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Armed with an arsenal of protein secretion systems, antibiotic efflux pumps, and
the occasional proclivity for explosive self-destruction, Pseudomonas aeruginosa
has become amodel for the study of bacterial pathogenesis and biofilm formation.
There is accruing evidence to suggest that the biofilm matrix—the bioglue that
holds the structure together—acts not only in a structural capacity, but is also a
molecular “net”whose function is to capture and retain certain secreted products
(including proteins and small molecules). In this perspective, we argue that the
biofilm matrixome is a distinct extracellular compartment, and one that is
differentiated from the bulk secretome. Some of the points we raise are
deliberately speculative, but are becoming increasingly accessible to
experimental investigation.
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1 Introduction

Pseudomonas aeruginosa (PA) is a Gram-negative organism characterised by an
exceptionally diverse metabolism and a predilection for colonising anthropic niches
(Brinkman et al., 2021). With a genome comprising over 5,500 open-reading frames, the
organism displays remarkable phenotypic plasticity, which, at least partially, accounts for its
ubiquity in the built environment. It is also an opportunistic human pathogen, responsible
for high morbidity and mortality, especially in individuals who are predisposed towards
infection due to co-morbidities such as cystic fibrosis or neutropenic cancer (Schmidt et al.,
1996; Stover et al., 2000).

Much is made of PA’s environmental responsiveness, especially with respect to its
complex network of inter-connected two-component signalling systems (TCS), and its
agnosticism where electron donors and acceptors are concerned (Francis et al., 2018;
Brinkman et al., 2021). PA can readily reconfigure its physiology to gain a fitness
advantage over neighbouring microbes, and to deal with existential threats such as the
immune system and antibiotics (Rossi et al., 2021; Rozner et al., 2022). It also constantly
titrates the physicochemical features of its environment, adapting its physiology accordingly.
A less well-appreciated facet of PA biology is that it also actively modifies the environment to
suit its own needs. It does so through the use of secreted products, and with its plethora of
secretion systems, PA can be considered a “professional secretor”.

Traditionally, bacteria have been considered to be the archetypal single-celled organisms.
However, over the last few decades it has become increasingly clear that many species of
bacteria, including PA, have a thriving social life. They communicate with one another
(although not always in the spirit of cooperation) and often live in conglomerates known as
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biofilms (Costerton et al., 1999). Moreover, it is clear that a good deal
of biochemical activity occurs outside of- and in-between single cells.
Nutritional cross-feeding, exoelectrogenesis, protein secretion, and
quorum sensing are just a few examples of the kind of mechanisms
mediating this “shared goods and services” economy. Indeed,
relative to the size of the individual cell, PA’s secretions have an
impressive geographical reach; the microbial bailiwick extends well
beyond the boundaries of the cell envelope.

2 Anatomy of the extracellular matrix

Many strains of PA exhibit a propensity to form biofilms,
sometimes incorporating other species. These structures are
essentially aggregates of cells encased in a self-produced matrix
of exopolymers. Although they vary in form and appearance,
biofilms represent a distinct physiological state that bookends the
lifestyle spectrum, with individual planktonic cells on the opposing
flank. Importantly, biofilms are associated with chronic infections,
partly because the extracellular matrix confers elevated antibiotic
tolerance, immune evasion and recalcitrance to ciliary clearance
(Mishra et al., 2012; Ciofu and Tolker-Nielsen, 2019; Jennings et al.,
2021; Hall-Stoodley and McCoy, 2022).

PA is a well-known respiratory pathogen. Crudely, successful
colonisation of the airways and establishment of a chronic infection
requires two things from PA. The first is concerted secretion of
exoenzymes to raze the host tissue matrix (Golovkine et al., 2014;
Flynn et al., 2017; Cigana et al., 2021). The second is secretion of
exopolymeric substances to “glue” the PA in place (Chew et al.,
2018). This “terraforming” of the lung tissue no doubt involves
additional mechanisms (exclusion of competitors, and so on) but for
our purposes, this basic description will do.

The biofilm matrix was originally described as an amorphous,
inert slime, coating both the cells and any nearby surface. Hardly
surprisingly, the resulting sessile communities manifest different
transcriptomic and proteomic profiles compared with their
planktonic counterparts (Whiteley et al., 2001; Mikkelsen et al.,
2007; Patell et al., 2010; Erdmann et al., 2019; Thöming et al., 2020).
Relevant to the current perspective, it is also increasingly apparent
that biofilm-associated cells secrete an altered spectrum of proteins
into the extrcellular milieu (Passmore et al., 2015). However, to
access to the surrounding medium, secreted products need to first
pass through the biofilm matrix, raising the question of whether
some of these secreted proteins are trapped to generate a distinct
matrix-associated proteome (the “matrixome”) that is different from
the “true secretome”. Investigating this has not been trivial, and
several teams have been involved in trying to separate matrix-
embedded cells from “everything else” in the biofilm (Toyofuku
et al., 2012; Couto et al., 2015). Here, we argue that the biofilm
matrix does indeed comprise a distinct extracellular compartment,
and one that is compositionally different from the bulk secretome
that bathes it.

Collecting the biofilm-derived secretome has been challenging
enough, but the task of segregating embedded biofilm cells from
their adherent, sticky matrix is proving even more so. Nevertheless,
some progress has been made. Studies carried out using “colony
biofilms” on agar surfaces have indicated that, like the true
secretome, the matrixome contains a wealth of degradative

enzymes, such as peptidases, nucleases, peroxidases/catalases, as
well as large fibrillar adhesins such as CdrA, and protein-laden
membrane vesicles (Toyofuku et al., 2012; Couto et al., 2015). The
presence of such matrix-associated proteins raises interesting
questions as to whether they are captured “by accident” due to
some coincidental physico-chemical property, or whether they have
evolved to be active participants in extracellular matrix function.
However, there has been relatively little detailed biochemical follow-
up on this, and currently, no studies have been reported that
examine the matrixome of biofilms grown in liquid media
(i.e., conditions that are more faithfully reflect biofilm formation
in infection scenarios).

One notable exception to the lack of detailed follow-on
investigation relates to studies carried out by the Parsek and
Howell groups, who have made substantial contributions to our
understanding of the interface between the exopolysaccharide and
protein components of the biofilm matrix. Through their elegant
work, we know that a cyclic-di-GMP-regulated protein abundant in
the biofilm matrix, CdrA, is a binding partner for both Psl and Pel
exopolysaccharides, and that Pel also binds to extracellular DNA
(eDNA; see below) (Borlee et al., 2010; Jennings et al., 2015;
Reichhardt et al., 2020). CdrA’s interaction with its
polysaccharide binding partners stabilises it against degradation
and seems to be important in cell aggregation, which confers a
degree of antibiotic tolerance in some experimental regimes
(Reichhardt et al., 2018; Melia et al., 2021). Overall, we build up
a picture of CdrA interacting with the extracellular polysaccharides,
thereby physically cross-linking the matrix. But there may be more
to the story than this.

CdrA is also found associated with the surface of cells. The
extracellular portion of CdrA is predicted to comprise multiple

FIGURE 1
β-strand-rich extracellular domains of CdrA, CdiAPA0041, and
CdiAPA2642. We speculate that these “fibrillar” proteins may share
common functions in both contact-dependent inhibition and
adhesion to the biofilm matrix.
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repeats of a β-strand rich domain, which self-assemble to form a
rigid, matchstick-like projection from the cell surface (Melia et al.,
2021). Several other PA proteins contain similar β-rich repeat
motifs, including the cell contact-dependent inhibition proteins,
CdiAPA0041 and CdiAPA2642, and the secreted protease, LepA
(Figure 1). Anthropocentrically, such arrangements evoke a
possible protective function [as has been suggested for CdiA
(Mercy et al., 2016)], and we speculate whether CdrA may also
have a role in contact-dependent inhibition (in addition to its role as
a molecular “spar” that cross-links matrix Pel/Psl, and possibly also
physically attaches embedded cells to the matrix).

Meanwhile, in our own work, we have found other cell-
associated appendages to be enriched in the biofilm matrix. For
example, phage-related R-type pyocins are abundant in the
matrixome (Nazeer and Welch, manuscript in preparation).
These proteins, which resemble the contractile tails of P2 phages
and can bind surface receptors of neighbouring cells before
depolarizing their cytosols, are known to be used for close-
quarters inter-strain and inter-species combat (Jacob, 1954;
Michel-Briand and Baysse, 2002; Olubukola et al., 2019).
Interestingly, and like other secreted PA proteins, pyocin proteins
manifest as “charge trains” following 2D gel electrophoresis; a
feature that is usually indicative of post-translational modification
(Nouwens et al., 2002; Passmore et al., 2015; Forrest and Welch,

2020). Detailed analyses of these charge trains indicates that the
individual protein spots that comprise them are indeed increasingly
modified as the charge train is traversed, and that these
modifications are located on surface-exposed residues (Forrest
and Welch, unpublished data). Little is known about this
modification process, or its function, but given the exposure of
secreted proteins to the outside world, it is possible that these post-
translational modifications may have evolved to facilitate immune
evasion or to protect against proteolysis.

A complete picture of the biofilm matrix must include not just
those chemical species which have been actively exported through
secretion systems or dedicated transporters, but also the large
contingent of molecules which have arrived there by means of
less well understood pathways, such as membrane vesiculation
(Schooling and Beveridge, 2006; Bonnington and Kuehn, 2014)
or explosive cell lysis (Turnbull et al., 2016). One such molecule,
and a particularly important constituent of the matrix, is DNA, and
its mere presence prompts intrigue.

3 eDNA and moonlighting proteins

In the early 2,000s, researchers serendipitously discovered that
the extracellular biofilm matrix contains an abundance of DNA.

FIGURE 2
Simplified overview of the main classes of molecule present in the PA matrixome.
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Those researchers challenged their biofilms with DNaseI, finding
that it inhibited biofilm formation and up to a point, could even
dissolve pre-formed biofilms (Whitchurch et al., 2002). Indeed,
inhaled DNase is now a well-established treatment for cystic
fibrosis-associated airway infections, and has even recently been
shown to influence ecological interactions between PA and the other
microbial denizens in the CF airways (Ho et al., 2023). The presence
of DNA outside of the cell raises two key questions: how does it get
there, and what does it do once it is there?

Around 15 years after its discovery, a mechanism for the genesis
of extracellular DNA (eDNA) was proposed. The activity of a latent
prophage endolysin encoded within a pyocin gene cluster (see
above), was postulated to drive explosive cell lysis, thereby
releasing DNA and also generating membrane vesicles (MVs)
(Turnbull et al., 2016). This mode of “secretion,” based on
altruistic suicide, is certainly an unconventional one. Rather than
a quorum of cells modestly pumping out DNA in concert, a discreet
sub-population sacrifice themselves for the benefit of the
community.

Explosive lysis may represent a cellular process that has been
repurposed as a means of liberating public goods. An important
corollary of this is that liberated eDNA is often accompanied by
passenger proteins (Turnbull et al., 2016). Consistent with the
notion of passenger protein secretion, the matrixome contains an
abundance of proteins with DNA binding capabilities (Toyofuku
et al., 2012; Couto et al., 2015). This raises the possibility that such
passengers may have evolved “moonlighting” roles in the
extracellular compartment. Whether the enrichment of these
proteins in the matrixome is simply indicative of their greater
stability when bound to DNA, or whether it is the signature of
extracellular function, remains to be determined. An intriguing
possibility is that transcription factors and histone-like proteins
often oligomerise on DNA, potentially leading to increased
stabilization of the DNA against degradation, cross-linkage of
different DNA strands, or induced strain through compaction of
the DNA structure.

4 Phenazines and eDNA

Cells buried deep within the anoxic microenvironments of a
biofilm experience electron acceptor limitation. To prevent
metabolism from grinding to a halt, PA employs diffusible
phenazines as mobile electron carriers. Their role is to pick up
electrons derived from cellular metabolism and carry these to the
nearest suitable oxidizing agent (usually oxygen, near the surface
layer of the biofilm). The oxidized phenazines then return to the
centre of the biofilm and repeat the process. Phenazines are so
important to PA that it encodes two differentially-regulated
phenazine biosynthetic clusters (Recinos et al., 2012). Minor
biosynthetic modifications enable the midpoint potential of these
redox species to be tweaked, such that the producer cell can even
dictate which stratum of a biofilm the phenazine can collect
electrons from, and with which other species it can interact
(Schiessl et al., 2019; Saunders et al., 2020). The elephant-in-the-
room in the above discussion is the question of why don’t oxidized
phenazines just diffuse away from the biofilm? Why should they
diffuse back into the core of the structure? A possible explanation is

that phenazines also bind to eDNA, and that this helps to trap them
in the biofilm matrix. Furthermore, and taking advantage of the
“electron wire” property of DNA (related to its base stacking),
phenazines can also deposit and pick up electrons from eDNA
(Saunders et al., 2020). The interaction of phenazine species with
DNA invokes a matrix electrical infrastructure in which DNA is
threaded across the microbial community. Such an infrastructure
would facilitate the transfer of charge between dispersed mobile
electron carriers (which would not have tomove far), and act as a net
to retain those carriers within the reach of the community that
produced them. A key question is whether eDNA-protein
interactions modulate this redox role? One possibility is that
DNA-binding proteins are involved in regulating charge transfer,
but this remains to be investigated in PA biofilms. However, we note
that novel DNA-binding exoproteins have recently been identified
in Staphylococcus aureus biofilms (Kavanaugh et al., 2019).

5 Experimentally accessing the
interactome

Although cataloguing the extracellular compartment is now
relatively straightforward, the next step–characterising the
interactome of the molecules–may be more challenging. For
example, although the identification of protein-protein
interactions through approaches such as proximity labelling is
now well-developed, the extensive processing of many secreted
proteins (often at both N- and C-termini) complicates
construction/secretion of the necessary chimeras. “Old school”
chemical cross-linking remains an alternative.

Accessing the small molecule interactome requires rather
more focused approaches, although there is evidence to
suggest that these might be worthwhile. For example, the
phenazines discussed above are known to be involved in a
redox-based signalling pathway mediated by the intracellular
protein, SoxR (Dietrich et al., 2006). But is SoxR the only
protein that interacts with these pigments, or is the phenazine
interactome much wider? This is potentially very open to
exploration, especially given that certain phenazine derivatives
have been shown to readily form radical-catalyzed S-conjugates
with biogenic thiols, including proteins (Heine et al., 2016). It
seems a short step from here to investigate the extracellular
protein-phenazine interactome in PA.

Another relatively unaccessed small molecule interactome
involves quorum sensing (QS); the colourful world of diffusible
small “autoinducer”molecules that regulate the synthesis and export
of a wealth of secreted factors (Chapon-Hervé et al., 1997; Pena et al.,
2019). The conventional view is that they do so by binding to
canonical transcriptional regulators (LasR, QscR, RhlR, PqsR) in the
bacterial cytoplasm. These receptors subsequently undergo a
conformational/oligomeric change to become active, thereby
eliciting transcription specific target genes and operons (Seed
et al., 1995; Whiteley and Greenberg, 2001). QS signals are
abundant in the biofilm and potentially even accumulate in the
extracellular matrix (Charlton et al., 2000). Crucially, several studies
have hinted that QS signals also bind to other targets, although most
of these studies have focused on identifying intracellular binding
partners (Baker et al., 2017; Dandela et al., 2018; Yashkin et al.,
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2021). This raises the question of whether QS molecules might bind
to targets outside of the cell too. It turns out that they do.

The extent to which QS signals interact with extracellular
proteins (and other molecules) is not well understood. It was
found that the pseudomonas quinolone signal (PQS) interacts
with outer membrane lipopolysaccharides. This stimulates MV
generation and subsequent packaging of the QS molecule into
those vesicles (Mashburn and Whiteley, 2005; Florez et al., 2020).
Similarly, there is evidence that another QS autoinducer, N-(3-
oxododecanoyl)-L-homoserine lactone, stimulates
proinflammatory cytokine production in the cystic fibrosis
airways, and other studies have demonstrated that widespread
proteomic and respiratory perturbations are stimulated by this
autoinducer in host cells (Mayer et al., 2011; Josephson et al.,
2020). Recent technical advances in the field, such as thermal
proteome profiling (Huber et al., 2015; Gaetani et al., 2019) may
yet provide the means to expand our understanding of the QS
interactome. However, in many respects, that’s the easy bit: the hard
work will be in demonstrating the functional consequence(s) of such
interactions.

6 Discussion

Through evolution, microbes have independently evolved
diverse mechanisms for moving molecules from their cytosol to
the extracellular space. In many cases, these exported molecules can
help to shape the external environment, as well as being produced as
a consequence of it. There is also increasing evidence to suggest that
many secreted components—both small molecules and
proteins—are selectively captured by the biofilm matrix, and
interact with one another (Figure 2).

In this Perspectives piece, space limitations have necessarily
forced us to focus on just a handful of specific examples. We note
that most of these examples have been drawn from studies carried
out in axenic cultures of defined P. aeruginosa strains. By contrast, in
clinical scenarios, PA often shares its environment with a plethora of
other organisms, including fungi, other bacteria (both Gram-
negative and Gram-positive), phage, eukaryotic viruses, and
protists—not to mention host cells—so the true extracellular
interactome is likely to be far more complex than we currently
appreciate. However, accessing this “new biology” is challenging;
simply mixing microbial species together and hoping for the best
does not capture the polymicrobial stability associated with many
chronic infections (O’Brien and Welch, 2019; O’Brien et al., 2021).

In summary, we suggest that the biofilm matrix should be
considered as a distinct extracellular compartment, and one
which functions to capture and retain key secreted molecules.
We note that these molecules may be secreted through well-
characterized secretion systems, or may be delivered to the
extracellular milieu via explosive cell lysis, or more sedately,

through PQS-mediated vesiculation (Catalina et al., 2017). It is
also likely that the biofilm matrix also acts to capture proteins
derived from adjacent species, especially in mixed-species biofilms,
or even from the host. This is an unexplored, and potentially very
exciting area. Indeed, it has not escaped our attention that a better
understanding of the binding determinants used by proteins to
interact with specific biofilm matrix components could even offer a
very effective route by which to target therapeutic agents to these
structures. Now that would be a very useful outcome.
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