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Themolecular chaperoneHsp90 (Heat shock protein, 90 kDa) is an abundant and
essential cytosolic protein required for the stability and/or folding of hundreds of
client proteins. Hsp90, along with helper cochaperone proteins, assists client
protein folding in an ATP-dependent pathway. The laboratory of Susan Lindquist,
in collaboration with other researchers, was the first to establish the yeast
Saccharomyces cerevisiae as a model organism to study the functional
interaction between Hsp90 and clients. Important insights from studies in her
lab were that Hsp90 is essential, and that Hsp90 functions and cochaperone
interactions are highly conserved between yeast and mammalian cells. Here, we
describe keymechanistic insights into theHsp90 folding cycle that were obtained
using the yeast system. We highlight the early contributions of the laboratory of
Susan Lindquist and extend our analysis into the broader use of the yeast system
to analyze the understanding of the conformational cycle of Hsp90 and the
impact of altered Hsp90 function on the proteome.
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Characterization of the two isoforms of Hsp90

Most eukaryotic organisms have two isoforms of cytosolic Hsp90 (Chen et al., 2006). In
yeast, the isoforms are Hsc82 and Hsp82, which share 97% amino acid identity. Researchers
in the Lindquist lab were the first to clone Hsc82 and analyze the effects of deletion of one or
both isoforms (Borkovich et al., 1989). At standard growth temperatures (25°C or 30°C),
Hsc82 is one of the most abundant soluble proteins in the cell, but the level of Hsp82 is very
low. At elevated temperatures (37°C), the abundance of Hsp82 increases to levels similar to
that of Hsc82. We now know that transcription of both HSC82 and HSP82 are regulated by
transcription factor Heat Shock Factor 1 (Hsf1) (Solis et al., 2016). Deletion of eitherHSC82
or HSP82 resulted in mild growth defects at elevated temperature, but deletion of both
resulted in a lethal phenotype. The effect of limiting the abundance of Hsc82/
Hsp82 provides some clues about function. In a manuscript from the Lindquist lab
(Borkovich et al., 1989), the authors predicted that high levels of expression of Hsc82/
Hsp82 help buffer effects of client misfolding due to temperature fluctuations. Subsequent
studies supported this hypothesis, showing that reducing the level of Hsc82 or
Hsp82 expression to 1%–5% of the wild-type protein levels was sufficient for growth at
optimal temperatures, but not elevated temperatures (Picard et al., 1990; Jiang et al., 2013).
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The presence of either Hsc82 or Hsp82 is required for viability of
yeast, suggesting that the two isoforms have identical or nearly
identical features (Borkovich et al., 1989). A more recent study
showed that the two yeast isoforms have some differences in ATPase
rates, conformational dynamics, and cochaperone interactions.
There were also isoform-specific differences in client interactions
under both optimal and stress conditions. The Hsp82 isoform was
also more thermally stable than Hsc82 at elevated temperatures,
consistent with the stress-induced role of that isoform (Girstmair
et al., 2019). Isoform-specific differences have also been identified in
mammalian cells, which express cytosolic Hsp90 alpha and beta.
These differences include patterns of tissue-specific expression,
client specificity, and differing interactions with cochaperones
(reviewed in (Maiti and Picard, 2022)). Expression of
mammalian Hsp90 isoforms alpha and beta in yeast also results
in differences in client activity and sensitivity to Hsp90 inhibitors
(Piper et al., 2003; Millson et al., 2007).

Hsp90 structure and the
conformational cycle

Hsp90 has three domains; an amino-terminal ATP-binding
domain, a middle domain, and a carboxy-terminal domain,
which contains the primary site of dimerization (Figure 1A).
During the folding cycle, Hsp90 transitions between an open
conformation, dimerized only at the carboxy-terminus, and an
ATP-induced closed conformation characterized by additional
contacts of the amino-terminal domains (Ali et al., 2006). Crystal
structures of the amino-terminal domain of Hsp90 showed that the
inhibitor geldanamycin and nucleotide bind the same site, and

mutational analysis in yeast was used to show that the ability to
bind nucleotide is an essential function of Hsp90 (Obermann et al.,
1998; Panaretou et al., 1998). The structures of the closed
conformation of full-length Hsc82 and Hsp82 are nearly identical
(Ali et al., 2006; Liu et al., 2020). As shown in Figure 1B, most of the
differences between the two isoforms are located in the amino-
terminal domain, which is likely the basis for differences in ATPase
activity and sensitivity to Hsp90 inhibitors that bind the nucleotide-
binding pocket (Girstmair et al., 2019). Early studies showed that
ATP hydrolysis was also essential in yeast, but subsequent studies
suggest that nucleotide exchange, rather than hydrolysis, is sufficient
for viability (Zierer et al., 2016; Reidy et al., 2023). Additional
structural studies, coupled with functional analysis in yeast,
identified residues within a flexible loop of the middle domain
that play an important role regulating ATP hydrolysis (Meyer
et al., 2003). Dimerization of both the carboxy-terminal domains
and amino-terminal domains is also critical for function (Wayne
and Bolon, 2007; Pullen and Bolon, 2011).

Studies by Nathan and Lindquist identified a panel of amino acid
alterations throughout the Hsp82 isoform that confer temperature-
sensitive growth when expressed as the only isoform in yeast
(Nathan and Lindquist, 1995). Subsequent studies showed that
these mutations had diverse effects, either increasing or
decreasing ATPase activity, or stabilizing or destabilizing the
closed conformation (Prodromou et al., 2000). A variety of
studies showed that the rate-limiting step in the Hsp90 cycle is
the ability to adopt the closed conformation (Graf et al., 2009;
Hessling et al., 2009), and there is evidence for more than one closed
conformation (Zierer et al., 2016). Studies in yeast provided evidence
that the ability of Hsp90 to progress through various conformations
in a timely manner is an essential function. The dwell time of

FIGURE 1
Hsp90 structure and alignment of Saccharomyces cerevisiae isoforms. (A) Complete structure of Saccharomyces cerevisiae Hsc82, in the closed
conformation bound to AMP-PNP (magenta) (PDB: 6XLC). Amino-terminal domain (N, green); Middle domain (M, blue); Carboxy-terminal domain (C,
orange). Flexible loop in middle domain (loop, cyan). Second translucent monomer in the same color scheme. Residues that differ between Hsc82 and
Hsp82 isoforms are noted in red. Figure generated with VMD (Humphrey et al., 1996; Meyer et al., 2003; Liu et al., 2020). (B) Alignment of amino acid
sequences of Saccharomyces cerevisiaeHsc82 (P15108) andHsp82 (P02829) isoforms utilizing NCBI Protein BLAST tool. Residues have been highlighted
corresponding to their respective domains, utilizing the same color scheme as panel 1. Residues that differ between the two isoforms are noted in red.
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Hsp90 in two separate closed conformations is particularly
important (Zierer et al., 2016). Subsequent studies have used
large-scale mutational analyses to identify all residues in yeast
Hsp90 critical for function (Mishra et al., 2016; Flynn et al.,
2020; Cote-Hammarlof et al., 2021). Although differences
between the two isoforms have not been studied extensively,
studies suggest that select alterations of homologous amino acids
in either Hsc82 or Hsp82 have similar effects in vivo (Johnson et al.,
2007; Kravats et al., 2018; Mercier et al., 2023).

Hsp90 interaction with cochaperones

Early analysis of Hsp90 complexes identified additional
proteins, now called cochaperones, in complex with Hsp90 and
client proteins (Smith et al., 1990; Grammatikakis et al., 1999).
Studies in the Lindquist lab showed that Hsp90 forms complexes
with cochaperones in yeast cell extracts analogous to
Hsp90 complexes found in vertebrate extracts (Chang and
Lindquist, 1994). Many of the first assays of cochaperone
function were conducted in yeast by or in collaboration with
members of the Lindquist lab (Kimura et al., 1995; Duina et al.,
1996; Chang et al., 1997; Duina et al., 1998). The Lindquist lab was
also the first to identify the cochaperones Hch1 and Cns1 (Nathan
et al., 1999). Hch1 shares homology with Aha1, the strongest
activator of Hsp90 ATPase activity (Panaretou et al., 2002).
Structural and functional analysis of individual cochaperones
uncovered distinct roles in regulation of Hsp90 ATPase activity
and/or Hsp90 conformational changes (reviewed in (Prodromou,
2016; Schopf et al., 2017)). Cochaperones are diverse in terms of the
types of domains they contain (Dean and Johnson, 2021). The two
most common domains are CHORD-containing proteins and Sgt1
(CS) domains (Garcia-Ranea et al., 2002), as found in p23/Sba1, and
tetratricopeptide repeat (TPR) domains (D’Andrea and Regan,
2003), as found in Hop/Sti1 and FKBP51/52. The list of
cochaperones continues to grow, with up to approximately
50 cochaperones identified in mammalian cells and
approximately 14 in yeast (Sahasrabudhe et al., 2017; Schopf
et al., 2017; Backe et al., 2023a). Mutations in some human
cochaperones have been linked to a variety of disorders (Dean
and Johnson, 2021; Johnson, 2021). Results from the Lindquist
lab and others suggest that some cochaperones have preference for
clients with certain types of structural domains, such as the
preference of Cdc37 for kinase domains (Stuttmann et al., 2008;
Taipale et al., 2012; Taipale et al., 2014; Verba and Agard, 2017;
Schopf et al., 2019). Some cochaperones also have the ability to act as
molecular chaperones and suppress aggregation of proteins such as
citrate synthase (Bose et al., 1996; Freeman et al., 1996; Mayr et al.,
2000). Further studies are needed to establish the client range of
individual cochaperones.

Cryo-EM structures of Hsp90 bound to individual
cochaperones, some also in complex with clients are available
(Verba et al., 2016; Liu et al., 2020; Lee et al., 2021; Noddings
et al., 2022; Wang et al., 2022; Noddings et al., 2023). Some
cochaperones directly contact clients through conserved
sequences and alteration of those sequences results in reduced
client activity. Direct cochaperone-client interactions are likely
the underlying basis for previously observed selective effects of

cochaperone mutation on client activity in yeast (Lee et al., 2004;
Verba et al., 2016; Sahasrabudhe et al., 2017; Biebl et al., 2020; Liu
et al., 2020; Noddings et al., 2022; Wang et al., 2022; Noddings et al.,
2023). Figure 2 shows a sampling of the diverse nature of
cochaperones and how they interact with Hsp90, sometimes
using more than one contact site. A more detailed description of
their functions is presented elsewhere (Schopf et al., 2017). In the
Cryo-EM structure (Figure 2A), Cdc37 binds the middle domain of
Hsp90, but in a prior crystal structure, Cdc37 bound the amino-
terminal domain in a manner that would inhibit ATP hydrolysis,
suggesting that there may be different binding sites depending on
the folding cycle (Roe et al., 2004; Verba et al., 2016). As shown in
Figure 2B, Aha1, which stimulates ATP hydrolysis, binds the
Hsp90 middle domain but using two different domains that bind
opposite protomers (Meyer et al., 2004; Liu et al., 2020). The TPR
domain of FKBP51 interacts with the sequences in the carboxy-
terminal domain of Hsp90 (Figure 2C) (Lee et al., 2021; Noddings
et al., 2023). In contrast, p23/Sba1 binds the amino-terminal domain
of Hsp90 (Figure 2D) (Weikl et al., 1999; Ali et al., 2006; Noddings
et al., 2022). Multiple lines of evidence demonstrate that Sti1/Hop
makes contacts with both the middle and carboxy-terminal domains
of Hsp90, as shown in Figure 2E (Richter et al., 2003; Rohl et al.,
2015; Wang et al., 2022).

Integration of information about Hsp90 conformational
changes and cochaperone function results in a simplified model
of how Hsp90 and cochaperones cooperate during the folding of
clients, such as the glucocorticoid receptor (GR) (Figure 3). Hop/
Sti1, along with Hsp70, targets clients to Hsp90. Hop binds the open
conformation of Hsp90 and its release is necessary for progression
through the folding cycle (Richter et al., 2003; Wegele et al., 2006;
Wang et al., 2022). Aha1 stimulates ATP hydrolysis and promotes
structural rearrangements required for adopting the closed
conformation (Retzlaff et al., 2010; Li et al., 2013). Other
cochaperones such as p23/Sba1 and Cpr6 bind and stabilize the
closed conformation (Richter et al., 2004; Johnson et al., 2007). It is
likely that some clients have different folding pathways
characterized by different targeting cochaperones. For example,
protein kinases are targeted to Hsp90 by the cochaperone Cdc37.
There are examples of other cochaperones targeting distinct clients,
as well as targeting of a single client by different cochaperones
(Stepanova et al., 1996; Bansal et al., 2004; Schopf et al., 2019; Biebl
et al., 2022; Clerico and Gierasch, 2022).

Over 20 years ago, Nathan and Lindquist described differing
impacts of cochaperone overexpression on growth of yeast
expressing hsp82 mutations (Nathan et al., 1999). In particular,
overexpression of HCH1 strongly enhanced or repressed growth
defects of different hsp82 mutants. A recent study that used hsc82
mutants defective at distinct stages of the folding cycle suggests a
simple explanation: there is a phenotypic shift in effects of HCH1
overexpression or deletion that correlates with whether hsc82/hsp82
mutants affect steps before or after formation of the closed, ATP-
bound conformation (Hohrman et al., 2021; Mercier et al., 2023).
Overexpression of HCH1 enhanced growth defects of mutants that
impact formation of the loading complex or closed complex. The
hypothesis is that Hch1 destabilizes the closed conformation by
reducing Hsp90-nucleotide interaction (Mercier et al., 2019)
(Figure 3). However, overexpression of HCH1, and in some
cases, AHA1, rescues growth defects of mutants defective in ATP
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hydrolysis, likely through aiding conformation changes in
Hsp90 and/or nucleotide release (Panaretou et al., 2002; Retzlaff
et al., 2010). Other studies examined the effect of Hsp90mutation on
the conformational cycle and the ability of cochaperones, including
Aha1, to modulate those effects using purified proteins (Rehn et al.,
2016). The role of Hch1 in regulating nucleotide interaction adds
additional support for evidence that nucleotide exchange is an
essential step in the Hsp90 cycle (Reidy et al., 2023). However, a
bigger question is whether mammalian Aha1 has a similar function.
Hch1 is only present in some lower eukaryotes (Panaretou et al.,
2002), and it has been suggested that a post-transcriptional
modification of Hsp90 replaces the role of Hch1 in higher
eukaryotes (Zuehlke et al., 2017; LaPointe et al., 2020). Hch1 and
Aha1 are not the only cochaperones that have critical roles
regulating the folding pathway in vivo; deletion of CPR6
negatively impacts growth of hsc82 mutants that affect steps early
in the cycle, but rescues mutations that appear to be defective in
steps that occur after formation of the closed complex. This suggests
that Cpr6 promotes formation of the closed conformation, but its
release is required for cycle progression (Mercier et al., 2023)
(Figure 3). It is unknown whether the mammalian homolog of
Cpr6 (Cyp40), or other immunophilins such as FKBP51/52 have a

similar role in regulating transition into and out of the closed
conformation. However, changes in the relative abundance of
Aha1 and immunophilins have been shown to have opposing
effects on client fate (Wang et al., 2006; Jinwal et al., 2015;
Shelton et al., 2017a; Baker et al., 2017; Shelton et al., 2017b).

One major area of interest today is deciphering the ‘chaperone
code’ which seeks to understand how post-translational
modifications (PTMs) play a large role in Hsp90 and chaperone
function and client fate. PTMs are known to modulate the
Hsp90 folding cycle and binding of cochaperones and clients,
which may provide further insight for use of small-molecule
inhibitors to Hsp90 (reviewed in (Backe et al., 2020)). Studies in
S. cerevisiae have been indispensable to understanding how PTMs
such as phosphorylation, acetylation, SUMOylation, and
ubiquitination regulate Hsp90 function. Some the first
temperature sensitive mutations of Hsp90 were isolated by the
Lindquist lab, T22I and T101I, which occur at residues found to
be modified by phosphorylation (Nathan and Lindquist, 1995;
Mollapour et al., 2011; Woodford et al., 2016). Both T22 and
T101 are conserved threonine residues located within the amino-
terminal domain of Hsp90. Phosphorylation of T22 or T101 disrupts
binding of the Aha1 cochaperone, leading to decreased ATPase

FIGURE 2
Hsp90-cochaperone structures. Hsp90 is presented as translucent and the domain color scheme is the same as in Figure 1. Cochaperones shown in
red. Figures were generated with VMD (Humphrey et al., 1996). (A) Cdc37 bound to Hsp90β (PDB: 5FWL (Verba et al., 2016)). (B) Aha1 bound to Hsc82
(PDB: 6XLF (Liu et al., 2020)). (C). FKBP51 bound to Hsp90α (PDB: 7L7I (Lee et al., 2021)). (D). p23/Sba1 bound to Hsp90α (PDB: 7KRJ (Noddings et al.,
2022)). (E). Hop bound to Hsp90α (PDB: 7KW7(Wang et al., 2022)).

FIGURE 3
Model of how cochaperones function to regulate and drive progression through the yeast Hsp90 folding cycle. Overexpression or deletion of
indicated cochaperones enhance growth defects of yeast Hsp90 mutants defective at progressing through distinct steps in the folding cycle (Mercier
et al., 2023). See text for details.
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activity, and ultimately affecting client maturation. Interestingly,
phosphorylation of T22 decreases binding of Cdc37, while
phosphorylation of T101 has been found to increase interaction
with Cdc37 (Mollapour et al., 2011; Woodford et al., 2016). Another
recently identified temperature-sensitive mutation, S25P, also
occurs at a residue in the amino-terminus known to undergo
phorphorylation (Mercier et al., 2019; Backe et al., 2023b).
SUMOylation and tyrosine phosphorylation of Hsp90 residues
have also been shown to affect Hsp90 function (Mollapour et al.,
2010; Xu et al., 2012; Beebe et al., 2013; Mollapour et al., 2014). Here
we can see that the Hsp90 folding cycle is tightly regulated by PTMs
and knowledge of the chaperone code continues to provide insight
towards understanding how the dynamic interchange between
Hsp90 and cochaperones promotes client maturation.

Analysis of the functional interaction
of Hsp90 with steroid hormone
receptors, protein kinases and
other clients

Early studies identified Hsp90 in complex with either the
glucocorticoid receptor, the progesterone receptor, or the v-src
kinase (Bresnick et al., 1989; Kost et al., 1989; Xu and Lindquist,
1993), but at that time, the function of Hsp90 was not understood.
The Lindquist lab was part of key studies that showed that yeast
Hsp90 is able to chaperone clients from other organisms, indicating
Hsp90 function is highly conserved across species. They
demonstrated that the activity of the v-src kinase was reduced in
yeast lacking HSC82 (Xu and Lindquist, 1993). In collaborative
studies, they used yeast strains engineered to express reduced levels
of Hsp90 to demonstrate that Hsp90 was required for the estrogen
receptor and GR to activate transcription in response to hormone
(Picard et al., 1990). In contrast, they found that mutations in the
Hsp70 cochaperone Ydj1 resulted in derepressed GR activity in the
absence of hormone (Kimura et al., 1995). This may be due to the
role of Hsp70 in unfolding GR prior to refolding by Hsp90 and
cochaperones (Kirschke et al., 2014). Amino acid alterations
throughout yeast Hsp90 resulted in reduced activity of both GR
and v-src, and some mutants also resulted in a sharp decrease of the
steady state level of the two clients, supporting a role for Hsp90 in
client folding (Nathan and Lindquist, 1995). Once assays for GR
receptor and v-src activity became available, they quickly became the
standard for monitoring activity of Hsp90 and cochaperone
function, elucidating residues critical to ATPase activity, client-
activity, and Hsp90-cochaperone interaction (Meyer et al., 2003;
Riggs et al., 2003). In general, Hsp90 mutants affect both clients
similarly, although some client-specific differences have been
observed (Bohen and Yamamoto, 1993; Hawle et al., 2006;
Mishra et al., 2016). Hsp90 was also linked to the function of
other proteins (Koyasu et al., 1986; Kellermayer and Csermely,
1995; Donze and Picard, 1999; Abbas-Terki et al., 2000), and
additional assays of client function in yeast have been developed
more recently (reviewed in (Backe et al., 2023a)). Although the list of
Hsp90 clients grew, there were doubts about whether it was a general
chaperone able to assist any protein, or whether it had more
restrictive functions. Studies showed that unlike Hsp70,
Hsp90 does not cross-link to native chains emerging from the

ribosome (Frydman et al., 1994). To help resolve the question,
the Lindquist lab used a unique mutation, hsp82-G170D, that
becomes rapidly inactivated after a shift to increased
temperatures to examine Hsp90 functions. Unlike the effect of
more general chaperones, a large increase in cellular aggregates
was not detected upon Hsp90 inactivation (Nathan et al., 1997).
Moreover, the folding of beta-galactosidase was not significantly
affected by Hsp90 inactivation, but Hsp90 was involved in refolding
of heat-inactivated firefly luciferase, suggesting Hsp90 exhibits client
selectivity. Together, these studies helped to establish Hsp90 as a
specialized chaperone with selective clientele. Based on these results,
Hsp90 was speculated to play a role in keeping clients inactive until
they reached the correct cellular location, or until the cellular protein
received some activating signal, such as ligand interaction (Xu and
Lindquist, 1993).

Yeast as a model system to study the
extent of Hsp90 functions in vivo

Several independent studies have sought to interrogate the scope
of Hsp90’s interactome, for which the S. cerevisiae model organism
has proven to be invaluable as it is amenable to high throughput
genomic and proteomic approaches. Since Hsp90 interacts with
many proteins that are part of signaling cascades (Taipale et al.,
2010), it is difficult to distinguish direct client interactions from
indirect effects. Two approaches used to identify proteins that
directly interact with Hsp90 were yeast two-hybrid studies and
isolation of Hsp90 complexes followed by mass spectrometry
identification of interactors. For example, one study that used a
two-hybrid approach with the E33A point mutation in Hsp90
(Obermann et al., 1998; Panaretou et al., 1998), which abrogates
the ATPase activity, to stabilize the normally transient client
interactions, found 177 interactions (Millson et al., 2005). That
same year, Zhao et al. used full-length or single domains of Hsp90 as
bait in a two-hybrid system and observed 90 interactions (Zhao
et al., 2005) (Figure 4A). Zhao et al. also used tandem affinity
purification to isolate Hsp90 complexes and observed 118 proteins
that co-isolated with Hsp90 (Zhao et al., 2005) (Figure 4B). Two
studies used metal affinity chromatography to isolate Histidine-
tagged Hsp90 complexes. Truman et al. identified
146 Hsp90 partners that interact before and/or after DNA
damage (Truman et al., 2015). Similarly, Woodford et al.
observed 198 interactors, some of which were dependent on the
phosphorylation state of the T101 residue (Woodford et al., 2016).
More recent studies used different crosslinking methods to identify
proteins that physically interact with Hsp90. As summarized in
Figure 4C, one study identified 476 interactors (Girstmair et al.,
2019), some of which interacted only at elevated temperatures, while
another study identified 1,114 interactors (Kolhe et al., 2023).
Collectively, these studies identified 1783 out of the 6,486 (over
25%) yeast proteins as Hsp90 interactors. One of the surprises is the
lack of overlap between studies designed to identify direct
interactions. Of the 1783, 1,355 were identified in only their
respective study (Figure 4D). Over 75% of the unique hits were
identified in the crosslinking studies, demonstrating the effective
stabilization of transient interactors. In some cases, the lack of
overlap may be due to different growth conditions. For example,
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one of the crosslinking studies harvested yeast in the exponential
growth phase (Kolhe et al., 2023), while the other harvested cells in
stationary phase (Girstmair et al., 2019). There are extensive
transcriptional changes between yeast growth phases (de la
Torre-Ruiz et al., 2015; Soontorngun, 2017), and
Hsp90 cochaperones have been shown to exhibit modified
functions depending on growth phase (Abbas-Terki et al., 2001).

Additional studies used Hsp90 inhibitors that bind the ATP-
binding pocket, or yeast strains expressing either the hsp82-G170D
temperature sensitive allele or very low levels of Hsp90 to identify

the scope of impact of reduced Hsp90 function (Zhao et al., 2005;
McClellan et al., 2007; Franzosa et al., 2011; Gopinath et al., 2014).
Hsp90 is presumably essential because it has clients that are
essential. Systematic analysis of yeast genes identified about
1,100 essential genes (Giaever et al., 2002). Combining the
number of proteins encoded by essential genes that physically
interact with Hsp90 (Millson et al., 2005; Truman et al., 2015;
Woodford et al., 2016; Girstmair et al., 2019; Kolhe et al., 2023), with
other identified interactors of Hsp90 (Franzosa et al., 2011), this
suggests that Hsp90 interacts with 599 proteins encoded by essential

FIGURE 4
Hsp90 interactors in yeast. (A). Protein physical interactors of Hsp90 identified in yeast two-hybrid studies: Zhao et al. (90 total, left (Zhao et al.,
2005)) or Millson et al. (177 total, right (Millson et al., 2005)). 8 protein hits identified in both studies. (B). Proteins isolated in Hsp90 complexes identified in
Zhao et al. (118 total, top-left (Zhao et al., 2005)) or Woodford et al. (198 total, top-right (Woodford et al., 2016)) or Truman et al. (146 total, bottom
(Truman et al., 2015)). 82 proteins were identified in Hsp90 complexes in at least 2 out of 3 studies. (C). Proteins that have been physically crosslinked
to Hsp90 in yeast in Girstmair et al. (476 total, left (Girstmair et al., 2019)) or Kolhe et al. (1114 total, right (Kolhe et al., 2023)). (D). Lack of overlap between
high-throughput studies. A total of 1,355 Hsp90 physical interactors were identified only in their respective study, with the majority identified using
crosslinking methods.

FIGURE 5
Yeast-Go-Slim analysis of Hsp90 interactors that are encoded by essential genes. Proteins were placed into categories using Yeast-GoSlim Process
terms (www.yeastgenome.org), and categories with the highest fold-enrichment over the entire yeast genome are shown. (Giaever et al., 2002; Franzosa
et al., 2011; Gopinath et al., 2014; Girstmair et al., 2019; Kolhe et al., 2023).
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genes. This large percentage (599/1,100, ~54%) is consistent with a
prior study that suggests that Hsp90 clients are enriched for proteins
with essential functions (Gopinath et al., 2014). Figure 5 displays the
results of Gene Ontology analysis of Hsp90 interactors encoded by
essential genes, showing the 15 categories with highest fold-
enrichment across the entire yeast genome. Although not shown
in this list, some of these proteins are Hsp90 cochaperones or other
proteins that have roles in protein folding. This includes the essential
cochaperones Sgt1, Cdc37, and Cns1 which have roles in
kinetochore function, spindle pole body duplication, and
translation, respectively (Schutz et al., 1997; Marsh et al., 1998;
Abbas-Terki et al., 2000; Bansal et al., 2004; Davies and Kaplan,
2010; Schopf et al., 2019). Hsp90 interacts with multiple proteins
involved in rRNA processing and ribosomal biogenesis and function
(Franzosa et al., 2011; Tenge et al., 2014; Kolhe et al., 2023).
Hsp90 also has many roles in the nucleus, including
transcription by RNA polymerase II, chromatin remodeling and
organization, and DNA repair (Flom et al., 2005; Gribun et al., 2008;
Zhao et al., 2008; DeZwaan et al., 2009; Truman et al., 2015;
Echtenkamp et al., 2016; Gvozdenov et al., 2019; Wang et al.,
2020; Omkar et al., 2022). Hsp90 also has demonstrated roles in
the cell cycle and the secretory pathway (McClellan et al., 2007).
Overall, these studies show the vast roles of Hsp90 at the hub of
protein homeostasis (Taipale et al., 2010).

Conclusion

In summary, work from Dr. Susan Lindquist’s lab was pivotal in
establishing S. cerevisiae as a model organism to study Hsp90 function.
A timeline of some of the contributions from her group, alongside other
important works that have led to a deeper understanding of the
Hsp90 chaperone system, are shown in Table 1. The yeast system is
ideal for testing the effect of Hsp90 or cochaperone mutation on client

function. Recent Hsp90 crosslinking studies identified a wide range of
potential clients. Additional work is needed to validate those clients and
establish whether Hsp90 has a conserved role for chaperoning those
clients in yeast and mammalian cells. An intriguing potential is the
utilization of the yeast system to study how genomic mutations in
Hsp90 clients which result in human disease impact Hsp90 and
cochaperone interaction. A yeast model system was previously used
to test the functional link between glaucoma-associated mutations in
the client WDR36 and the Hop/Sti1 cochaperone (Footz et al., 2009;
Footz et al., 2011). Mutations in multiple human Hsp90 cochaperones
are associated with disease (Johnson, 2021), some of which affect
domains required for Hsp90 interaction (Morgan et al., 2012).
Future work is needed to determine whether mutations in the
human homologs of proteins that crosslinked to Hsp90 are also
linked to human disease. Yeast is also an excellent model system to
study the functions of other chaperones, such as Hsp70 and Hsp40
(Kampinga and Craig, 2010; Kampinga et al., 2019), including PTMs of
Hsp70 (Nitika et al., 2020).

Although not discussed here, work from the Lindquist lab was
critical in demonstrating a role of Hsp90 in two other important
areas relevant to human health. First, members of the Lindquist lab
demonstrated a role for Hsp90 in fungal pathogenesis (Cowen and
Lindquist, 2005; Cowen et al., 2009). Secondly, they helped to
identify the critical roles of Hsp90 in promoting cancerous
growth (Whitesell and Lindquist, 2005). Efforts to develop
Hsp90 inhibitors as tools to treat cancer are ongoing. An ATP-
binding pocket inhibitor was recently approved for use (Kurokawa
et al., 2022), and development of Hsp90 isoform specific inhibitors
are underway (Khandelwal et al., 2018; Mak et al., 2019; Mishra
et al., 2021). A greater understanding of Hsp90 functions that are
conserved from yeast to pathogenic fungi to humans will help
identify essential functions that may be impacted by
Hsp90 inhibition and lead to development of new assays to test
for potential negative side effects of those inhibitors.

TABLE 1 A timeline of significant discoveries about Hsp90 function.

Year Significance References

1989 Hsp90 shown to be essential in yeast Borkovich et al. (1989)

1990 Reduced levels of Hsp90 compromise steroid hormone receptor activity in
yeast

Picard et al. (1990)

1993 Hsp90 governs v-src activity in yeast Xu and Lindquist (1993)

1994 Hsp90-Hsp70-cochaperone complexes conserved in yeast and vertebrates Smith et al. (1990), Chang and Lindquist (1994)

1995 Identification of Hsp90 mutations that cause temperature sensitive growth
and client defects

Nathan and Lindquist (1995)

1998 Identification of an essential nucleotide binding site in Hsp90 amino-
terminal domain

Obermann et al. (1998), Panaretou et al. (1998)

2005 Evidence that Hsp90 interacts with at least 10% of yeast proteome Zhao et al. (2005)

2006 Full-length crystal structure of closed Hsp90 complex Ali et al. (2006)

2010–2012 Post-translational modifications, such as phosphorylation, alter
cochaperone interactions and client binding

Mollapour et al. (2010), Mollapour et al. (2011), Xu et al. (2012)

2016 Cryo-EM structure of Hsp90-Cdc37-Cdk4 kinase complex Verba et al. (2016)

2022–2023 Cryo-EM structures of Hsp90-cochaperone-glucocorticoid receptor
complexes

Noddings et al. (2022), Wang et al. (2022), Noddings et al. (2023)
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