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Nutrition during the perinatal period is an essential component of health and one
that can severely impact the correct development of a human being and its
overall condition, in all the subsequent stages of life. The availability of several
compounds, mainly macronutrients and micronutrients, plays a key role in the
balanced nutrition of both mother and baby and is a process with direct relation
to the gut microbiome. Thus, we hereby refer to the set of small molecules
derived from gut microbiome metabolism as the gut metabolome. These
continuous processes occurring in the gut of a gestating or lactating mother
related to microbial communities and nutrients, can be revealed by
metabolomics. In this study, we explore for the first time the gut metabolome
of pregnant and lactating women, from our region of Antioquia-Colombia,
applying untargeted metabolomics by LC-QTOF-MS, and molecular
networking. Regarding the gut metabolome composition of the cohort, we
found, key metabolites that can be used as biomarkers of microbiome
function, overall metabolic health, dietary intake, pharmacology, and lifestyle.
In our cohort, pregnant women evidenced a significantly higher abundance of
prostaglandins, alkaloids, corticosteroids, organosilicons, and natural toxins,
while in lactating women, lipids stand out. Our results suggest that unveiling
the metabolic phenotype of the gut microbiome of an individual, by untargeted
metabolomics, allows a broad visualization of the chemical space present in this
important niche and enables the recognition of influential indicators of the host’s
health status and habits, especially of women during this significant perinatal
period. This study constitutes the first evidence of the use of untargeted LC-
QTOF-MS coupled with molecular networking analysis, of the gut
microbiome in a Colombian cohort and establishes a methodology for
finding relative abundances of key metabolites, with potential use in
nutritional and physiological state assessments, for future personalized
health and nutrition practices.
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Introduction

All nutrients come from the diet, and diet is one of the most
important aspects impacting and modulating health and the gut
microbiota. This ‘microbial’ organ within our guts, and the set of
genes it contains, called the microbiome (El Hage et al., 2017) have
been extensively studied over the last decade. Several of these studies,
now published in prestigious journals, have uncovered that
dysbiosis, or an imbalance of the intestinal microbial
communities (microbiota) and the decrease in ecological diversity
within the gut, are related to gastrointestinal, metabolic, and
autoimmune diseases, mental disorders, and even some types of
cancer (Derrien and Veiga, 2017; Deng et al., 2021; Zhao et al., 2021;
Christovich and Luo, 2022; Horn et al., 2022). Since the gut
microbiome has a crucial role in the absorption and metabolism
of nutrients, both macro and micro, aiming for a balanced microbial
community in the gut, helps maintain the host homeostasis, and
builds the intestinal barrier (DAS & Nair, 2019). The presence or
absence of specific microbial genera or species has been associated
with multiple diseases, most of them, non-communicable ones, such
as inflammatory bowel disease, diabetes, obesity, some types of
cancer, Parkinson’s, and Alzheimer’s, among others (Novakovic
et al., 2020; Zhang et al., 2020; Bardenhorst et al., 2023).
Regarding micronutrient absorption, Hadadi and collaborators
(2021) addressed the importance of the gut microbiome for
maintaining the balance of the host vitamins and minerals. They
also address the micronutrient-microbiome axis as a bidirectional
entity, and according to other studies, several micronutrient
deficiencies could be positively or negatively associated with the
gut microbiota (Hadadi et al., 2021). Another study carried out by
Maynard and Weinkove has revealed that certain host microbes,
such as C. elegans and E.coli, play a role in the effective
supplementation of micronutrients by the secretion of
siderophores (iron and B12), or the uptake and conversion into
more readily absorbable derivatives or micronutrients, such is the
case of folic acid (Maynard and Weinkove, 2020). Moreover, Bielik
and Kolisek (2021) reported the positive effect of probiotics on
mineral absorption, stating they are promising due to their ability to
modulate the composition and metabolism of the gut microbiota
(Bielik and Kolisek, 2021).

On the other hand, the perinatal period is marked by hormonal,
immunological, and—especially during the late stages of healthy
pregnancies without complications—by inflammatory changes that
alter the function and bacterial composition of the mother’s gut
(Mandal et al., 2016). Estrogen and progesterone also impact this
composition through their effect on bacterial metabolism and the
increase in abundance of pathogenic bacteria (Edwards et al., 2017).
It is also known that the gut microbiota contributes to the regulation
of glucose metabolism in pregnancy (Brantsæter et al., 2011). For
example, the abundance of the genus Collinsella sp. Is positively
correlated with circulating insulin, and low dietary fiber intake was
associated with a gut microbiota favoring lactate fermentation, while
high fiber intake promotes short-chain fatty acid-producing bacteria
(Fu et al., 2022). Related to this, low dietary fiber may enable the
overgrowth of Collinsella sp. and alter the overall fermentation
pattern in gut microbiota (Gomez-Arango et al., 2018). This
suggests that dietary choices during pregnancy can modify the
nutritional ecology of the gut microbiota. Besides, in a study

conducted on pregnant women, it was shown that there are
significant differences in the relative abundance of several genera
in women on a vegetarian diet, specifically a reduction in Collinsella
sp., Holdemania sp., and an increase in the relative abundances of
Roseburia sp. and Lachnospiraceae sp. (Barrett et al., 2018). The
most recent research on gut microbiome during the perinatal period
in mice shows that the characteristic microbiota of the third
trimester of pregnancy, increases weight gain, insulin resistance,
and a greater inflammatory response when transferred to germ-free
mice (Koren et al., 2012). Studies in other populations different from
the American and European ones, such as those from Latin America,
the Caribbean, Asia and African, or from women and children’s
cohorts, are urgently needed as well as their underlying data (Magne
et al., 2016), in order to properly acknowledge the gut microbiome in
world-population scale, and be able to develop solutions to improve
the health status of the groups belonging to these communities, in
need of tools for this purpose.

In the quest for the characterization of generalizable traits of the
gut microbiome, metabolomics has appeared as one of the most
useful techniques to study it, being defined as a comprehensive
analysis of all metabolites in a biological system with their proper
identification and quantification (Fiehn, 2002), and is recognized as
a powerful top-down systems biology approach, for understanding
the genetics-environment-health paradigm and identifying clinically
relevant biomarkers (Moco et al., 2013). Metabolomics studies
within the gut, which we name here the gut metabolome, have
been increasing in the last years due to the strong relationship found
between some gut microbiome metabolic pathways and diseases,
especially non-communicable ones, and due to the involvement of
the gut microbiota in several biochemical functions directly
associated with perturbations that can lead to the development of
diseases (De Preter et al., 2015). Moreover, the identification and
relative quantification of metabolites in these environments can
point out lifestyle and dietary habits, and nutrient balance in the gut,
which in turn, allows the highlighting of specific disease
predispositions (Vernocchi et al., 2012), such as a mineral or
vitamin deficiency of (Lai et al., 2022; Wan et al., 2022), an
excess of an inflammatory molecule (Zhang et al., 2021), among
others. Metabolomics is a technique that can be performed over
different biological matrices such as cells, tissues, stool samples, and
biofluids such as plasma, saliva, urine, and blood. The sample
selection will always depend on the research or clinical question,
but biofluids are typically used to identify biomarkers, whereas
tissues and cells are used to investigate mechanisms associated
with the pathophysiological process (Chetwynd et al., 2017).
Regarding human stool samples, which reflect the gut
metabolome, most of the published research has focused on
characterizing its complex bacterial composition using next-
generation microbial DNA sequencing and sophisticated
metagenomic techniques. However, a growing number of
microbiome researchers are recognizing that considerable
information could be gained by using a more integrative
approach that also includes comprehensive fecal metabolite
analysis (Karu et al., 2018; Haffner et al., 2022).

One of the techniques widely used to study the gut (fecal)
metabolome, is liquid chromatography coupled to mass
spectrometry (LC-MS), which does not usually include
derivatization steps. The technique can be performed in a
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targeted or untargeted mode, depending on the experimental design,
and multiple approaches can be taken to analyze the raw data, thus
allowing the recognition of multiple chemical families and the
greater elucidation of the chemical space, phenotype, and
nutrients composition of the gut. In this research, we used
classical molecular networking and untargeted metabolomics to
make a pilot and first approach toward the characterization of
the chemical space of the gut microbiota (gut metabolome) of
women from Antioquia, Colombia. These women conform to a
pilot cohort (n = 23) of pregnant, 7) lactating 9), and reproductive-
age women 7) acting as controls. By using LC-QTOF-MS/MS
metabolomic techniques and data analysis, we aimed at the
identification and quantification of several compounds of
nutritional importance for the baby’s appropriate development,
which are supplied by the mother during these fundamental
stages of pregnancy and lactation. As stated above,
macronutrients, micronutrients, and derived metabolites play a
key role in the balanced nutrition of both mother and baby, and
both are intrinsically related to the gut microbiome. Thus, with this
pilot study, we wish to contribute to the maternal nutritional body of
knowledge in our area of the world since to date, there are no
published studies that explore the chemical diversity of the
Colombian female population during the mentioned stages,
despite these being key interventional periods for nutrition. It is
our wish that the knowledge derived from this pilot study and its
validation in larger cohorts can help avoid future developmental
complexities in an individual during later stages of their lives also
avoiding future health complications. Thus, the relevance of this
kind of pilot study and as mentioned earlier, the further validation of
its preliminary results in larger cohorts is evident, to broaden our
knowledge of the gut microbiome chemical space and phenotype in
the populations in Colombia, Latin America, and the Caribbean.

Materials and methods

Study cohort and sample collection

A group of twenty-three women volunteers, from Antioquia,
Colombia between 23 and 35 years old were enrolled in the study,
between August 2020 and May 2021. Nine of them were lactating,
seven were pregnant and seven were control group (non-pregnant or
lactating women) of reproductive age (Figure 1). Both pregnant and
lactating women were enrolled since they complied with a healthy
pregnancy/lactation stage, without complications. Average values of
the different variables measured for each group of the cohort are
detailed in Table 1, as well as detailed information for each volunteer
(age, height, weight, pregnancy or postpartum week, lipid profile)
which was saved as correlated metadata for the study. As inclusion
criteria, the selected cohort must declare non-consumption of
antibiotics in the past 6 months before the sample collection.
Two different samples were taken from each volunteer, a blood
sample was collected in collaboration with Abad Laboratory, to
measure the lipid profile (low-density lipoprotein (LDL), high-
density lipoprotein (HDL), triglycerides, and total cholesterol),
and a stool sample was provided. This last sample was processed
at Universidad EAFIT, within the next 24 h of collection, in an
anaerobic chamber (Vinyl Anaerobic Chamber Type B from Coy

Laboratory Products). Briefly, 200 mg of it was homogenized in
1 mL pH 7.2 buffer solution (0.05% K2HPO4, 0.05% KH2PO4,
0.05% MgSO4 x 7H2O, 0.0005% FeSO4 x 7H2O, 0.005% (NH4)
2SO4, 0.1% cysteine, 0.001% resazurin, and 20% glycerol) (Hayashi
et al., 2002) and stored at −80°C for any subsequent use.

Sample treatment

Frozen Stool samples were weighted, lyophilized at −80°C for 72 h,
and weighed again to determine the removed water content percentage.
Then, nitrogen gas was injected for 10 min into each sample to guarantee
an inert environment. For extraction, 60 mg of each lyophilized sample
was mixed with 300 µL of MeOH and vortex-mixed for 5 min.
Subsequently, samples were taken to an ultrasound for 30 min and
vortex-mixed again for 5 min. Finally, samples were centrifuged at
180,00x g, 4°C for 15 min and 100 µL of the extract was used for the
analysis by LC-QTOF-MS (Cheng et al., 2020).

Metabolomic analysis

Data acquisition for untargeted metabolomics and
molecular networking using RP-LC/MS and HILIC-
LC/MS

Metabolomics data from fecal samples were acquired using an
Agilent Technologies 1,260 Liquid Chromatography system coupled
to a 6545 Q-TOF quadrupole time-of-flight mass analyzer with
electrospray ionization. For the reversed-phase, 2 µL of the sample
was injected into a C18 column (InfinityLab Poroshell 120-EC 100 ×
2.1 mm, 1.9 µm) at 40°C. The mobile phases used for elution were
composed of 0.1% (v/v) formic acid inMilli-Qwater (Phase A) and 0.1%
(v/v) formic acid in acetonitrile (Phase B) pumped at 0.4 mL/min with a
gradient starting at 5% B, increased at 96% B in 15min and kept there
1 min and then, at 16.1 min, going back to the initial conditions until
20 min. Detection by mass spectrometry was performed in positive ESI
mode in full scan and autoMS/MS from 50 to 1,100 m/z and 20eV.
Throughout the analysis, two reference masses were used for mass
correction: m/z 121.0509 [C5H4N4 +H]+, and m/z
922.0098 [C18H18O6N3P3F24 + H]+, corresponding to protonated
purine and protonated hexakis, respectively.

For hydrophilic interaction chromatography, 5 µL of the sample
was injected into a HILIC-Z (InfinityLab Poroshell 100 × 2.1 mm,
1.9 µm) column, which was thermostated at 30°C. The elution
gradient was composed of 10% (200 mM ammonium formate
pH 3): 90% H2O (Phase A) and 10% (200 mM ammonium
formate pH 3): 90% ACN (Phase B) with a constant flow of
0.5 mL/min. The chromatography gradient started at 100% of
phase B and decreased to 70% B in 10 min. The starting
condition was returned by minute 11 and kept there for 5 min
for re-equilibration time. Data were collected in negative mode
operated in full scan and MS/MS mode at 20 eV from 50 to
1,100 m/z.

Data processing and analysis for untargeted
metabolomic analysis approach

The full scan raw data from RP-LC/MS and HILIC-LC/MS was
processed using Agilent MassHunter Profinder Software B.08.00.
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The software uses the Molecular Feature Extraction (MFE)
technique and Recursive Feature Extraction algorithms for noise
reduction, feature deconvolution, and alignment. The data matrices
from each platform were filtered by presence and reproducibility,
keeping only the metabolites detected in at least 80% of all stool
samples and using a threshold of 20% based on the coefficient of
variation (CV) of metabolite levels in the quality controls (QCs).
Differences among the groups were explored using bothmultivariate
(MVA) and univariate (UVA) statistical analyses. For MVA, a
partial least-squares discriminant analysis PLS-DA model was
used for sample classification and to detect differences between
the groups using MetaboAnalyst 5.0 (https://www.metaboanalyst.
ca/MetaboAnalyst/ModuleView.xhtml). Metabolites with variable
importance in projection (VIP) ≥ 1 and a jackknifing confidence
interval that did not include zero were considered statistically
significant from the PLS-DA models. The univariate analysis
employed in this study used the Mann-Whitney U test in
MATLAB R2021b to evaluate the significant differences between

each metabolite (p-value < 0.05) in the following comparisons:
Lactating vs Control, Pregnant vs Lactating, and Pregnant
vs Control.

Metabolite identification

To annotate statistically significant metabolites, the CEU Mass
Mediator tool (http://ceumass.eps.uspceu.es/) was used, which
matches metabolites with libraries, in addition to analyzing their
correspondence with the mass spectral library and the generated
molecular formula. The databases Kegg (http://genome.jp/keg),
HMDB (http://hmdb.ca), METLIN (http://metlin.scripps.edu),
and Lipid MAPS (http://lipidmaps.org), as well as the software
MS-DIAL 4.80 (http://prime.psc.riken.jp/compms/msdial/main.
html) and Agilent MassHunter qualitative analysis software, were
also utilized for this purpose. The identification level assigned to
each compound was according to the Metabolomics Standards

FIGURE 1
Study design, cohort composition, samples used, and metabolomic analysis. aClassical molecular network was performed using GNPS and
Cytoscape. bUntargeted metabolomics used MetaboAnalyst 5.0, MATLAB R2021b, and CEUmass mediator, the libraries Kegg, HMDB, METLIN, lipid
maps, and MS-DIAL 4,80 software for metabolite identification.

TABLE 1 Characteristics of the study cohort. Values of total cholesterol, LDL, HDL, and triglycerides are presented in (mg/dL) units.

Lactating Pregnant Control

Number of volunteers 9 7 7

Age (years) 32.9 ± 2 28.6 ± 4.4 30.4 ± 10.7

BMI 22.5 ± 2.1 25.7 ± 67 21.4 ± 1.2

Total Cholesterol 215.67 ± 55.1 243 ± 50.4* 175.6 ± 32.8*

LDL 129.59 ± 51.8 127.9 ± 39.4 101.5 ± 29.2

HDL 62.3 ± 6.8* 78.9 ± 15.6* 60.5 ± 12.1*

Triglycerides 100.8 ± 49.8* 181 ± 45.1* 68.2 ± 17.3*

Gestational week 0 27.29 ± 3.9 0

Postartum week 13.3 ± 15.9 0 0

Super index *: Triglycerides and HDL (p-value = 0.01 and 0.03 respectively) were statistically different in pregnant women compared to lactating women. Triglycerides had a (p-value = 0.01) for

lactating women vs. the control group. Triglycerides, HDL, and total.cholesterol (p-value = 0.002, 0.03, and 0.04 respectively) were statistically significant between the pregnant and control

group.
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Initiative (MSI) by Fiehn (Sumner et al., 2007) where level
1 corresponds to the metabolites identified by reference standard,
level 2 to those that have MS/MS spectrum match and molecular
formula, level 3 with unequivocal molecular formula, and level
4 only with m/z database match.

Data processing and analysis for molecular
networking approach

For classical molecular networking, raw data (.d files) obtained
from the data acquisition with C18 and HILIC columns, were
converted into (.mzXML) format using MSconverGUI (Holman
et al., 2014). Once the data were confirmed to be reproducible and a
separation between groups was observed, the datasets were uploaded
to GNPS web platform GNPS–Analyze, Connect, and Network with
your Mass Spectrometry Data (ucsd.edu) (Wang et al., 2016) under
de massive code MSV000088880 MassIVE Dataset Summary (ucsd.
edu) for C18 data, and MSV000089161 MassIVE Dataset Summary
(ucsd.edu) for HILIC data. Two classical molecular networks were
built to visualize the features present in the samples’ chemical space,
and clustered by chemical families. In a second layer of information,
each feature was classified by color, as being part of either one cohort
group, two of them, or being a shared feature across the three groups
in the study. Each group (lactating, pregnant, control) had seven
volunteers meaning seven different datasets that act as replicates of
the chemical space of the said physiological state; we included a
fourth group which consisted of a mix of pure standards of dietary
choline derivatives as a control for this specific micronutrient, highly
important during pregnancy and lactation. Several of choline’s
biochemical route derivatives in the gut microbiome were
included, these being acetylcholine, betaine, phosphatidylcholine,
choline chloride, and trimethylamine. The network parameters set
in the GNPS platform were (Min pairs cosine: 0.75, Min fragmented
ions: 0.6, Min matched peaks: 6, Cluster size: 2, Analog search: do
search). Then, the generated molecular networks were exported to
Cytoscape (Ideker, 2003), followingmanual annotation and curation
of the clusters.

Network curation and annotation

This procedure was followed as proposed by Sierra-Zapata et al.
(2020). The total features table was exported from Cytoscape as
(.csv) file to analyze the abundances of each feature based on the
spectral count and the identification provided by the platform
(GNPS) for each feature. A query was used to extract the nodes
information of each sub-network (Supplementary Tables S1, S2) and
based on the library hit found for a feature through GNPS, we
assigned a chemical family name to each sub-network, by looking at
the metabolite’s functionality in PubChem. When non-conclusive, a
search in ChemSpider and the Human metabolome database was
done as well. In the cases where a unique node from the sub-network
was annotated, the entire sub-network was labeled by the same
chemical family, and when different nodes were identified, the
family name was given following the functionality that grouped
all of them. This is done in accordance with the algorithm of GNPS,
where a single node’s annotation, can be propagated to its
neighboring nodes connected by edges, given structural similarity
clustering (Wang et al., 2016). In Cystoscope, the nodes were colored

according to their presence in each group of the cohort: light blue for
the lactating group, dark green for the pregnant group, orange for
the control group, red for standard metabolites, and purple for the
group of metabolites present in both lactating and pregnant women.
This network was exported in (.pdf) format with the precursor mass
available as a label on the nodes, and the chemical family was then
added as a circle grouping the cluster of nodes. Given the family
name and its abundance (in numbers of spectra) among the
treatments, the relative abundance for each chemical family was
calculated in each group of the cohort to see any statistical difference
(Supplementary Material S1, S2). Also, a PCA was performed into
MetaboAnalyst using the raw data to visualize any clustering of the
chemical space of the cohort’s groups.

Results

Untargeted metabolomics analysis by RP-
LC/MS and HILIC-LC/MS

The cohort of volunteers and their characteristics, from where
the data were obtained, can be revised in Figure 1 and
Supplementary Datasheet S1. First, untargeted metabolomics
analysis of the data acquired from the volunteers’ samples,
according to the methods described above, was performed. A
multivariate analysis (MVA) was made using PLS-DA (Figure 2)
to compare data from Lactating vs. Control, Pregnant vs. Control,
and Lactating vs. Pregnant treatments. The PLS-DA model shows
values of R2 ranging from 0.95 to 0.99 and Q2 from 0.21 to
0.40 indicating a clear separation between the comparison of
features acquired by RP-LC/MS and HILIC-LC/MS and thus can
be considered a good feature selector model. Then, a univariate
analysis (UVA) was conducted to identify the differential
metabolites between the proposed comparisons. A total of
200 differential molecular features were identified in both
platforms through UVA and MVA analyses, considering those
with a p-value < 0.05 or VIP>1. Among them, 85 metabolites
were statistically different when comparing lactating and control
groups, 67 metabolites when comparing pregnant and control
groups, and 48 metabolites between pregnant and lactating
groups. Supplementary Table S3 shows the metabolites that were
detected as up or downregulated among the groups of the study,
including the significance metrics provided by the MVA and UVA
(VIP and p-value).

For pregnant women compared to lactating ones, it has been
found that piperine, benzenoids, hydroxypregnene,
glycerophosphoserines, glycerophosphates, deoxyinosine,
prostaglandins, biotin, and steroids (Figure 3A, Supplementary
Table S3) Pregnant vs. Lactating) were upregulated. Specifically,
hydroxypregnene, deoxyinosine, prostaglandins, and steroids were
detected as diminished in lactating women vs controls, thus being
differentially detected in the guts of pregnant, lactating, and women
of reproductive age.

Then, when comparing pregnant women with non-pregnant nor
lactating controls (Figure 3B) increased levels of alkaloids, bile acids,
carbohydrates, corticosteroid hormones, some fatty acids,
glycerophosphocholines, glycerophosphoserines, glycerophosphates,
sphingolipids, and sterols were found. Meanwhile,
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FIGURE 2
Supervised PLS-DA models for metabolomics by reverse-phase (RP) in positive mode and Hydrophilic interaction chromatography (HILIC) in
negative mode. (A) R2:0.95404, Q2:0.21976; (B) R2: 0.956, Q2: 0.29733; (C) R2: 0.9692, Q2: 0.12499; (D) R2: 0.99479, Q2: 0.37436; (E) R2: 0.99663, Q2:
0.27773; (F) R2: 0.99622, Q2: 0.40789.

FIGURE 3
Hierarchical Clustering Heatmaps of metabolome data (A). Pregnant vs. Lactating (B). Pregnant vs. Control (C). Lactating vs. control.
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glycerophosphoglycerols, steroids, and 53% of the total fatty acids found
showed a decrease in the pregnant group. Specifically,
glycerophosphocholines and glycerophosphoserines, corticosteroid
hormones, bile acids, fatty acids, carbohydrates, and sterols are
increased both in lactating and pregnant women gut metabolome
when compared to control women in the cohort, as found by this
methodology of untargeted metabolomics.

Importantly, for lactating women compared to non-pregnant nor
lactating women of reproductive age, it has been found that amines,
phthalic acid, urobilinogen, acetylglucosamine, corticosteroid hormones
such as hydroxypregnene, fatty amides, glycerophosphoglycerols,
glycerophosphoethanolamines, glycerophosphoinositol, prostaglandins,
peptides and proteins, polyketides, steroids, and vitamin D were
mostly downregulated in a range of 0.1 to 0.7 fold change
(Figure 3C; Lactating vs. Control). On the other hand, in the
lactating group, there were also notable upregulations compared
to controls observed in various chemical families, such as bile acids,
carnitines, ceramides, glycerolipids, glycerophosphocholines,
glycerophosphoserines, and palmitoyl dopamine. Furthermore,
amino acids and derivates showed a 40% increase, as did
carbohydrates (50%), benzoic acids (67%), fatty acids (63%),
corticosteroid hormones (67%), and sterols (80%).

Chemical space defined by molecular
networking

Before analyzing the data by molecular networking, a principal
component analysis was performed by MetaboAnalyst (Xia et al.,
2009), evidencing that for the HILIC platform, samples from the
pregnant group clustered together and correlated (Figure 4B),
separating themselves from the other cluster of control and
lactating groups of volunteers. However, in the analysis by RP-
LC grouping is not as evident as in the data obtained by HILIC,
although a distinction is still observed between the volunteers in

each group (control vs lactating vs pregnant ones, Figure 4A). When
running the classical molecular network at the GNPS platform, we
obtained 382 annotated metabolites (nodes or features) out of 1,583
(24% of the chemical space identified), for the C18 column, and
118 out of 465 (~25% of the chemical space identified) for the
HILIC column. A chemical family was assigned as the name to
each sub-network that had at least one annotated metabolite,
getting a total of 32 chemical families for the C18 column
(Figure 5), and the relative abundance compared across groups
of the study of the most biologically significant of them (20) is
shown in (Figure 7A).

Among the chemical families identified, we observed the
following in concordance with the untargeted metabolomics
approach (results presented in the section above):
glucosylceramides, sphingolipids, bilirubin metabolism,
phosphocholine and derivatives, indole acetic acid and related
hormones, glucosyIceramides, diacylglycerol, primary bile acids,
amino acid (tryptophan), carnitine derivatives, omega-6, omega-3
fatty acids and derivatives. Of these, carnitine derivatives, ceramides,
lysophospholipids, phosphocholine derivatives, secondary bile
acids, and tryptophan were in higher abundance in lactating
women. Nevertheless, we also observed a larger identification of
phytonutrients or plant-derived metabolites in the gut metabolome
of the cohort such as monoterpenoids, terpenoids, and aromatic
compounds from plants, vitamin E related compounds, coumarin-
related compounds, caffeic acid and from rosemary plant; as well as
pharmaceutical molecules (glucocorticoids and allergic conditions
treatment, human aspirin metabolism, cardiac glycoside,
anticoagulant warfarin) when using this molecular networking
untargeted metabolomics approach. We also detected compounds
with a broad classification as organosilicons and other natural
toxins, in the gut metabolome of the cohort, in a significantly
higher abundance in control women (of reproductive age).

For the HILIC column, 11 chemical families were annotated
(Figure 6) and the relative abundances of all of them are shown in

FIGURE 4
Principal component analysis (PCA) from LC-MS/MS raw data, (A) using C18 column and (B) HILIC column.
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(Figure 7B). The HILIC column, as a method able to detect polar
compounds, allowed us to identify the following chemical families:
betaine, phytonutrients as lignans and neolignans from plants,
gIycoside and lipids derivatives from plant food sources, plant
polyphenols, raffinose trisaccharides, glucosinolates and
lipopolysaccharides which are proven prebiotic compounds
(Zhang et al., 2022), glutamic acid derivatives, benzene
derivatives, sphingolipids.

Discussion

The gut microbiome of humans is estimated to comprise around
45 million non-redundant genes (Sender et al., 2016; Tierney et al.,
2019).When compared to the human genome and its approximately
20.000 genes, the microbiota exceeds this capacity more than
1,000 times, evidencing its profound potential to influence the

biochemical environment of the host (Lee-Sarwar et al., 2020).
More surprisingly, the Human Microbiome Project discovery of
metabolic pathway abundances in the gut is relatively consistent
across populations, while taxonomic composition varies between
individuals. This denotes that a core set of conserved pathways is
associated with microbial genes, but their abundance varies
depending on the taxonomic composition of this environment
(Huttenhower et al., 2012). Besides, microbial functions are
closely reflected by the composition of the metabolome, or better
said, the collection of small molecules present in a sample. Although
the human body houses many discrete microbiomes and
metabolomes, the gut is taxonomically the most diverse and
largest site (Thursby and Juge, 2017). Gathering the ideas
exposed before, gut metabolome studies are now being
considered the next Frontier to unveil the gut microbiome and
are becoming prevalent in studies concerning this so-called organ,
since they reflect the phenotype of the individual and thus, provide a

FIGURE 5
The molecular network created in GNPS for LC-MS/MS data acquired using the C18 column. Each node represents a single metabolite precursor
mass (feature) and the color indicates the physiological state where each metabolite was found. Lactating (light blue), pregnant (green), control (orange),
lactating and pregnant (purple), lactating and control (dark blue), pregnant and control (light green), lactating, pregnant and control (yellow), and the
standards (red). Grey nodes denote the confluence of that feature in all groups within the study.
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more accurate perspective of the biochemical and metabolic
processes taking place in this environment.

In this respect, our study offers various conclusions, some of
them new and others reinforcing previous evidence from the
scientific community on the gut microbiome and its associated
metabolome. First, the gut metabolome or chemical space
associated with the gut is a rich environment where important
biomarkers of health can be detected (Figures 3–7). This is
important in the way that the same metabolites are not always
detected in serum metabolomics (Dhakan et al., 2019; Wen et al.,
2020). Second, although our cohort is small (n = 23), the gut
metabolome of pregnant, lactating, and women of reproductive
age from our region of Antioquia (Colombia), evidences

structural differences between groups both in its composition
and relative abundance, denoting a plausible different core
composition of microbial and host metabolism (Figures 2–6).
In the case of microbial metabolism, these differences can be
attributed to the differential taxonomic communities associated
with each group of women according to their physiological state,
as stated before (Koren et al., 2012). Specifically in this study, our
findings suggest that, for the physiological stages of pregnancy
and lactation, metabolites related to fats mobilization and
membrane formation such as glycerophosphocholines,
glycerophosphoserines, and fatty acids; hormones
(corticosteroids); bile acids; carbohydrates and sterols are
increased, being significantly overexpressed both in lactating

FIGURE 6
Molecular network created in GNPS for LC-MS/MS data acquired using HILIC column. Each node represents a single metabolite mass and the color
indicates the physiological state where each metabolite was found. Lactating (light blue), pregnant (green), control (orange), lactating and pregnant
(purple), lactating and control (dark blue), pregnant and control (light green), lactating, pregnant and control (yellow), and the standards (red). Grey nodes
denote the confluence of that feature in all groups within the study.
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and pregnant women’s gut metabolome (Figures 3–7). This result
is expected since, specifically for lipids metabolism, previously
published findings reporting multiple physiological changes that
occur in healthy, gestating women, which contribute to the
alterations in lipid profiles, mainly to support the developing
fetus to whom cholesterol and essential fatty acids are essential
for normal development (Wild and Feingold, 2000). Also, larger
doses of foods rich in healthy fats are needed to meet the
metabolic demand, especially for the nutrient choline, which is
highly available in fats (Zeisel, 2013). Our findings, also correlate
with a transformation of the gut microbiota into a
proinflammatory immune state as pregnancy progresses
(Koren et al., 2012; Trevisanuto et al., 2013), since
prostaglandins, a main biomarker of both the promotion and
resolution of inflammation (Ricciotti and Fitzgerald, 2011), are
increased in this last group (Figure 3A). Also, corticosteroids
such as hydroxypregnene are decreased in the lactating stage but
increased in pregnancy, which could be an indication of
prescription of corticosteroids to treat symptoms of
autoimmune conditions or of inflammation, as well as being
one of the most important antenatal therapies available to
improve newborn outcomes before anticipated preterm birth
(El-Sayed et al., 2017). Also, interestingly, glucocorticoid
compounds with anti-inflammatory and immunosuppressive
effects are commonly used to treat inflammatory bowel
disease, asthma, allergies, and rheumatic diseases and are
upregulated among the pregnant group as well, denoting a
normal behavior in pregnancy where maternal glucocorticoids
critically rise reaching up to a 20-fold increase of mid-pregnancy
concentrations (Solano and Arck, 2020). Also, in lactating
women, we found an increased ratio of palmitoyl dopamine,
which is an endogenous, long-chain, linear fatty acid dopamide
with entourage effects in the endocannabinoid system
(Matsumoto et al., 2016). This is of high interest since its
biological significance in lactation is understudied and it is
then an interesting metabolite to further analyze as a biomarker.

Continuing with deeper insights into the unique metabolic traits
of each group of the cohort, it can be observed in Figures 3A,C, that
sphingolipids and ceramides are upregulated among the lactating
group. These metabolites are involved in the regulation of insulin
resistance during the perinatal period (Rico et al., 2017). It is also

abundant in human breast milk and has a positive impact on
cognitive functions and brain development of the infant (Dei Cas
et al., 2020). In addition, prostaglandins are known to affect uterine
contractility and cervical ripening and are important in the initiation
of labor (Wood et al., 2021). These we found as being upregulated in
pregnant women, which denotes the correct reflection of the gut
chemical environment with the state of the individual. Also, these
findings are in accordance with what Liang and collaborators found
in 2022. They found nine metabolites differentially expressed in
stool samples from pregnant women in the third trimester and full
term. These included levels of lipids and lipid-like molecules, such as
long-chain fatty acids and 21-hydroxysteroids, being upregulated in
pregnant women compared to full-term, whereas the levels of amino
acids and dipeptides showed a downregulation. On the other hand,
20-hydroxyarachidonic acid and palmitic acid were enriched at the
time of full-term pregnancy. Other metabolites like
cyclohexylsulfamate, 3,3-dimethylacrylic acid, hydroxyisocaproic
acid, and phenylalanylphenylalanine (Phe-Phe) were also
identified in fecal samples from Chinese pregnant women (Liang
et al., 2022).

In summary, for the chemical space composition of the gut or as
called by us in this research, the gut metabolome of our cohort, we
mainly observe metabolites that are either produced by the gut
microbiome bacterial metabolism or modified by it. Examples of
these compounds are bile acids, bilirubin (van Best et al., 2020;
Garcia et al., 2022), tryptophan (Stoll et al., 2016; Gao et al., 2020),
hormones (Jiang et al., 2021; Marć et al., 2022),
glycerophosphocholines. Thus, we can suggest that the gut
metabolome can be seen as a reflection of an appropriate gut
microbiome profile, understating appropriate as the balance of
the communities according to what has been reported for a
healthy state in a certain condition. Also, we prove that fecal
samples, which contain small and large molecules from the gut
microbiome, can indeed reflect the net result of nutrient ingestion,
digestion, and absorption by both gut bacteria and the
gastrointestinal tract (Ulaszewska et al., 2019.)

Another interesting finding in this study, regarding a more
general behavior of the population, is the reinforcement that gut
metabolomics reflects diet, drug consumption, and
pharmacokinetics, even if the person does not declare it or the
initial data collected in the enrolling questionnaires, such as the

FIGURE 7
Relative abundance of the chemical families among the groups, detected by C18 (A) and HILIC (B) column. Asterisks represent those chemical
families that are significantly different between groups (fold change ratio >1.8).
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one used in this study. For example, metabolites such as
coumarin, omega-3 and omega-6 fatty acids, and vitamin E
were detected, which are associated mostly with a plant-based
diet (Pistollato et al., 2015; Sebastiani et al., 2019); drugs such as
antihistamines and anticoagulants were found in the volunteers
that declared its consumption. Central nervous system
stimulants like caffeine were found significantly higher in the
control group, and it is coherent with behavior during pregnancy
and lactation, a time when women avoid high doses of this
metabolite.

These findings are in accordance with the ones by (Pires et al.,
2019), where the authors found significant metabolic changes in the
chemical ecology of the gut environment between populations of
individuals living in the Amazon, and those from an urban,
industrialized setting, which was mainly attributed to dietary
differences as well as diverse patterns of environmental exposure.
Furthermore, organosilicons and other toxins coming from the
heating of food, plastics, and agrochemicals, which can be
harmful as they accumulate over time only when they have small
particle sizes, are significantly abundant among the group of
pregnant women from our region (Antioquia) which is not an
encouraging finding from the public health perspective.
Considering these compounds, specifically, those with a low
silicon particle size, can overcome biological membranes and skin
barriers, being possibly transferred to the baby (Dixon and
Williamson, 2016), and can be endocrine disruptors.
Organosilicon compounds are widely encountered in commercial
products such as sealants, adhesives, coatings, medical products, and
cosmetics (Mojsiewicz-Pienkowska et al., 2016).

Additionally, other, natural, compounds were found at toxic
levels suggesting the ability of the methodology followed in the study
to detect abnormal levels of naturally present molecules. Such is the
case of volunteer 14, part of the pregnant women group, who
showed significantly higher levels of primary bile acids which
could be related to cholestasis and cause irreversible toxicity to
the fetus (Mazzella et al., 2001).

We would like to highlight as well, that studies in other
populations different from the American and European ones,
such as Latin peoples, Asian people, African people, or women
and children, are urgently needed as well as obataining the
underlying data to properly acknowledge the gut microbiome
and its associated chemical space on a world-populationscale.
This will allow an appropriate and significant characterization of
the gut microbiome of other countries and regions, as well as of
different conditions such as healthy pregnancies and lactation in
women. Furthermore, gut microbial communities change with
age and sex; with one study showing a strong positive association
between age and alpha diversity in young adults (less than
40 years old), and women were found to have more diversity
than men (De la Cuesta-Zuluaga et al., 2019), thus groups like
women, which have been previously excluded from study cohort
in microbiome studies, should be included. Finally, there is a
need to convert findings like the ones in this study into affordable
and accessible strategies to measure gut health in every
population. This reinforces the need for more studies on the
gut metabolome in larger, and the use of ordinated (e.g., PCAs),
clustering approaches, supervised models, or the employment of
unsupervised models like NMF which have the added advantage

that pre-calculated signatures of bacterial assemblages can be
reapplied to even a single metagenome, removing the need for
large cohort sizes capturing microbiome variation (Frioux
et al., 2023).

Overall, this exploratory study serves as a starting point to
describe the gut metabolome of healthy pregnant and lactating
women from Antioquia, Colombia, a special population
regarding the requirements of these physiological states and
the profound impact that maternity can have on child
development in terms of healthy growth, but also in its
adequate cognitive development, as well as its regional nature.
The two approaches to analyzing metabolomics data were
complementary in the study, we could say that molecular
networking serves as the starting point to have a broad
panoramic view of the metabolites present in the chemical
space. These can be later found in a more stringent and
quantitative way by the untargeted metabolomic analysis.

Conclusion

Gut metabolomics studies can shed light on the phenotype
differences of a population with a specific condition, such as
healthy pregnancies and lactation, from others. In this study,
within a cohort of women from Antioquia, Colombia, we found
that lactating women can be differentiated from other pregnant
and reproductive-age non-pregnant nor lactating women by a
gut metabolomic profile enriched in carnitine derivatives,
glycerophosphocholines, bile acids, ceramides, glycerolipids,
and glycerophosphoserines. Pregnant and lactating women,
when compared to reproductive age controls, are enriched in
glycerophosphocholines and glycerophosphoserines,
corticosteroid hormones, bile acids, fatty acids, carbohydrates,
and sterols. These metabolites can be further studied in a larger
population, to scale their occurrence, and plausibly develop
preventive biomarkers for healthy pregnancies. Metabolites
such as toxins, xenobiotics, and environmental contaminants,
which can be missed by other techniques, and are ubiquitous
harmful foreign chemicals present in the environment, were
detected in this study in fertile age, non-pregnant nor lactating
women denoting a presence in the diet and lifestyle of women
that can become pregnant in the future, posing a risk to the
infant’s health. The metabolite Palmitoyl domamine was found
as upregulated in lactating women, being reported for the first
time in a gut metabolomics study, and in this specific population.
Fibers and phytonutrients such as lignans and neolignans,
glycosides, and lipid-derivatives from plant food sources,
plant polyphenols, raffinose trisaccharides, glucosinolates, and
lipopolysaccharides which are proven prebiotic compounds,
were also found by molecular networking analysis in this
cohort, denoting the capacity of this method to detect dietary
compounds. Although our cohort is still limited for scaling these
conclusions to a population level, this research sets an initial
basis in our country and region, Latin America, for future
population level measurements of a normal gut metabolome
composition during the important perinatal period, which can
provide valuable information to enhance public health nutrition
strategies in middle-income countries.
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