other chemicals contained in physiological
fluids like blood, saliva, urine, stool, and pleural fluid, as opposed
to conventional tissue biopsies, which can be invasive and difficult to
collect (Mino-Kenudson, 2016; Raez et al., 2023). This method

allows for the detection of genetic mutations and other
biomarkers linked to tumors, such as circulating tumor cells
(CTCs), circulating tumor DNA (ctDNA), cell-free DNA or RNA
(cfDNA/cfRNA), tumor-educated platelets (TEPs), circulating
tumor-derived endothelial cells (CTECs), exosomes, and protein
molecules for early cancer detection (Vacante et al., 2020; Zhou
et al., 2022). Since they offer clinicians access to real-time
information about a patient’s cancer status without requiring
repeated intrusive procedures, liquid biopsies are particularly
useful in tracking therapy response and disease progression
(Sivapalan et al., 2023) (Figure 1). Apart from capturing tumor
heterogeneity, a liquid biopsy can facilitate recording broad
temporal molecular footprints of the tumor, along with its
changes throughout the disease progression to direct better
clinical decisions (Lone et al., 2022; Shegekar et al., 2023) (Figure
1). The next section of this article discusses various components of
body fluids that can be used as tools for liquid biopsy and are
reported to predict disease states, survival outcomes, or treatment
outcomes in various gastrointestinal cancers.

3 Circulating tumor cells

Circulating tumor cells are tumorous cells that exuviate from
primary or metastatic tumors and extravasate to enter and stay in
the blood and lymph circulation. These rare cells travel throughout
circulation to eventually colonize a distant organ and form
secondary tumors (metastasis) (Chauhan et al., 2021) (Figure 2).
They exhibit considerable heterogeneity in terms of size, shape, and
surface characteristics. A typical CTC is slightly larger than a white
blood cell and can range from 10 to 30 um in diameter. These less
frequently found cells (ranging from a few to up to hundred cells per
ml of peripheral blood) can exist either as single cells or as clusters
with stromal cells, platelets, or macrophages (Chen et al., 2022).
Solid tumors of epithelial origin (breast, colon, prostate, etc.) usually
generate CTCs, mostly expressing cytokeratins (CKs), along with
epithelial cell adhesion molecules (EpCAMs). However, CTCs
exhibit considerable diversity in terms of surface markers and
cell types, which hinders the identification and isolation of
clinically useful CTCs (Petrik et al., 2022).

CTCs, which are conventionally associated with the metastatic
potential of any tumor, have potential applications in early diagnosis
and screening. While considering CTCs for the early diagnosis and
screening of GI tumors, it is important to consider the stage at which
they manifest in a tumor (Yang C. et al., 2019). Early tumor lesions
that can be detected using imaging methods, such as MRI/PET or
CT scans, have approximately 109 cells and, hence, may start
spreading disseminated tumor cells (DTCs) early, much before a
metastatic tumor is diagnosed (Heiss et al., 1995; Friberg and
Nystrom, 2015). In this regard, a study on various asymptomatic
but high-risk individuals with a family history of any cancer type
reported that 50% of them were positive for CTCs, while 20%
developed early tumor lesions when followed up (Ried et al.,
2017). Despite the theoretical and experimental rationale for
considering CTCs for early diagnosis and screening, their
extremely low occurrence in peripheral blood, and less sensitive
technical methods to isolate them, CTC examination as a screening
tool for early diagnosis in standard treatment has not been achieved,
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possibly because of technological and logistical limitations (Batool
et al., 2023). Nevertheless, CTC detection in asymptomatic patients
and patients with a family history of cancer has shown promising
results in medium cohort studies, indicating its future prospects for
use in screening strategies (Castro et al., 2018). However, CTCs have
promising clinical applications, such as prognostic classification,
metastatic monitoring, and prediction of response to therapies
(Nikanjam et al., 2022) (Figure 2).

3.1 CTCs and patient groups

CTCs can also be utilized for patient stratification to provide
beneficial treatment and enhance survival outcomes. In the case of
CRC, CTCs are strongly associated with the stage of the disease, with
more CTCs detected in advanced stages than in less advanced stages
(Sastre et al., 2008; Bork et al., 2015). Notably, a study reported better
diagnostic sensitivities of CTCs for early-stage CRC than serum
biochemical markers, such as carcinoembryonic antigen (CEA) or
CA19-9 (Yu et al., 2020). However, the CTC detection rate was not
significantly associated with other clinicopathological features such
as gender, location of the primary tumor (CEA), and lactate
dehydrogenase (LDH) levels. However, its efficiency in detecting
advanced-stage CRC remains unclear. A recent study reported that
vimentin + CTCs could be used to better diagnose stage III/IV CRC
(Cao et al., 2023). Moreover, research into the clinical utility of
qualitative gene mutations in DNA isolated from CTCs, instead of
their enumeration, has provided interesting insights. We already
know that CRC-associated gene mutations with known clinical

utilities, such as KRAS, APC, TP53, ERBB1/2, and FBXW7, may
be evaluated in the CTC genome to predict accurate treatment
options and interventions (Bidard et al., 2019) (Table 1). For
instance, mutations in oncogene epithelial cell transforming
sequence 2 (ECT2) were strongly associated with advanced
CRCs, even more than serum CEA levels (Wang H. et al., 2019),
supporting its usefulness in the prognosis of CRC (Chen et al., 2017)
(Table 1). Furthermore, the expression of genes such as hTERT and
MAGEA1-6 is more strongly associated with stage T3/T4 than stage
T1/T2 in CRC (Kim et al., 2017).

In GC, two or more CTCs in the blood could differentiate GC
patients from healthy controls, whereas a scorable CTC level could
predict a high proportion of early-stage GC (T1,N0) patients (Kang
et al., 2017), indicating its potential role in distinguishing patients with
early-stage GC for screening and diagnosis. Interestingly, in the case of
hepatocellular carcinoma (HCC), various reports indicate conflicting
findings pertaining to stage-dependent associations (Chen et al., 2019;
Ha et al., 2019). Few studies have reported a positive CTC count that is
not associated with any clinical features, including tumor stage (Chen
et al., 2019), while others have indicated that CTC levels are associated
with hepatitis B, the co-existence of satellite nodules, and alanine
aminotransferase levels (Ha et al., 2019). However, an interesting
study that sub-grouped CTCs into epithelial/mesenchymal or mixed
surface biology indicated that mesenchymal and mixed CTCs are
strongly associated with a higher clinical stage and stronger invasive
properties in HCC (Luo C.-L. et al., 2018). In addition, CTCs also
provide valuable information for patients undergoing surgery. A post-
operative CTC detection of >3 CTC per 7.5 mL of blood can distinguish
patients with a risk of extrahepatic metastasis (EHM) in HCC (Sun

FIGURE 1
Schematic representation of various analytes used in liquid biopsy for varied clinical applications.
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et al., 2020). Similar to HCC, where the advanced disease stage has a
mesenchymal CTC phenotype, pancreatic ductal adenocarcinoma
(PDAC) also has CTCs that have the mesenchymal surface marker
vimentin on their surface, which could differentiate PDAC patients
from healthy patients (about 76% were positive for vimentin + CTCs)
(Wei et al., 2019; Arnoletti et al., 2022). Another qualitative evaluation
of plectin-1 + CTCs and EpCAMs + CTCs in the portal and peripheral
blood could identify patients with early-stage resectable PDAC, which
can potentially be used as an early diagnostic biomarker (Song et al.,
2021). Additionally, in pancreatic cancer cases lined for surgery, pre-
operative vimentin + CTC evaluation was associated with a more
advanced stage of disease and metastasis (Table 1) (Wei et al., 2019).
Likewise, CTC evaluation in several GI tract cancer cases can serve as a
tool for patient classification to direct informed therapy
prescriptions (Figure 2).

3.2 Prognosis and treatment response
prediction using CTCs

CTC evaluation in cancers is strongly associated with the disease
stage, along with their utility in predicting patient survival and therapy
responses, which can be exploited for therapymonitoring applications
and predicting outcomes in patients. In CRC patients, a study
indicated that high CTC levels in the blood are significantly
associated with inferior progression-free survival (PFS) and
reduced overall survival (OS) (Cohen et al., 2009) (Figure 3).

Moreover, a positive CTC score was closely correlated with the
tumor stage in both pre- and post-operative scenarios, and
interestingly, only post-operative CTC levels were positively
associated with relapse-free survival (RFS) (Yang et al., 2018),
indicating the clinical utility of post-operative CTC enumeration.
For non-metastatic CRC (stages I–III), primary tumor features were
not significantly associated with CTC detection, but a high CTC count
during chemotherapy was also associated with unfavorable PFS
(Wang et al., 2019b). It is already known that CTC levels are
strongly associated with the TNM stage, lymphatic invasion, CEA
levels, and distant metastasis (Sun et al., 2020). Several studies have,
therefore, concluded that CTC scores are independent prognostic
factors for predicting PFS and OS in CRC (Zhang et al., 2017; Bidard
et al., 2019; Dizdar et al., 2019; Nicolazzo et al., 2019), whereas others
have noted them as insignificant in some special cases, such as during
pulmonary metastasectomy of metastatic CRC (Le et al., 2018). The
genomic profiles of CTCs can also serve as prognostic indicators.
Some genes found in CTCs play a role in the prognostic classification
of CRC, including COX-2 (Cai et al., 2019), LGR-5 (Wang et al.,
2018), and AKT-2, wherein positive AKT-2 expression may predict
shortermedian survival, PFS, andOS (Welinder et al., 2015) (Table 1).
Moreover, the overexpression of plastin 3 (PLS3) on the CTC surface
is an independent predictor of CRC patient prognosis, strongly
associated with the DukeB and DukeC stages of CRC (Yokobori
et al., 2013).

In GC, a high CTC count has been associated with reduced
overall survival rates in multiple studies and meta-analyses (Huang

FIGURE 2
Circulating tumor cells (CTCs) in circulation and their various applications in cancer.
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TABLE 1 Representative studies relating circulating tumor cell (CTC) detection for various clinical applications in gastrointestinal (GI) tract cancers.

CTCs for patient classification in GI tract cancers

Study GIC type Feature Platform used Level (quantitative or
qualitative)

Summary

Sastre et al.
(2008)

CRC Tumor stage (I–IV) CellSearch system >2 CTC per 7.5 mL blood Only tumor stages correlated
with CTC detection rates even
when >2 or >3 CTCs were
considered positive CTC cut-off

Bork et al.
(2015)

CRC Tumor stage (I–III) CellSearch system >1 CTC per 7.5 mL blood Proportion of patients with
positive CTC count increase as
the stage increases

Bork et al.
(2015)

CRC Tumor stage (IV) CellSearch system >2/>3 CTC per 7.5 mL of blood Metastatic patients had higher
CTC detection rates

Kang et al.
(2017)

GC Healthy vs GC group Lab-on-a-disk method 2 CTC per 7.5 mL of blood GC patients could be
distinguished from normal
patients with a sensitivity and
specificity of 85.3% and 90.3%,
respectively

Kang et al.
(2017)

GC Early-stage GC Lab-on-a-disk method A scorable CTC count of at least
1 CTC per 7.5 mL of blood

80% early-stage GC (T1,N0)
had a scorable CTC count

Luo et al.
(2018a)

HCC Invasive HCC/Barcelona Clinic
Liver Cancer (BCLC)

CanPatrol CTC analysis system CTCs subgrouped as epithelial,
mesenchymal, and mixed
phenotypes

Mesenchymal and mixed CTC
phenotypes associated with
invasive or BCLC stages

Chen et al.
(2019)

HCC Tumor stage FAST disk microfluidic system 2 CTCs per 7.5 mL of blood No strong association was
found between the stages and
CTC count

Chen et al.
(2019)

HCC Metastatic HCC CanPatrol CTC analysis system 3/>3 CTCs per 7.5 mL of blood High CTC count can predict the
risk of EHM in HCC patients

Wei et al.
(2019)

PDAC PDAC patients vs. healthy
individuals

Microfluidic assay 2/>2 vimentin + CTC per 4 mL
of blood

76% of PDAC patients had
vimentin + CTCs

Song et al.
(2021)

PDAC Early-stage PDACs Microfabricated porous filter-
based CTC enrichment and flow
cytometric enumeration after
immunostaining

EpCAM + CTCs enumerated EpCAM + CTCs and plectin-1
+ CTCs evaluated in portal and
peripheral blood in resectable
PDAC patients may be used as
potential diagnostic and
prognostic markers

Plectin-1 + CTCs enumerated

CTCs for prognostic and therapy response applications in GI tract cancers

Study GIC type Platform used Scoring characteristic Enumeration window Comment

Yokobori
et al. (2013)

CRC autoMACS Cell sorting and
immunocytochemistry

Evaluation of PLS3-expressing
CTCs

Pre-operative peripheral blood
of CRC patients

PLS3-positive CTCs
represented as independent
prognostic markers

Lee et al.
(2015)

Metastatic GC Anti-EpCAM antibody-coated
magnetic particles using the
CTC Profiler (Veridex)

>5 CTCs per 5 mL of blood During the start of various
chemotherapy cycles

Positive CTC score associated
with unfavorable PFS and OS

Li et al.
(2016)

Advanced GC CellSearch >3 CTCs per 7.5 mL of blood 6 weeks after chemotherapy Predicted shorter PFS and OS

Liu et al.
(2017)

Advanced GC CELLection™ Epithelial
Enrichment kit

>2 CTCs per 2 mL of blood After the 1st cycle of
chemotherapy

Predicted poor PFS and OS

Mu et al.
(2014)

Early HCC Negative enrichment of CTCs
and CaptorTM system

16 CTCs per 7.5 mL of blood Pre- and post-operative
enumeration was done

CTC count decreased after
successful surgery

Fang et al.
(2014)

Intermediate
HCC

Enrichment of CTCs by anti-
EpCAM antibody and
enumeration by fluorescent
imaging

>1 CTC per 7.5 mL of blood Pre- and post-TACE status of
CTCs was evaluated in all
patients

CTC count had no significant
difference between patients
receiving TACE or without
receiving TACE

Rau et al.
(2020)

Progressive
HCC

Enrichment of CTCs followed
by immunostaining and
counting

50 CTCs per ml of blood
represented progressive disease

CTC evaluated for both
advanced and metastatic HCC

High CTC count represented a
progressive HCC disease

(Continued on following page)
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et al., 2015). Studies have also reported that an unfavorable or high
CTC count after 6 weeks of chemotherapy predicts reduced PFS and
OS in addition to the objective response rate (ORR) in advanced
gastric cancers (Li et al., 2016). Another study employing the
enrichment of the epithelial marker EpCAM, followed by
immunostaining and enumeration, could predict a positive CTC
count to be associated with poor PFS and OS, even in patients
undergoing their first cycle of chemotherapy (Liu et al., 2017).
However, in metastatic GCs, a positive CTC count was found to
predict poor PFS and OS in patients undergoing various
chemotherapy cycles (Lee et al., 2015) (Table 1; Figure 3). A
recent meta-analysis on gastric cancer, however, identified the
immunofluorescent detection of CTCs to produce a significant
association between CTC-positive counts and overall survival
compared to molecular detection methods (Li Q. et al., 2022).
This highlights a possible reason for inconsistent CTC
enumeration results due to a technical bias caused by the
platform/methodology followed by various studies across the globe.

When considering HCC, CTC scores can predict responses to
surgery and therapy. For instance, pre- and post-operative CTC
detection by negative enrichment and the Captor™ system could
efficiently report a reduction in the CTC count after successful
hepatectomy (Mu et al., 2014). Studies have also reported that a
positive CTC score is associated with lower survival and recurrence
rates (Ha et al., 2019). More than 3 CTCs per 4 mL of blood are
associated with shorter recurrence-free survival and worse overall
survival in pancreatic cancer patients (Chen et al., 2019; Wei et al.,

2019). In another study, a positive CTC count was associated with
lower survival and a higher chance of relapse among HCC patients
with low levels of alpha-fetoprotein and a co-occurrence of cirrhosis
(Ha et al., 2019). CTC scoring can also be utilized to predict
progressive disease (PD) in cases of HCC. For instance, a study
reported that a higher CTC count is predictive of PD and that a
lower CTC count could represent a stable disease (SD) or partial
response (PR) in HCC. This study reported 50 CTCs per ml blood
for PD and approximately 15 CTCs per ml of blood for SD and PR
(Rau et al., 2020). Another risk factor assessed post-surgery is the
evaluation of microvascular invasion, which can enhance the
chances of recurrence in patients with HCC. Zhou et al. (2020)
found that a positive CTC score is strongly associated with enhanced
mVI counts, thereby increasing the chances of relapse/recurrence.
The authors of this study are of the informed opinion that the CTC-
positive group must have a surgical margin >1 cm from the tumor to
minimize the chances of relapse and increase the overall survival of
HCC patients (Zhou et al., 2020). Furthermore, intermediate-stage
HCC patients who received transarterial chemoembolization
(TACE) did not have significantly lower CTCs than patients who
did not receive TACE, elucidating the lesser role of CTC
enumeration in this patient subgroup (Fang et al., 2014) (Table 1).

Similar studies and meta-analyses in PDAC patients have found
CTC detection to be useful in predicting lower overall survival and
reduced progression-free survival (Han et al., 2014; Martini et al., 2019;
Wang et al., 2020). Many studies in resectable PDAC patients have
reported that pre-operative CTCs are associated with lower survival and

TABLE 1 (Continued) Representative studies relating circulating tumor cell (CTC) detection for various clinical applications in gastrointestinal (GI) tract
cancers.

CTCs for prognostic and therapy response applications in GI tract cancers

Study GIC type Platform used Scoring characteristic Enumeration window Comment

Zhou et al.
(2020)

Resectable
HCC

CellSearch system >1 CTC per 7.5 mL of blood CTCs evaluated once after
surgery

High CTC group reported high
mVI counts and, therefore,
more chances of recurrence

Su et al.
(2022)

HCC CytoSorter™ >2 CTCs per 2 mL of blood Start and end of triple therapy,
i.e., anti-PD-L1 therapy, anti-
angiogenic therapy, and
intensity modulated
radiotherapy (IMRT)

Lesser score of PD-L1+ CTC at
baseline was predictive of
higher ORR and higher OS.

Poruk et al.
(2017)

Resectable
PDACs

Isolation by the size of epithelial
tumor (ISET), followed by
immunofluorescence

Various TIC surface phenotypes
on CTCs were evaluated

CTCs evaluated in PDAC
patients undergoing surgery

Patients positive for one or
more CTC-TIC phenotypes act
as independent factors for
reduced OS) and DFS

Court et al.
(2018)

Resectable
PDACs

NanoVelcro Microfluidic
System

3/>3 CTCs per 5 mL of blood CTCs evaluated in PDAC
patients undergoing surgery

High CTC count pre-
operatively predicts chances of
occult metastasis

Zhu et al.
(2021a)

Resectable
PDACs

Immunomagnetic separation
and fluorescent cell counts

Various CTC phenotypes grouped
according to desired fluorescent
tags

CTCs evaluated in PDAC
patients undergoing surgery

Patients having >50% CTCs as
KLF8+/vimentin+ have
reduced TTR and OS

Park et al.
(2021)

Resectable
PDACs

CD-PRIME platform Various CD144/EpCAM/CK CTC
surface phenotypes

CTCs evaluated in PDAC
patients undergoing surgery

CTC positivity defined by
EpCAM/CK+ CD44− was
associated with higher chances
of early or frequent recurrence
and systemic recurrence

CRC, colorectal cancer; GC, gastric cancer; HCC, hepatocellular carcinoma; PDAC, pancreatic ductal adenocarcinoma; CTCs, circulating tumor cells; EHM, extrahepatic metastasis; FAST, fluid-

assisted separation technology; IMRT, intensity modulated radiotherapy; TACE, transarterial chemoembolization; OS, overall survival; PFS, progression-free survival; DFS, disease-free survival.
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chances of relapse (Poruk et al., 2017; Zhu B. et al., 2021; Hugenschmidt
et al., 2021; Park et al., 2021). More recently, in a study, time to
recurrence (TTR) was found to be reduced in patients with >50%CTCs
as KLF8+/vimentin+, along with the perineural invasion status (Zhu P.
et al., 2021). A positive CTC evaluation (EpCAM/CK+ and CD44−) in
patients with resectable PDAC can also predict the chances of early,
frequent, and systemic recurrence (Park et al., 2021). CTC phenotypes
representing tumor-initiatingmarkers comprised one or moremarkers,
such as aldehyde dehydrogenase (ALDH), CD44, or CD133, indicating
a tumor-initiating cell (TIC) phenotype, which could act as an
independent factor for reduced OS and disease-free survival (DFS),
as reported in a recent study (Poruk et al., 2017). Similarly, a few studies
reported that zero or less than one CTC with EpCAM and Plectin-1
mesenchymal markers was associated with longer overall survival and
can be used as a prognostic marker (Song et al., 2021). The milestone
CLUSTER study was designed to evaluate CTC dynamics and found
that pre-operative CTC levels were strongly associated with early
recurrence in patients undergoing neoadjuvant therapy (NAT) or
initial resection surgery. In the neoadjuvant group, undetectable
CTCs were correlated with longer overall survival, reiterating the
popular fact that the presence of CTCs is indicative of poor survival
(Gemenetzis et al., 2018). However, pre-operative CTC levels could also
be used to identify patients with a high chance of occult metastasis from
others, as suggested by a study employing the NanoVelcro microfluidic
system for CTC evaluation (Court et al., 2018). More recently, a new
circulating stromal cell named cancer-associated macrophage-like cell
(CAML) has been identified; a higher count of which is predictive of
advanced stage and reduced progression-free survival, along with the

identification of more aggressive forms of pancreatic cancer (PC)
(Gardner et al., 2021) (Table 1).

Dynamic evaluation of CTC status in patients during the course of
treatment would prove useful to clinically judge the response to therapies
and decide the change of course if required. CTCs were observed to
decrease in peripheral blood after patients received cryotherapy for liver
metastasis, along with a reduction in other serum biomarkers such as
CEA, CK18/19, and EpCAM (Shi et al., 2016) (Figure 3). Another study
evaluating patients receiving anti-PD-L1 treatment reported high PD-1/
PD-L1 expression in CTCs as a biomarker for screening patients for this
therapy (Yue et al., 2018). For patients receiving the popular FOLFOX
and bevacizumab treatment for mCRC, a decreasing CTC count and
VEGFRpositivity inCTC corresponded to better treatment responses, as
reported in a study (Delgado-Ureña et al., 2018) (Table 1). Therefore, the
above studies point to the important and actionable roles of CTCs and
CTC-phenotypes in capturing tumor evolution during the course of
therapy for the effective monitoring of treatment response and yielding
better outcomes (Figure 3).

4 Tumor-educated platelets

Platelets are abundant anucleated cell types found circulating in
body fluids like blood and lymph, originating from megakaryocytes.
They play a well-known role in maintaining homeostasis and
actively participating in the wound-healing process of thrombosis
(van der Meijden and Heemskerk, 2019). Tumor-educated platelets
are platelets that pick up tumor-associated biomolecules and vesicles

FIGURE 3
Circulating tumor DNA/cfDNA have multiple features and modifications, which are explored and tested for clinical decisions about risk, relapse,
survival, and therapy responses. cfDNA or ctDNA is useful for dynamic monitoring, therapy responses, and risk assessment of relapse. Possibilities for the
risk of assessment of CTCs for prognostic and other clinical applications.
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while interacting with tumor cells (Nilsson et al., 2011) in the tumor
microenvironment (TME). Platelets have a strong association with
wound healing and inflammation, which are also frequent events
occurring in the tumor progression pathway, indicating the
formidable role of this cellular species in cancer prognosis. The
first report of platelets being vehicles of biomolecular signals from
tumors was reported when a study discovered their ability to attach
to tumor RNA-containing vesicles (Nilsson et al., 2011). Tumor cells
can directly initiate the development of circulating tumor-educated
platelets by interacting with them or through various factors such as
RNA/vesicles/proteins released from them to educate them to
eventually emerge as TEPs (Plantureux et al., 2018). Many
studies lay out the process of how tumor cells activate circulating
platelets and initiate the formation of TEPs (D’Ambrosi et al., 2021;
Xu et al., 2018). Across cancer types, studies stated the valuable role
of TEPs in carrying tumor mutational signatures as RNA profiles
and indicated their potential role fit to be used for pan-cancer
diagnostic utilities (Best et al., 2015). Many studies in the scientific
domain report mRNA profile changes in TEPs in various cancer
types, such as non-small cell lung cancer (NSCLC) (Luo L. et al.,
2018; Xue et al., 2018; Dong et al., 2021), breast cancer (Mendoza-
Almanza et al., 2020), liver cancer (Best and Wurdinger, 2020;
Waqar et al., 2021), and glioma (Campanella et al., 2020). Some
studies have also investigated and found the role of medium-sized
extracellular vesicles (EVs) (mEVs) exuviated by platelets activated
by thrombins to carry prognostic clues (Contursi et al., 2023). TEPs
and their role in the clinical utilities of CRC are still an under-
researched area; however, their potential role in prognosis and
treatment monitoring is not disputed. TEPs can, singularly or
along with other diagnostic biomolecules such as CTCs, CAFs, or
ctDNA, be used for clinical utilities such as early diagnosis,
screening, treatment monitoring, and predicting prognosis in
cancer patients.

TEPs have several clinical utilities in various cancer types apart
from gastrointestinal cancers, including breast cancers (Best et al.,
2015; Alimirzaie et al., 2019; Yao et al., 2019; Mendoza-Almanza
et al., 2020), nasopharyngeal cancers (Wang et al., 2019c), prostate
cancers (Tjon-Kon-Fat et al., 2018; Boerrigter et al., 2020), lung
cancers (Sheng et al., 2018; Xing et al., 2019), glioblastoma
(Campanella et al., 2020; Sol et al., 2020; Meng et al., 2021), and
ovarian cancer (Mysona et al., 2019; El-Arabey et al., 2020). Most
studies evaluating the role of TEPs have qualitatively reported the
RNA profiles of TEPs, whereas the protein profiles of TEPs still
remain considerably unexplored. For instance, a TEP RNA profiling
study reported that CRC-associated signatures in RNA profiles
could efficiently differentiate between CRCs and other non-
cancerous colon-related diseases like ulcerative colitis (UC),
Crohn’s disease, and non-cancerous polyps (Xu et al., 2022).
Similarly, a study of TEP proteins concluded a strong association
between CRC disease state and higher levels of platelet-derived
growth factor (PDGF), platelet factor-4 (PF4), and vegetative
epithelial growth factor (VEGF) in TEPs employing ELISA
(Peterson et al., 2012). In addition to proteins, in CRC, the
presence of a higher TIMP1 mRNA level was also reported,
which could efficiently differentiate the diseased group from the
healthy group, indicating its role in diagnosis (Yang L. et al., 2019).
Given the biological role of PDGF and TIMP1 in angiogenesis and
metastasis, a more inclusive study might indicate their role in

differentiating metastatic/advanced CRC as opposed to early-
stage CRC. Non-coding RNAs associated with TEPs have also
been understood to have utilities in the clinical management of
CRC. A study could identify high expression of four long non-
coding RNAs (lncRNAs), namely, LNCAROD, TSPOAP-AS1,
LINC00534, and another SNHG20, in patient serum and tumor-
educated platelets isolated from CRC patients. In this, two lncRNAs,
namely, LNCAROD and TSPOAP-AS1, were found to have strong
associations with the primary tumor location and stage of the disease
(Ye et al., 2022). Very recently, another study discovered that
significant levels of the lncRNA named colon cancer-associated
transcript-1 (CCAT1), usually associated with tumor TEPs, were
highly expressed in the circulation of CRC patients (Tabaeian et al.,
2024). Futuristic studies investigating mEVs, which were found to
have distinct sizes and proteomic profiles compared to healthy
individuals (Contursi et al., 2023), indicating their pro-metastatic
roles, could be explored further along with other biomarkers to
enhance their diagnostic and prognostic efficacies.

In pre-clinical models, pancreatic cancer cells are reported to
stimulate the aggregation of platelets, a phenomenon known as
tumor cell-induced platelet (TCIP) aggregation, which is followed by
thrombosis; this can enhance disease progression by promoting
intra-tumor communications (Mai and Inkielewicz-Stepniak, 2021).
Moreover, TEPs and their role in defining the clinical characteristics
of pancreatic cancers have not been well researched. However, many
studies have underlined the clinical utilities of various platelet
features in the range of PC characteristics like a higher mean
platelet volume (Yin et al., 2018), predictive of liver-metastatic
PC, and advanced stages (stages III–IV), while a decreased MPV
was associated with poor prognosis and early-stage patient groups
(Yagyu et al., 2021). TEPs and their RNA profiles could differentiate
between KRAS wildtype and KRAS-deficient pancreatic tumors
(Best et al., 2015). Proteome profiles of platelets could also
differentiate between early stages (stages I–II) of the head of
pancreas cancer and those of age and sex-matched healthy
subjects (Sabrkhany et al., 2017). A bioinformatics investigation
also revealed a possible role of TEP-associated mRNA RSL24D1 in
being associated with an early pancreatic tumor disease stage
compared to their healthy counterparts. New research
deliberations are required in this area to bring stable biomarkers
fit to be used in clinical settings and applications. As pancreatic
cancer patients are at an increased risk of venous thrombosis,
another possible research interest would be to investigate the
association between platelets and thromboembolism-associated
factors in patient prognosis as an earlier study on a pan-cancer
cohort demonstrated increased levels of cancer-associated tumor
thromboembolism (VTE)-associated factors such as ADAMTS-13
and VWF in patients having worse survival rates (Obermeier
et al., 2019).

Platelets play an important physiological role in the liver, and
therefore, in hepatic diseases such as hepatocellular carcinomas,
their dysregulation is expectedly observed (Lambert, 2016). In HCC,
high platelet counts were long associated with shorter survival
(Schrecker et al., 2022) and may also indicate chances of early
recurrence if considered along with CTCs (Lu et al., 2023).
MicroRNAs isolated from TEPs also carry many cues of HCC-
specific upregulations, such as enriched RhoA, SPINK1, and
CTNNB1, along with a considerable upregulation of SERPIND1,
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IFITM3, and CD41+ levels, to demarcate HCC and cirrhosis patients
(Waqar et al., 2021). Another study reported the high expression of
TGF-ß, NF-KB, and VEGF in mRNA isolated from TEPs in HCC
patients, indicating an advanced stage, whereas a reduced level of
AKT and PIK3 could represent early-stage HCC (Asghar et al.,
2020). Studies investigating microRNAs in TEPs isolated from HCC
patients when computationally analyzed could identify a
differentially expressed microRNA pair, i.e., miR-1293 and miR-
495-3p in HCC patients, playing pathological and diagnostic roles
(Zhu B. et al., 2021). These diverse utilities of TEPs underline more
such investigations in larger cohorts for designing more precise
prognostic models.

5 Circulating cell-free DNA

Circulating cfDNAs are DNA fragments in blood/plasma
circulation (Mandel and Metais, 1948), mostly derived from
healthy leukocytes and stromal cells, and found to be enriched in
cancer patients (Leon et al., 1977). Their applicability in tumor
diagnosis and prognosis was not recognized until studies indicated
that a considerable proportion of cfDNA originates from tumors
and can have tumor-associated footprints. In 1994, a remarkable
study identified tumor-associated KRAS and NRAS gene mutations
in cfDNA, which sparked further curiosity to unravel the diagnostic
and prognostic purposes of cfDNA in various tumors (Caldas et al.,
1994). In cancer patient serum and plasma, cfDNA is found at
higher levels, mainly due to cellular apoptosis or necrosis of stromal
and immune cells in tumors (Stejskal et al., 2023). Regarding patient
diagnosis and classification, earlier studies indicated that cfDNA
levels in CRC patients were enriched both in plasma and stool,
paving the way for its potential use in less-invasive CRC diagnosis
(Sidransky et al., 1992; Harlé, 2020). However, cfDNA elevation is
also indicative of other diseased states relating to inflammatory and
other physical stress conditions (Hummel et al., 2018). Therefore, its
use, along with other minimally invasive markers such as tumor-
specific gene mutations and their methylation status, has yielded
greater prognostic and diagnostic specificity (Table 2).

Tumor-specific gene mutations arise from necrotic and
apoptotic tumor cells, which release their fragmented DNA in
circulation, giving rise to a separate subgroup within cfDNA
known as ctDNA (Leung et al., 2016). This ctDNA is a vehicle
for tumor-specific gene mutations, like KRAS (Sidransky et al.,
1992), BRAF (Fu et al., 2021), TP53, APC, or PIK3CA (Jauhri
et al., 2017). Therefore, the detection of these mutations in cfDNA
would indicate disease states, chances of recurrence, or responses to
therapies in a more focused manner. However, recent investigations
showed that ctDNA detection rates are dependent on the quality and
quantity of input cfDNA in DNA-sequencing platforms
(Bettegowda et al., 2014). An interesting study indicated that 45%
of CRC-specific mutations (KRAS) in tumor tissues could also be
found in their plasma cfDNA in patients and not in healthy groups
(Wang et al., 2004). The concordance of CRC mutations in both
tumor tissue and plasma cfDNA was also studied, which underlined
the concordance of 96% KRAS and 100% BRAF mutations (Thierry
et al., 2014). Similarly, many studies reported higher levels of cfDNA
in plasma, which was strongly correlated with the presence of CRC
in healthy individuals (Pu et al., 2021; Wu et al., 2022); on the other

hand, in another study, cfDNA was found to be enriched more in
colon tumors (500 ng/mL) than in rectal tumors, which had plasma
levels of approximately 250 ng/mL (Frattini et al., 2008) (Table 3).

CTC-associated parameters such as cfDNA abundance and
integrity (Pu et al., 2021; Wu et al., 2022) are also stage-
dependent and could be used for monitoring disease progression.
However, studies have failed to show a compounded cfDNA trend
across studies; instead, cfDNA abundance and growth rates at
endpoints of various clinical crossroads, such as post-therapy and
pre-therapy, have found evidential backing in studies. Moreover, in
a recent large-scale study of 16,347 patients in stages I–III of CRC,
post-operative cfDNA levels did not affect ctDNA positivity, which
clearly demonstrated the better usefulness of ctDNA in driving
clinical decisions (Cohen et al., 2023).

Currently, DNA methylation markers in cfDNA are being
researched for more accurate patient classification exercises. In this
thread, a study found that an 11-DNAmethylationmarkermodel could
effectively distinguish between early-stage CRC and advanced
adenomas and can help guide early diagnosis (Wu et al., 2021).
Another recent finding is the role of 5-hydroxyl cytosine
modifications in cfDNA. In a study, 5-hydroxymethylcytosine
regions were captured and sequenced to develop a 5hmC profile of
CRC and GC patients. This classifier could diagnose early-stage I and
late-stage IV diseases in healthy individuals (Walker et al., 2022). The
sensitivity of this method increased as it included other cfDNA features,
such as the size of fragments and abundance, along with these 5hmC
profiles (Walker et al., 2022), indicating a novel role of 5hmC regions of
cfDNA in early CRC and GC diagnosis.

In hepatocellular carcinoma patients, cfDNA levels are
approximately 20 times more enriched than those in healthy
individuals (Iizuka et al., 2006; Tokuhisa et al., 2007; Huang
et al., 2012). Patients undergoing hepatectomy project a longer
survival rate and lesser recurrence risk if cfDNA levels reduce
after surgery (Tokuhisa et al., 2007). HCC patient subgroups
include those with liver cirrhosis, chronic hepatitis, or HBV-
infected groups. cfDNA can be used to quantitatively recognize
these subtypes. For instance, hTERT DNA in cfDNA was found to
be more enriched in non-HBV-infected HCC patients than in HBV-
infected HCC patients (Yang et al., 2011) and HCV carrier HCC
patients (Tokuhisa et al., 2007). HBV infections damage the host
DNA and are responsible for HCC progression. A study identified
HBV integration hotspots in the cfDNA of HCC patients (Zheng B.
et al., 2021) to be potentially used for surveillance and HBV-related
risk stratification in HCC patients. The methylation of cfDNA is also
predictive of HCC, such as the methylation of the cfDNA-based
assay with a sensitivity of 78.5% and a specificity of 89% that could
distinguish the diseased group from the healthy group (Wang C.
et al., 2021). Another cfDNA-based methylation signature panel
with ring finger protein 135 (RNF135) along with lactate
dehydrogenase B (LDHB) studied healthy individuals, individuals
at risk, and HCC patients to positively diagnose 57% of HCC
patients better than the A-fetoprotein analysis (Kim et al., 2023).
Recent interest lies in developing a multi-omics assay that integrates
the mutational and epigenomic status in cfDNA to predict HCC in a
more precise method (Wang P. et al., 2022) (Table 3).

In pancreatic cancers, cfDNA features have several associations
with the disease state and stage. Apart from elevated levels of cfDNA
in PDAC patients (Bronkhorst et al., 2019), cfDNA fragment lengths
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are also found to be shortened in individuals with such diseases
(Ranucci, 2019). For the precise detection of stages, more specific
genomic signatures in cfDNA (ctDNA) are required. The most
frequently mutated genes in PDAC are KRAS, SMAD4, CDKN2A,
and TP53, among various other genomic markers that could be
assessed for differentiating the diagnosis of early and metastatic
PDAC cases. A study reported that genetic alterations in cfDNA
could be more specifically found in metastatic PDAC in contrast to
fewer such alterations in local PDAC (Bettegowda et al., 2014).

Regarding prognosis and therapy response, as a trend, various
studies have reported a decrease in cfDNA levels after chemotherapy

(Wu et al., 2022). Patients who had higher cfDNA levels before first-
line chemotherapy (oxaliplatin-based) showed reduced survival in
terms of DFS in metastatic CRC (Hamfjord et al., 2019). On the
other hand, patients who underwent surgery and had enhanced
levels of cfDNA experienced lower PFS (Zhong et al., 2020).
Numerous studies also record that in patients receiving various
therapies, those who registered a reduction in cfDNA levels
compared to pre-therapy cfDNA levels represented a better
survival and therapy response group (Leon et al., 1977; Sozzi
et al., 2001; Sozzi et al., 2003). Patients who received
chemoradiotherapy (CRT) were reported to either have increased

TABLE 2 Representative studies relating cfDNA for clinical applications in gastrointestinal tract cancers.

Study Cancer
type

Feature Platform used Summary

Hamfjord et al.
(2019)

CRC CfDNA quantification ddPCR High pretreatment cfDNA levels
represented reduced DFS

Wu et al. (2021) CRC Methylation biomarkers in cfDNA Targeted DNA methylation sequencing Early-stage CRC and advanced
adenomas (AAs) could be diagnosed by
these 11 DNA methylation markers in
cfDNA

Wu et al. (2022) CRC cfDNA quantification qRT-PCR Lowered cfDNA levels after
chemotherapy

Represented better survival

Walker et al. (2022) CRC Hydroxymethylcytosine-based
classifier in cfDNA

Capturing 5hmC regions in cfDNA and
sequencing on the Illumina platform

The classifier could detect early-stage I
CRC and healthy patients with
satisfactory sensitivity, which increased
when other cfDNA parameters such as
size and abundance were considered

Sai et al. (2007),
Zhang et al. (2019a)

GC cfDNA qPCR Elevated plasma cfDNA concentration
and integrity were found in GC patients
contrasting healthy individuals

Chen et al. (2023) GC CSF-cfDNA Next-generation sequencing Levels of cfDNA in CSF could indicate
the presence of metastasis

Tokuhisa et al. (2007) HCC cfDNA Real-time PCR CfDNA levels were significantly
associated with non-HCV-infected HCC
patients and less with HCV-infected
HCC patients

Yang et al. (2011) HCC cfDNA Real-time fluorescent qPCR hTERT DNA in cfDNA was more
elevated in HCC patients than in HBV-
infected HCC patients

Zheng et al. (2021a) HCC cfDNA Circulating single-molecule amplification and
resequencing technology (cSMART)-based
method (SIM)

HBV-associated integrational hotspots
to identify and segregate HCC patients
with HBV-associated risks and
progression

Kim et al. (2023) HCC cfDNA Sensitive PCR-based method known as
methylation sensitive high-resolution analysis
(MS-HRM)

This methylation signature panel with
RNF135 and LDHB could more
accurately detect HCC patients from at-
risk and healthy individuals

Zitt et al. (2008) CRC cfDNA RT-PCR Reduced post-CRT, cfDNA level
represented a better response to CRT

Li et al. (2017a) CRC cfDNA Copy number variation assessment High CNVs associated with shorter
survival

Zhong et al. (2020) CRC cfDNA q-PCR Post-surgical higher cfDNA
concentration was associated with
poor PFS

CRC, colorectal cancer; GC, gastric cancer; HCC, hepatocellular carcinoma; PDAC, pancreatic ductal adenocarcinoma; CTCs, circulating tumor cells; EHM, extrahepatic metastasis; CNV, copy

number variation; OS, overall survival; PFS, progression-free survival; DFS, disease-free survival.
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cfDNA levels or decreased cfDNA levels post-CRT compared to
their initial pre-CRT cfDNA levels. Those patients who recorded
reduced cfDNA levels after CRT were found to better respond than
those with consistently high cfDNA levels (Zitt et al., 2008). Copy
number variations (CNVs) are yet another feature of cfDNA that
could indicate tumor progression and provide survival predictions.
A positive test for enhanced CNVs in several chromosomal regions
and tumor-associated genes found in cfDNA is associated with
shorter survival (Li J. et al., 2017). However, more large-scale studies
are needed to make strong predictions for the early diagnosis and
definitive prognosis of CRC.

In gastrointestinal cancers like CRC, plasma cfDNA is found
to be elevated in multiple studies (Sai et al., 2007; Zhang H. et al.,
2019), both in terms of its concentration and integrity. The
majority of individuals with gastroesophageal cancers (GECs)

present with an advanced stage at diagnosis or collapse due to
disease recurrence even after the main tumor is surgically
removed, underlining the fact that GECs have high death
rates. Such disease progressions can be predicted using tumor-
specific genetic alterations in cfDNA isolated from plasma
(Rumiato et al., 2017; Koldby et al., 2019). As already stated,
in CRC, the methylation status of specific tumor-associated
markers has better prognostic efficacy, which has also been
noted in gastric cancers. A recent study identified the elevated
status of methylated genetic markers in RUNX3, P16, RASSF1A,
and RPRM in gastric cancers, unlike in healthy individuals. The
study also underlines the greater role of RNX3 and RPRM in
detecting early-stage (I–II) GC (Saliminejad et al., 2020).

In HCC, cfDNA assessment during the administration
of systemic therapies and follow-up can capture tumor

TABLE 3 Studies relating CTC detection and various prognostic parameters in gastrointestinal cancers.

Study GIC type Platform used Scoring characteristic Enumeration window Comment

Lee et al.
(2015)

Metastatic GC Anti-EpCAM antibody-coated
magnetic particles using the CTC
Profiler (Veridex)

>5 CTCs per 5 mL of blood During the start of various
chemotherapy cycles

Positive CTC score associated
with unfavorable PFS and OS

Li et al.
(2016)

Advanced GC CellSearch system >3 CTCs per 7.5 mL of blood 6 weeks after chemotherapy Predicted shorter PFS and OS

Liu et al.
(2017)

Advanced GC CELLection™ Epithelial
Enrichment kit

>2 CTCs per 2 mL of blood After the 1st cycle of
chemotherapy

Predicted poor PFS and OS

Mu et al.
(2014)

Early HCC Negative enrichment of CTCs
and CaptorTM system

16 CTCs per 7.5 mL of blood Pre- and post-operative
enumeration was done

CTC count decreased after
successful surgery

Fang et al.
(2014)

Intermediate
HCC

Enrichment of CTCs by anti-
EpCAM antibody and
enumeration by fluorescent
imaging

>1 CTC per 7.5 mL of blood Pre- and post-TACE status of
CTCs was evaluated in all
patients

CTC count had no significant
difference between patients
receiving TACE or without
receiving TACE

Rau et al.
(2020)

Progressive
HCC

Enrichment of CTCs followed by
immunostaining and counting

50 CTCs per ml of blood
represented progressive disease

CTC evaluated for both advanced
and metastatic HCC

High CTC count represented
a progressive HCC disease

Zhou et al.
(2020)

Resectable
HCC

CellSearch system >1 CTC per 7.5 mL of blood CTCs evaluated once after
surgery

High CTC group reported
high mVI counts and,
therefore, more chances of
recurrence

Su et al.
(2022)

HCC CytoSorter™ >2 CTCs per 2 mL of blood Start and end of triple therapy,
i.e., anti PD-L1 therapy, anti-
angiogenic therapy, and IMRT

Lesser score of PD-L1+ CTC
at baseline was predictive of
higher ORR and higher OS.

Poruk et al.
(2017)

Resectable
PDACs

Isolation by the size of epithelial
tumor (ISET), followed by
immunofluorescence

Various TIC surface phenotypes
on CTCs were evaluated

CTCs evaluated in PDAC
patients undergoing surgery

Patients positive for one or
more CTC-TIC phenotypes
act as independent factors for
reduced OS and DFS

Court et al.
(2018)

Resectable
PDACs

NanoVelcro Microfluidic System 3/>3 CTCs per 5 mL of blood CTCs evaluated in PDAC
patients undergoing surgery

High CTC count pre-
operatively predicts chances
of occult metastasis

Zhu et al.
(2021b)

Resectable
PDACs

Immunomagnetic separation and
fluorescent cell counts

Various CTC phenotypes
grouped according to desired
fluorescent tags

CTCs evaluated in PDAC
patients undergoing surgery

Patients having >50% CTCs
as KLF8+/vimentin+ have
reduced TTR and OS.

Park et al.
(2021)

Resectable
PDACs

CD-PRIME platform Various CD144/EpCAM/CK
CTC surface phenotypes

CTCs evaluated in PDAC
patients undergoing surgery

CTC positivity defined by
EpCAM/CK+; CD44− was
associated with higher
chances of early or frequent
recurrence and systemic
recurrence

CRC, colorectal cancer; GC, gastric cancer; HCC, hepatocellular carcinoma; PDAC, pancreatic ductal adenocarcinoma; CTCs, circulating tumor cells; EHM, extrahepatic metastasis; FAST,

fluid-assisted separation technology; IMRT, intensity modulated radiotherapy; TACE, transarterial chemoembolization; OS, overall survival; PFS, progression-free survival; DFS, disease-free

survival.
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heterogeneity and actionable mutations from tumors, direct therapy,
and offer progress monitoring tools (Coto-Llerena et al., 2022).
Many therapy-responsive gene mutations also exist, such as
CTNB1 S33C (Lin C. et al., 2021), ARIDIA R727, AXIN1
(Higuera et al., 2022), NF1 (Lyu et al., 2022), and NRAS, which
can be detected well in cfDNA/ctDNA and can, therefore, direct
therapy decisions in HCC patients. Higher cfDNA levels, as
expected, supported reduced survival rates (Iizuka et al., 2006)
and a higher risk of recurrence with elevated chances of
metastasis (Huang et al., 2012).

6 Circulating tumor DNA

As discussed in the above section, ctDNA is a new and
promising biomarker for appropriate, directed treatment in
precision oncology using liquid biopsy. Tumor DNA, as
ctDNA, can be used to analyze various tumor-related features
such as prognosis, therapy responses, or heterogeneous
resistance in individual patients, which are typically
overlooked by tumor biopsies. The dynamics of repeated
tumor biopsies have reduced patient compliance (Li W. et al.,
2022) and may not be necessary after the discovery of ctDNA in
many cancer types. Equivalent to next-generation sequencing
(NGS) whole-genome sequencing, cfDNA and ctDNA are the
most invaluable and highlighted blood biomarkers in recent years
due to their predictive and prognostic importance. The foremost
challenge to detecting ctDNA in the plasma is the presence of
low-quantity DNA with a half-life of approximately 2 h. In
contrast, ctDNA is present in higher amounts in cancer
patients than in healthy individuals. The proportion of ctDNA
in total plasma cfDNA increases for advanced stages (10%) while
remaining very low in early stages; the exosomal prion proteins
were found to be overexpressed in CRC, which could be cancer
(0.1%). Less invasive procedures for testing ctDNA may help in
the screening/diagnosis of early tumors, but its strong roles have
been more extensively researched for the disease monitoring and
molecular assessment of patient recovery, responses, and chances
of relapse during and after the respective treatments. Although
several studies showcase that ctDNA detection is more helpful in
the advanced stages of tumors in detecting the heterogeneity of
disease, a large-scale longitudinal study reported that using
methylation markers in ctDNA, some major gastrointestinal
tumors can be diagnosed as early as 4 years before they are
detected by current standard diagnostic procedures (Chen
et al., 2020a).

6.1 ctDNA and patient stratification

Circulating tumor DNA can play a role in early screening.
Few studies claim that ctDNA detection can help in the pre-
diagnosis of cancer even before the symptoms appear. In a recent
study, ctDNA methylation was detected in the plasma of
605 individuals with no symptoms, and among them,
191 patients within 4 years were detected with various GI
cancers (colorectal, esophageal, stomach, and liver cancer)
(Chen et al., 2020b). However, more such studies are needed

for conclusive evidence for its use in screening and early
diagnosis. In addition to this, ctDNA features can harbor clues
for patient stratification for precision therapy decisions.
Circulating tumor DNA with a CRC-specific mutation can
also be an important parameter for diagnosing clinically
relevant tumor features. In metastatic CRC, ctDNA with
KRAS mutations could detect diseased groups with 99.2%
specificity and 87.2% sensitivity (Bettegowda et al., 2014),
whereas its sensitivity to detect stage I CRC was not
satisfactory. The inclusion of a more diverse gene panel of
38 genes indicated enhanced diagnostic abilities in gastric
cancer, as reported by a study (Varkalaite et al., 2021). The
methylation status of ctDNA could also provide
discriminatory capability to distinguish between early disease
and healthy individuals. A study concluded that the presence of
six methylation markers in ctDNA was enriched in about 78% of
stage I–III CRC patients (Mo et al., 2023) and that the
methylation status of the SEPT9 gene in plasma is strongly
capable of distinguishing GC patients from healthy individuals
least invasively (Bergheim et al., 2018; Zhao et al., 2022)
(Table 3).

In PC, a four-gene (PXDN, ADAMTS1, LRFN5, and BNC1)
methylation status assessment in ctDNA could provide 90%
specificity in the early detection of PCs (Ying et al., 2021). Later,
an interesting study designed a sequencing data analysis tool/
algorithm called methylated CpG tandem amplification and
sequencing (MCTA-Seq), utilizing 153 gene methylation
assessments in ctDNA, which could diagnose GCs in various
stages and could also discriminate between chromosomal
instability methylator phenotype (CIMP) and non-CIMP gastric
cancers. This algorithm and gene panel could also differentiate
between early GC from CRC or HCC samples (Ren et al., 2022).
This method has been applied to various other gastrointestinal
cancer types for its early diagnostic utilities in respective types
such as CRC (Li et al., 2019) and HCC (Wen et al., 2015).

In gastric cancer, a separate sub-type, Epstein–Barr virus (EBV)-
GC, is identified by the presence of EBV infection. This subtype can
be diagnosed by qPCR methods, which detect EBV sequences in
tissue DNA. However, this subtype can also be efficiently diagnosed
using cfDNA, with a sensitivity of 71% and a specificity of 94%. In
addition to detecting the EBV subtype, this method can also help in
assessing tumor progression and therapy responses in EBV-positive
patients (Shoda et al., 2017). In many cases, it has been observed that
cfDNA/ctDNA integrity is reduced in various cancer types as they
are reported to have many regions of ultrashort or jagged DNA.
Quite recently, technologies and tools were innovated that could
efficiently capture even these ultrashort or jagged DNA sequences in
ctDNA. A sequencing tool called broad-range cell-free DNA-Seq
(BRcfDNA-Seq) can capture these ultrashort cfDNA fragments
isolated from saliva and could discriminate between gastric
cancer patients and healthy individuals (Swarup et al., 2023). Few
rare GC cases metastasize in the leptomeningeal region, giving rise
to gastric cancer with a leptomeningeal metastasis (GCLM) subtype.
Quantifying post-therapy cfDNA in the CSF of such cases provides
various prognostic clues, such as this study (Chen et al., 2023), which
reported that reduced cfDNA levels in the CSF indicated better PFS
in GCLM patients. In such cases, identifying levels and genomic
alterations in CSF ctDNA could hold promising potential to provide

Frontiers in Molecular Biosciences frontiersin.org12

Mondal et al. 10.3389/fmolb.2024.1385238

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1385238


prognostic decisions and clinical assessment. Many ongoing clinical
trials are also identifying and mapping methylomes in GC patients
for potential use in the early diagnosis of GC (Han et al., 2023).

6.2 ctDNA for prognosis and
therapy response

ctDNA assessment before and after treatments can also be used to
predict therapy responses. A study found a difference in the ctDNA level
in mCRC patients before and after the treatment with FOLFIRI, where
patients were found positive for increased ctDNA levels after the first
cycle of chemotherapy and showed shorter PFS and poor survival
(Lyskjær et al., 2019). Studies have shown the importance of ctDNA
detection in the treatment with standard chemotherapy drugs. Hence, it
is suggested that ctDNAdetection in thefirst week of FOLFIRI treatment
in colorectal cancer patients could direct the progression of diseases,
survival outcomes, and the indication for treatment failure in patients.
KRAS and NRAS are commonly mutated genes in CRC and are also an
indicator for the response to anti-EGFR-based targeted therapy using
monoclonal antibodies like panitumumab and cetuximab. A study
investigated the role of ctDNA in the early prediction of responses to
these anti-EGFR therapies (Vidal et al., 2017). In addition to this, the
presence of CRC-specific mutations such as KRAS, APC, and p53 in
ctDNA is associated with a higher chance of metastasis/recurrence in
patients not harboring these mutations (Wang et al., 2004).

However, another recent study also underlined the relevance of
scoring ctDNA positivity in cfDNA using a wide range of CRC-
specific gene panels that can be used to predict recurrence risk in
post-operative stage II/III patients and can guide the administration
of adjuvant radiotherapy (ART). Here, the study reported post-
operative ctDNA positivity with an enhanced risk of recurrence
(Chen et al., 2021) and can help in the selection of high-risk patients
for ARTs. A ctDNA methylation panel of 6 markers revealed
17 times more chances of relapse in ctDNA-positive patients
when evaluated after 1 month of surgery in stage I–III CRC (Mo
et al., 2023). The same study followed patients who received
adjuvant chemotherapy and found that ctDNA positivity led to
shorter recurrence-free survival (Mo et al., 2023), highlighting that
continuous ctDNA monitoring can help in accessing disease
progression and therapy response. In patients prescribed for
ACT, post-operative ctDNA positivity is associated with a risk of
relapse, compared to patients responding as negative for ctDNA
during ACT cycles (Henriksen et al., 2022). The serial assessment of
ctDNA followed through post-operative and ACT cycles indicated
better chances of survival and a reduced risk of relapse in the
reduced ctDNA growth rate over time (Henriksen et al., 2022).
On the completion of definitive therapy (surgery or adjuvant
therapy) in stage I–IV CRC patients, the assessment of ctDNA
for minimal residual disease (MRD) helped in predicting a 100%
recurrence in the ctDNA-positive group versus 24% in those without
any detectable ctDNA. This method of ctDNA assessment over 1-
year follow-up after definitive therapy represented 55% sensitivity,
which was enriched to 69% when genomic alteration and
epigenomic markers were considered (Parikh et al., 2021). The
above study also showcases the importance of epigenomic
markers of ctDNA having more sensitivity for recurrence
prediction than plasma CEA, reiterating the importance of

consistent longitudinal surveillance using an inclusive biomarker
panel of ctDNA, epigenomic, and genomic mutational
markers (Figure 4).

In another milestone innovation, a blood-based assay, ColonAiQ,
was developed after narrowing down 108 methylation markers to only
6 strong predictivemarkers in ctDNA using a specialized algorithm and
designing these 6 biomarkers as an assay. This assay could predict
relapse in 85% of cases that had a positive ctDNA methylation status
after definitive therapies (surgery or adjuvant therapies), which
persisted throughout follow-up (Cai et al., 2021). In the case of
gastric cancer, a 38-gene panel to detect somatic mutations in
ctDNA was found to predict an increased risk of recurrence and
poor survival in patients found positive for these mutations
(Varkalaite et al., 2021). More recently, various ctDNA-related
features, such as blood tumor mutational burden (bTMB) and
CNVs, have been investigated for clinical utilities. In a similar study
with GC patients receiving nivolumab monotherapy, a higher blood
tumormutational burden (>6 mt/mb)was associatedwith better overall
survival and longer PFS, whereas a reduced bTMB was found to confer
a better disease control rate (DCR). However, the study also noted that
the best survival among the cohort was registered by those with higher
TMB and a negative CNV in ctDNA assessments (Inagaki et al., 2023).

In an ongoing study, the identification of novel genomic alterations
in cfDNA could hold actionable therapeutic interest, such as ERBB2,
FGFR2, and TP53 in 4.9%, 6.2%, and 38.3%, respectively. The
identification of these mutations could distinguish GC cases from
others (Kim et al., 2024). In PDAC patients, the Microsatellite
Instability (MSI)-high status is usually assessed for therapy using
immune checkpoint inhibitor drugs like pembrolizumab, nivolumab,
or those administered with ipilimumab. The use of liquid biopsy to
assess this MSI-H detection in cfDNA expectedly predicted better
outcomes in immune checkpoint inhibitors as with conventional
testing using tumor tissues (Chakrabarti et al., 2022). In resectable
PDAC cases, the assessment of KRAS mutations greatly affects
treatment outcomes. A multiplex KRAS detection tool based on
cfDNA could find a strong association between the mutational
concentration of KRAS and its fractional abundance to effectively
determine progression-free survival (Kim et al., 2018). Detectable
ctDNA is associated with shorter progression-free survival, whereas
KRAS mutant allele fractions detected in ctDNA and exosomal DNA
were found to be strong predictors of overall survival and PFS (Bernard
et al., 2019). In unresectable PDACs that are registered for first-line
chemotherapy, the positive assessment of KRAS mutations in ctDNA
had unfavorable responses to chemotherapy and, thus, could help in the
early detection of patients not expected to gain favorable treatment
outcomes (Watanabe et al., 2023). However, it is imperative to continue
developing more sensitive methods that can improve the identification
of ctDNA originating from tumors and also increase its prognostic
prediction accuracy through the inclusion of epigenetic, genomic, and
other blood-based biomarkers (Cao et al., 2020).

7 Exosomes and exosome-derived
biomolecules

Exosomes are released by all cells of the body. They are extracellular
vesicles of approximately 149 nm in size, which represents the
phenotypic characteristics of the cells from where they were
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generated; hence, they are prominently heterogeneous (Kalluri and
LeBleu, 2020). Like other sub-cellular components, exosomes are also
built from the lipid bilayer and also possess nucleic acids such as DNA,
RNA, miRNAs, lncRNAs, tRNAs, snRNAs, and circRNAs, which can
act as useful biomarkers. An average healthy human blood sample
contains ~1,900 trillion exosomes, whereas patients with cancer have
~3,800 trillion exosomes (Doyle and Wang, 2019). The reason for the
increase in exosome diversity is not well known; however, it is assumed
that due to reformed cellular physiology, exosome populations increase
in density and diversity (Zhang X. et al., 2019; Gurung et al., 2021;
Dilsiz, 2022). Exosomes are consideredmore promising biomarkers and
targets for therapy as they are found in greater numbers and remain
stable in circulation. Exosomes have a dual nature in tumor progression
and were shown to possess antitumor functions to prevent disease
progression (Zhang Y. et al., 2019; Doyle and Wang, 2019). Exosomes
can be detected in many biological secretions, like blood, urine, saliva,
tears, breast milk, amniotic fluid, and cerebrospinal fluid. The frequent
identification of exosomes in secretion makes it efficient for the
diagnosis of malignancies. It is also majorly found in pancreatic,
ovarian, and breast cancer patients (Zhang H. et al., 2019; Osaki
and Okada, 2019; Paskeh et al., 2022), among others.

7.1 Exosome miRNAs for the clinical
management of GI cancers

miRNAs are mainly short-length RNA species with strand
lengths of approximately 19–21 nucleotides, which are found to
regulate tumor pathogenesis and progression as tumor suppressors

or initiators through several mechanisms (O’Brien et al., 2018).
miRNAs play a major role in cancer progression by interacting with
tumor-to-stromal interactions, immune invasion, angiogenesis, and
the tumor microenvironment (Peng and Croce, 2016; O’Brien et al.,
2018). These miRNAs have multiple clinical utilities, from being
used as a tool for molecular diagnosis to a method for the prognosis
assessment of several cancers (Galvão-Lima et al., 2021; Mondal
et al., 2023). ThesemiRNAs can become associated with exosomes as
miRNAs shredded from tissue damage or programmed cell death
can enter the bloodstream via micro-vesicles and exosomes by
binding to HDL, AGO2, and LDL proteins (Li Z. et al., 2022).
Exosomal miRNAs play a crucial role in all three aspects of
identifying potential markers for diagnosis, prognosis, and
predicting OS and DFS and the therapy for chemosensitive or
resistant tumors (Cao et al., 2022). Certain miRNAs have high
expression in the serum exosomes of CRC patients, such as miR-21,
miR-1229, miR-150, let-7a, miR-223, miR-23a, and miR-1246.
These findings suggest the origin of tumors in colonic tissue and
can help in the differential diagnosis of CRC (Ogata-Kawata et al.,
2014). Exosome miRNAs were also reported to have improved the
diagnosis of early-stage CRC. For instance, miR-125a-3p, when
combined with the CEA marker, suggests early-stage CRC with
an AUC curve of 0.855 (Wang et al., 2017). CRC stages I–II were
reported to have elevated levels of exo-miR-1246, especially a noted
expression in stage II, underlining its early-stage association
compared to healthy individuals (Ogata-Kawata et al., 2014;
Wang et al., 2017). An elevated level of miR-21 is reported to
persist in colonic adenoma throughout advanced CRC stages,
indicating its diagnostic importance (Uratani et al., 2016).

FIGURE 4
Various features of cfDNA/ctDNA in tumor-related clinical applications.
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However, the lone use of a single miRNA would be less specific for
diagnosing any cancer type as miRNAs are also elevated in other
malignancies. Therefore, the use of a panel of exosome-associated
miRNAs has yielded better diagnostic and predictive potential
(Uratani et al., 2016).

A tested miRNA panel consisting of miR-21 and miR-1246 was
combined with a few other miRNAs (miR-23a, miR-1229, miR-150,
miR-223, and let-7a) for increasing diagnostic efficacy for various
CRC stages (Uratani et al., 2016). Exosomal levels of this miRNA
panel can help in cancer surveillance as their concentration is
reported to reduce after resectional surgery (Ogata-Kawata et al.,
2014). Another study demonstrated that the enrichment of miRNA
panels in exosomes is better than that of circulating miRNAs.
Particular exosomal miRNA panels consisting of exo-miR-23,
exo-miR-16, and exo-let-7 were strongly enhanced in the CRC
patient group compared to healthy individuals (Dohmen et al.,
2022). Some miRNAs can have clear expressional differences in
various stages of disease, which can be exploited for stage-specific
diagnosis. Another miRNA, miR-320b, was found to be enhanced in
stage IV CRC and not in stages I–II CRC. Similarly, miR-320d is also
found to be highly expressed in metastatic CRC (Tang et al., 2019).
In gastric cancer as well, exo-miR-590-5p had elevated expression in
the lower stages (stage I/II) and reduced expression in the advanced
stages (stage IV) and metastatic CRC (Zheng G.-D. et al., 2021).

Some exosome miRNAs can also predict survival chances,
recurrence, and therapy response. Among these, a reduced level
of miR-422-3p is related to higher chances of recurrence in stage I/II
CRC individuals (Liu C. et al., 2016). However, its role in
determining the FOLFOX adjuvant therapy response in
progressive CRC stages remains elusive. In gastric cancer,
elevated levels of exosomal miRNA miR-590-5p were found to be
responsible for decreased overall survival (Zheng B. et al., 2021). Yet
another exosomal miRNA exo-miR-92a derived from GC patients
was found to play a multifaceted role where its high levels could
signify shorter survival, metastatic state, and poor survival outcomes
(Yang et al., 2020). A meta-analysis of multiple such studies on miR-
92a underlines its important role in prognosis (Guo et al., 2021).
Poor survival and recurrence risk (peritoneal recurrence-free
survival) increase with high expression of exosome-encapsulated
exo-miR-21 in GC cases, as reported in a study (Soeda et al., 2019).
Likewise, a range of exo-miRNAs are found to have prognostic and
therapeutic importance. An elevated exo-miR-215-5p level is
associated with poor DFS and has prognostic utilities in HCC.
For instance, exo-miR-10b-5p can be used as a biomarker to
identify the early stages of this disease (Cho et al., 2020). miR-
720 was found to be consistently elevated in HCC patients compared
to patients with other liver diseases. Moreover, exo-miRNAs are also
closely associated with small HCCs and intrahepatic tumor stage
progression (Jang et al., 2022). Tumor-suppressing exo-miR-199a-
3p is found to reverse and control resistance to chemotherapeutic
drugs like cisplatin when externally administered (Lou et al., 2020;
Zhang et al., 2020). Similarly, many oncogenic miRNAs, such as
miR-155 and miR-21, in plasma have been associated with poor
survival and progression (Ratnasari et al., 2022), but the roles of their
exosomal variants in HCC remain to be explored (Zhou et al., 2018).
In the diagnosis and prognosis of pancreatic cancer, exo-miRNAs
might be employed, such as exo-miR-1226, which is usually
downregulated in PDAC cases compared to benign lesions of the

pancreas. Its elevated levels in PDAC patients may signify higher
invasiveness and a higher risk of metastasis and recurrence of this
disease (Wang F.-W. et al., 2021). On the other hand, exo-miRNAs
enriched in portal blood rather than peripheral blood, such as exo-
miR-21, exo-miR-451a, and exo-miR-4525, can be employed for
identifying PDAC cases undergoing resectable surgery. These exo-
miRNAs can be utilized for assessing cases with a high risk of
recurrence and poor survival (Kawamura et al., 2019). When
considering an efficient exo-miRNA panel, a study identified an
exosome miRNA signature having six exo-miRNAs (miR-1273f,
miR-1229-3p, miR-432-5p, miR-195-5p, miR-133a-3p, and miR-
130b-5p), a higher risk score of which could predict higher chances
of recurrence and poor survival outcomes in PDAC cases
(Nishiwada et al., 2022).

7.2 Exosome lncRNAs

Long non-coding RNAs (lncRNAs) are non-protein-
encoding RNA transcripts, usually longer than 200 nucleotides
and are sometimes termed “mRNA-like” because of their
plausibility to acquire RNA-like modifications such as
polyadenylation, 7-methylguanosine capping, or splicing
(Mattick et al., 2023). Tumor-suppressor lncRNAs and
oncogenic lncRNAs are the two types of lncRNAs that can be
distinguished based on their roles in tumors (Guzel et al., 2020).
Moreover, in recent years, studies have identified lncRNAs linked
to cancer in blood or other bodily fluids that are comparatively
stable (Beylerli et al., 2022). lncRNAs found in plasma or serum
may be employed as possible biomarkers for various tumor types
(Le et al., 2021; Beylerli et al., 2022). Few studies have examined
exosomal lncRNA expression as a possible minimally invasive
diagnostic biomarker in various gastrointestinal cancers, such as
colorectal cancer, gastric cancer, and pancreatic cancer (Gao
et al., 2020; Kumar et al., 2022). A growing body of research
has revealed that circulating lncRNAs are implicated in various
gastrointestinal diseases and conditions (Liu et al., 2022). These
include lncRNAs upregulated in hepatocellular carcinoma
(highly upregulated in liver cancer, HULC) or in colorectal
cancer (colon cancer-associated transcripts, CCATs) and
various others (Zhang X. et al., 2019; Liu et al., 2022; Liau
et al., 2023). Some of the lncRNAs that are upregulated in
CRC are LNCV6/116109, LNCV6/98602, LNCV6/98390,
LNCV6/84003, LNCV6/38772, and LNCV/108266 (Chen and
Shen, 2020; Preethi et al., 2022).

In CRC management, the expression of exosome miRNAs
such as HOTTIP (Oehme et al., 2019), SPINT1-AS1 (Li et al.,
2018), and RPPH1 (Liang et al., 2019) can be determined to assess
various survival parameters. Few other exosome miRNAs, such as
GAS5 (Xu J. et al., 2020), H19 (Ren et al., 2018), 91H (Gao et al.,
2018), and RPPH1 (Liang et al., 2019), correlate with the TNM
stage, whereas others, such as HOTTIP (Oehme et al., 2019),
CRNDE-h/p (Liu T. et al., 2016; Yu et al., 2017), APC1 (Wang
J. et al., 2021), and CCAT2 (Wang S. et al., 2019), are reported to
influence distance or lymph node metastasis. In gastric cancers,
similar dysregulated exosomal lncRNAs could provide clinically
valuable clues. Like an exosomal lncRNA, FRLnc1 is reported to
signify poor survival and chances of recurrence and can also
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represent lymph node and distant metastasis (Kurnick et al.,
2019; Zhang et al., 2021). There are also a wide range of exosomal
miRNAs that potentially have diagnostic and prognostic
applications in various gastrointestinal cancers (Gao et al.,
2018; Roshani et al., 2022).

Moreover, exosomal lncRNAs have been shown in recent
research to facilitate cell-to-cell communication within the TME,
which aids in the growth and chemoresistance of cancer cells. For
instance, by triggering theWnt pathway, the overexpression of CAF-
derived exosomal H19 can improve chemoresistance and encourage
the stemness of CRC cells (Ren et al., 2018). Furthermore, exosomal
colorectal cancer-associated lncRNA (CCAL) has been
demonstrated to directly connect with the mRNA-stabilizing
protein human antigen R (HuR), thereby enhancing CRC cell
resistance to oxaliplatin (Deng et al., 2020). Consequently, as
they might be crucial to the development of tumors, it is worth
investigating the new lncRNAs that are abundant in exosomes
created by endothelial cells that surround the TME. Exosomal
lncRNA-UCA1 has been shown by Yang et al. to be capable of
transmitting cetuximab resistance to susceptible CRC cells, and its
expression is strongly associated with cetuximab treatment in CRC
patients (Luan et al., 2020). Chen et al. (2020a) found that exosomal
HOTTIP is significantly expressed in CRC cells that are resistant to
mitomycin and can enhance CRC resistance to mitomycin by
preventing miR-214 from degrading KPNA3. Therefore, one
intriguing strategy for treating chemoresistance in CRC may be
to target exosomal lncRNAs.

7.3 Exosomal circRNAs

The size of cirRNAs in exosomes ranges from 201 to
599 bp. circRNAs are a part of endogenous lncRNAs that have
closed loops and are stable with longer half-lives (Wang Y. et al.,
2019). One of the important functions of cirRNAs is to bind with
RNA or proteins to regulate alternative splicing and transcription
(WangH. et al., 2019; Xu Y. et al., 2020). Dysregulated circRNAs and
their contribution to influencing various malignancies have been
well researched, with potential for clinical applications (Li et al.,
2015; Zhang et al., 2023). Exosome-encapsulated circRNAs are
found to be more stable in the serum/plasma of patients and,
hence, more likely to indicate accurate lncRNA-associated clinical
insights than other free circRNA species (Li et al., 2015). These
molecular species can also be exploited for critical clinical
information pertaining to prognosis and therapy responses (Yi
et al., 2023). In CRC patients, exosomal has_circ_0004771 is
upregulated compared to the serum of CRC post-operative
patients, thereby showing potential as an early-stage detection
biomarker for CRC (Pan et al., 2019). One such circulating
exosome, circ-FBXW7, in combination with miR-128-3p,
contributes to chemoresistance for oxaliplatin in CRC, thus
suggesting an important therapeutic marker for CRC patients
(Xu et al., 2021; Xu et al., 2024). Additionally, many exosomal
circRNAs were found to play an important role in determining the
resistance to chemotherapy in many cancer types, like gastric,
esophageal, colorectal, pancreatic, and non-small lung cancers
(Xu et al., 2024). However, a thorough mechanism remains
unknown due to limited studies.

7.4 Exosomal proteins

Exosomal proteins are gaining interest in the detection of plasma
and serum circulation. The transfer of oncoproteins from
intercellular exosomes helps in the progression of tumors (Li W.
et al., 2017), and thus, these exosomal proteins may carry tumor-
specific biomarkers into circulation and can be used for diagnostic
and prognostic applications (Wang X. et al., 2022; Liu et al., 2023).
These proteins reflect the cellular origin of exosomes and also
contribute to the detection of cancer. In pancreatic cancer,
exosome proteins are reported to be in an elevated form as
macrophage migration inhibitory factor (MIF) compared with
healthy subjects (Chang and Pauklin, 2021). Moreover, the cell
surface proteoglycan glypican-1 (GPC-1) is also found in
exosomes extracted from pancreatic and breast cancer patients
(Lorenzon and Blandino, 2016; Wang et al., 2019b), which can
also be detected in the early and late stages of pancreatic cancer
compared to the serum of healthy controls. In CRC patients, low
CPNE3 exosomal proteins have shown better OS and DFS than
higher CPNE3 exosomal protein levels in healthy individuals (Sun
et al., 2019; Sun et al., 2019). In contrast, the QSOX1 exosomal
protein is found to be low in the plasma of CRC patients compared
to controls, potentially revealing diagnostic biomarkers with an
ROC curve (AUC of 0.904) (Ganig et al., 2021). Furthermore, a
possible therapeutic strategy for CRC would be to target the
exosomal prion proteins found to be overexpressed in CRC.
Drugs targeting these prion proteins, when administered along
with 5-Fu, yielded better suppression of CRC progression (Yun
et al., 2021). Moreover, exosomal PD-L1 is expressed in higher
concentrations by cancer cells than that by healthy cells, and hence,
its presence could indicate poorer prognosis (Lawler et al., 2020; Hu
et al., 2023) (Table 3).

8 Technical challenges regarding the
translation of liquid biopsy

Many clinical trials testing the efficiency of liquid biopsy
components in the diagnosis of GI tract cancers have been
conducted globally (Table 4). Despite that, the translation of
liquid biopsy for clinical applications in cancer will require
multiple challenges to be addressed. Among these, a major role is
played by improving cellular and sub-cellular analyte isolation
efficiency using better enrichment protocols (Li et al., 2020).
Usually, many sequencing technologies are used to detect ctDNA,
aiming to detect rare mutations and compare them with wildtype
sequences. The most important recent techniques for the analysis of
liquid biopsy are PCR-based and NGS technology. The digital
droplet PCR (ddPCR) can identify tumor-specific mutations with
high accuracy. ddPCR is a sensitive and rapid technology suitable for
detecting mutations, and many such assays are commercialized, but
it is limited by the restricted number of probes for each reaction.
However, these limitations can be overcome with NGS platforms,
which provide whole-genome sequencing of even new and rare
molecular alterations without any prior knowledge (Lin S. Y. et al.,
2021). NGS is also used to determine somatic single-nucleotide
variants, allelic frequencies, copy number variations, and DNA
methylation for ctDNA in plasma (Lin C. et al., 2021). Targeted
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sequencing of desired regions can also be performed using NGS
platforms, but it requires a high ctDNA concentration for definitive
data, indicating genome-wide changes specific to the tumor.
Therefore, targeted sequencing has low specificity (Glenn, 2011),
which can be improved by adapting to several methods to reduce
background error rates (Snyder et al., 2016). Furthermore,
bioinformatics-based approaches can be used to improvise the
method and reduce error rates (Ma et al., 2019). One such tool
used is the base position error rate (BPER), which is an algorithm
used to detect the mean of all types of errors caused by the
sequencing environment (Pécuchet et al., 2016). Another
drawback of isolating and analyzing cfDNA/ctDNA from cancer
patients is its disturbed integrity due to the presence of numerous
ultrashort and jagged DNA fragments within ctDNA. This problem
has been addressed by using a modified NGS pipeline tool known as
BRcfDNA-Seq, which allows the faithful analysis of such low-
integrity ctDNA in body fluids (Swarup et al., 2023).

Another such liquid biopsy analyte that emerged as a strong
candidate to reveal disease status in cancer patients is exosomes and
exosome-derived biomolecules. There are many methods for exosome
isolation, each with its own limitations and advantages. The most
common methods are ultracentrifugation and precipitation. High-
speed centrifugation separates the molecules based on size and
density differences. This technique has the potential for the isolation
of exosomes. However, the instrument cost, low yield, stability, and large
sample requirement make it inappropriate for use in clinical
applications. Density gradient centrifugation can also be used with
UC to purify exosomes. However, methods such as precipitation can
be utilized, which reduces the solubility of exosomes in addition to its
lower sample volume requirements and is comparatively inexpensive for
clinical utilities. Moreover, newmethods of enhanced exosome isolation
assisted by microfluidics (Contreras-Naranjo et al., 2017) or
nanomaterials (Fang et al., 2022) can be explored for higher isolation
efficacies. In addition to the above, another technical challenge would be
to reduce the false-positive scoring of analytes due to the presence of
other conditions, such as stress, inflammatory disease, infectious disease,
and other co-morbidities that are unrelated to tumors, so as to score only
tumor-associated molecular or cellular footprints using liquid biopsy.

9 Conclusion

Liquid biopsy utilizes a range of tumor-related cellular, sub-
cellular, and molecular analytes. These analytes are enumerated,
qualified, quantified, and scored using varied parameters for use in
several cancer types. These parameters are recorded using many
technical and analytical tools on many platforms, ranging from
flow cytometry, PCR, ddPCR, and immunofluorescent imaging to
next-generation sequencing platforms. These techniques capture
these analytes at different levels of sensitivities, given that the
proportions of these disease-associated analytes are rare and
comparatively limited in the bodily fluids from which they are
isolated. Therefore, one of the major challenges to scoring these
analytes before translating them into clinical settings would be to
standardize them in large cohort studies. Moreover, another
challenge of limited sensitivities and specificities of an analyte
can be addressed by using a multi-analyte study design comprising
a panel of biomarkers or a combination of various liquid biopsy
analytes. For instance, a study observed an increase in the
sensitivity of a singular miRNA-based test when it was co-
analyzed with a serum biochemical marker CEA in detecting
early-stage CRC (Wang et al., 2017). Similar analyses using top-
scoring analytes could yield better and more focused sensitivities to
diagnose a disease condition. Another consideration could be to
ensure enhanced repeatability and dependability of outcomes
through standardized protocols and processes that are required
across various research and clinical settings across the world so
that results can be compared without any false conclusions.
Moreover, the detection of rare mutations and methylation
markers or CNVs in molecular species such as ctDNA or
cfDNA are better indicators of tumor progression and therapy
response and, hence, must be further explored (Wu et al., 2021; Mo
et al., 2023). Apart from this, liquid biopsy can have immense
potential to emerge as a screening tool to identify early occurrences
of cancer in asymptomatic and at-risk patients. This would require
large-scale multi-center studies with consideration for multi-
analyte investigations to decrease statistical biases with patient
and biomarker diversity.

TABLE 4 Some clinical trials pertaining to liquid biopsy analyses in GI tract cancer.

Trial Subjects Findings Reference

CAPRI-GOIM trial 340 mCRC patients with KRAS exon-
2 wildtype phenotype

RAS testing in tissues and peripheral blood liquid biopsy predicts similar
outcomes

Normanno et al.
(2018)

PROSPECT-C phase II CRC
trial

47 RAS wildtype CRC patients Longitudinal liquid biopsy assessment of RAS mutations is useful for
predicting primary and acquired resistance to anti-EGFR therapies

Khan et al. (2018)

Translational biomarker phase
II pilot study

30 mCRC subjects Higher ctDNA levels associated with the metastatic status of CRC and can
predict survival among patients receiving regorafenib treatment

Unseld et al. (2021)

CAIRO5 clinical trial 183 mCRC subjects Longitudinal assessment of ctDNA was more predictive of overall survival
than radiological response analysis

van ’t Erve et al. (2023)

JACCRO CC-11 68 CRC subjects receiving
FOLFOXIRI treatment

RAS mutation clearance during treatment course associated with longer
overall survival

Sunakawa et al. (2022)

SORAMIC trial 13 subjects with unresectable
advanced HCC

cfDNA levels and ctDNA mutations (BAX, HNF1A, and CYP2B6 gene
mutations) correlated with metastases and survival

Alunni-Fabbroni et al.
(2019)

Freiburg University Medical
Center study

25 resectable PDAC subjects KRAS mutation and C1-19-9 in plasma associated with poor overall
survival and early relapse

Hussung et al. (2021)

CRC, colorectal cancer; GC, gastric cancer; HCC, hepatocellular carcinoma; PDAC, pancreatic ductal adenocarcinoma.
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