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More people are being diagnosed with resistant breast cancer, increasing the
urgency of developing new effective treatments. Several lines of evidence suggest
that blocking the kinase activity of VEGFR-2 reduces angiogenesis and slows
tumor growth. In this study, we developed novel VEGFR-2 inhibitors based on the
triazolopyrazine template by using comparative molecular field analysis (CoMFA)
and molecular similarity indices (CoMSIA) models for 3D-QSAR analysis of
23 triazolopyrazine-based compounds against breast cancer cell lines (MCF -7).
Both CoMFA (Q2 = 0.575; R2 = 0.936, Rpred

2 = 0.956) and CoMSIA/SE (Q2 = 0.575;
R2 = 0.936, Rpred

2 = 0.847) results demonstrate the robustness and stability of the
constructed model. Six novel compounds with potent inhibitory activity were
carefully designed, and screening of ADMET properties revealed their good oral
bioavailability and ability to diffuse through various biological barriers. When
comparedwith themost activemolecule in the data set andwith Foretinib (breast
cancer drug), molecular docking revealed that the six designed compounds had
strengthened affinity (−8.9 to −10 kcal/mol) to VEGFR-2. Molecular Dynamics
Simulations and MMPBSA calculations were applied to the selected compound
T01 with the highest predicted inhibitory activity, confirming its stability in the
active pocket of VEGFR-2 over 100 ns. The present results provided the basis for
the chemical synthesis of new compounds with improved inhibitory properties
against the breast cancer cell line (MCF -7).
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Introduction

The number of worldwide breast cancer diagnoses and deaths was estimated at
2.3 million and 685,000 successively in 2020 with higher incidence rates in older women
age groups (WHO, 2020; Muhammad et al., 2022). Despite the clinical utilization of diverse
treatment modalities, the current high mortality rates associated with breast cancer persist,
particularly in individuals diagnosed with triple-negative breast cancer (TNBC). As a result,
there is currently an intensive research initiative aimed at developing innovative and more
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effective treatments for breast cancer. This goal can be attained
through an improved comprehension of the underlying
pathophysiology of breast cancer. It is widely acknowledged that
angiogenesis represents one of the fundamental characteristics of
cancer, particularly in the context of breast cancer. This process is
crucial for endothelial cell proliferation, migration, and survival
(Chavakis and Dimmeler, 2002). Stimulation of angiogenesis is one
of the hallmarks of tumor growth andmalignancy (Ziyad and Iruela-
Arispe, 2011) and is significantly influenced by vascular endothelial
growth factors (VEGFs) and their receptors, vascular endothelial
growth factor receptors (VEGFRs) (Roy and Mitra, 2011). VEGF-A,
VEGF-B, VEGF-C, VEGF-D, and placental growth factor (PLGF)
contribute to the activation of VEGFRs receptors including VEGFR-
1 (Flt-1), VEGFR-2 (Flk-1/kinase domain receptor (KDR), and
VEGFR-3 (Flt-4) (Shibuya, 2010; Shibuya, 2011).

Several cancers, including colorectal carcinoma, breast
carcinoma, and hepatocellular carcinoma, are associated with
overexpression of VEGF (Hicklin and Ellis, 2005), which has
been linked to the development of oncogenes, lack of tumor
suppressor activity, and fluctuations in glucose or oxygen levels
(Wedge et al., 2005). To stimulate proliferation of adjacent
endothelial cells, VEGF interacts with one of three tyrosine
kinase receptors (VEGFR-1–3), and its overexpression is
associated with autophosphorylation of VEGFR-2 in malignancy
(Wang et al., 2020). Therefore, several lines of evidence suggest that
preventing this pathway by inhibiting VEGFR-2 kinase activity
impairs angiogenesis and tumor development (Wang et al., 2018).

Several VEGFR-2 modulators have been discovered, some of
which are currently in clinical trials (Aziz et al., 2016). However,
these inhibitors fail in clinical trials due to acquired resistance and
their side effects, such as receptor redundancy, thromboembolic
complications, proteinuria, hemorrhage, anal fistulas,
gastrointestinal perforations (GI), posterior reversible
encephalopathy syndrome, hand-foot skin reaction, oral
mucositis, diarrhea, thyroid dysfunction, bone marrow
suppression, emergence of hypoxia-tolerant tumor cells, selection
of hypoxia-resistant malignant clones, increase in circulating
nontumoral proangiogenic substances, and endothelial cell
polymorphisms (Modi et al., 2020).

To develop new compounds with potent inhibitory activity,
3D-QSAR and pharmacophore modeling approaches are
commonly used to design new ligand-based drugs based on a
series of assays and syntheses of different analogs of the
compound’s structure (Nicolaou et al., 2008; Acharya et al.,
2011). The 3D-QSAR methods such as CoMFA (Comparative
Molecular Field Analysis) and CoMSIA (Comparative
Molecular Similarity Indices Analysis) have been used to
generate valid and consistent models for the synthesis of
different compounds and evaluation of their activities on
therapeutic targets (Zhao et al., 2011). The major obstacle in
drug discovery is the lack of ADME (absorption, distribution,
metabolism, and excretion) features (Vugmeyster et al., 2012). To
address this problem, a computational approach for drug design
that incorporates ADMET predictions is used to generate new hits
during the development process (Wu et al., 2020).

In this study, 3D-QSAR methods are used to model and predict
the anti-cancer activities of new Triazolopyrazine analogs.
Molecular docking analysis and molecular dynamics simulations

show that the proposed molecules exhibit greatly enhanced binding
and inhibitory activity against VEGFR-2, the major breast cancer
receptor, compared to the leading known breast cancer drug,
Foretnib. The present results provided the basis for the synthesis
of novel triazolopyrazine analogs as improved drugs against breast
cancer.

Materials and methods

Data collection

A database of twenty-three compounds, including triazole-
pyrazine molecules, with their inhibitory activity against breast
cancer cell lines (MCF-7), was compiled (Liu et al., 2022). This
database was divided into two units for the 3D-QSAR study.
Nineteen molecules were randomly selected to be used as
training sets for the generation of 3D-QSAR models, and the
remaining four molecules were used to evaluate the accuracy of
the proposed models. This database was selected for the following
reasons: (i) The pIC50 values for the compounds ranged from 4.72 to
5.97; (ii) In the field of therapeutic medicine, triazolopyrazine is the
active class I pharmacodynamic structure that exhibits good
antitumor activity. The IC50 values of the twenty-three 1,2,4-
triazole compounds used in this study were converted to pIC50

using the following expression: (pIC50 = −log IC50) and presented in
Supplementary Table S1.

Molecular alignment

The molecular modeling studies in this study were performed
using the SYBYL-X2.0 package on a Windows 10 64-bit desktop
computer (Wang et al., 2018). SKETCH, a module of the SYBYL
program, was used to carefully build the 3D scaffolds of the
triazolopyrazine derivatives, and the resulting structures were
then minimized using the Tripos force field (Waller et al., 1996).
The Gasteiger-Hückel atomic partial charges were calculated using
the Powell method and a convergence criterion of 0.01 kcal/mol
during the minimization phase (Tsai et al., 2010). After structure
design and minimization, the distill component of SYBYL-
X2.0 performed molecular alignment on the database using
molecule 22 (the most active) as a reference (Tabti et al., 2022)
(Figure 1).

3D-QSAR modeling

CoMFA and CoMSIA techniques were implemented using the
Sybyl X-2.0 program (Vistoli and Pedretti, 2007). The CoMFA
method was developed using electrostatic and steric fields as well
as the Lennard Jones and Coulomb potentials (Tosco and Mackey,
2017). For the steric and electrostatic energies, we used a
sp3 hybridized carbon atom with a Van Der Waals radius of
1.52 and a net charge of + 1.0, using the standard rate of 30 kcal/
mol for the power cutoff calculations (Hadni and Elhallaoui, 2020).
In addition to steric and electrostatic fields, the CoMSIAmethod was
developed to calculate hydrophobic, hydrogen bonding donor, and
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acceptor fields. The CoMFA model considers the same factors (Roy
et al., 2015).

Partial least square analysis

The 3D QSAR models were generated using the partial least
squares (PLS) method, an extension of multiple regression analysis
(Vistoli and Pedretti, 2007). For cross-validation, the leave-one-out
method (LOO) was first applied (el Mchichi et al., 2022). Here, a
single inhibitor was removed from the data set and the derived
model was used to make predictions about the activity of that
inhibitor. PLS with leave-one-out cross-validation is used to
evaluate the accuracy of the model by assessing the optimal
number of components (ONC) and the correlation coefficient of
cross-validation (Q2) (Consonni et al., 2009). The leave-one-out
cross-validation method was used to calculate the coefficient of
determination (R2), the F value (F), and the standard error of the
estimate (SEE) (Bouamrane et al., 2022). In addition, to further
investigate the robustness of the developed models, they were
subjected to external validation with a set of four molecules
(Hajjo et al., 2010). The following equation is used to determine
the coefficient of determination (Rext

2) of the test set:

R2
test � 1 − ∑test

i�1 Yi Obs test( ) − Yi Pred test( )( )
2

∑training
i�1 Yi Obs test( ) − �Yi training( )

2

Models are considered acceptable if each of the following criteria
is met simultaneously: Q2 > 0.5, R2 > 0.6, Rext

2 > 0.6 (Tropsha et al.,
2003).

Y-randomization test

The Y-randomization technique was applied to the derived
models as an additional check to eliminate the effects of
randomness (Rücker et al., 2007). After each iteration, the pIC50

values of the studied compounds are randomly shuffled several
times to obtain a new set of Q2 and R2. QSAR models are reliable
when their Q2 and R2 values are low, indicating that the excellent
calibration result is not due to random correlation (Roy and Mitra,
2011).

Applicability domain (AD)

Since all QSARmodels are developed based on a limited number
of molecules, there is a specific region of chemical space where the
QSAR model can reliably predict new compounds (Roy et al., 2015).
This region is referred to as the application domain (AD)
(Cherkasov et al., 2014). Therefore, the accurate application of
QSAR models requires the calculation of AD (Sahigara et al.,
2012). In this work, we applied a method to define AD based on
solving the following equation to determine the effects of different
leverage values for all compounds (I � 1, 2, . . . , n) (Netzeva et al.,
2005).

hi � xt i XT X( )-1

X is the descriptor matrix of the training set, and Xi is the
descriptor vector of compound i.

FIGURE 1
Superposition and alignment of the investigated compounds using molecule 22 as a template.

TABLE 1 Summary of 3D-QSAR results.

Models R2 Q2 SEE F NOC Rpred2 Fractions

Ster Elec Hyd Don Acc

CoMFA 0.936 0.575 0.102 29.265 6 0.956 0.64 0.36 - - -

CoMSIA 0.938 0.575 0.100 30.437 6 0.845 0.642 0.358 - - -
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The diagram validates the QSARmodel if the calculated leverage
value (h) is smaller than the critical value of leverage (h*) (Qin et al.,
2017).

h* � 3 P + 1( )/n
P is the number of descriptors and n is the number of

compounds.

Molecular docking study

A molecular docking study was performed to predict the
molecular interactions between the active site of the VEGFR-2
target protein and the newly designed molecules (Meng et al.,
2011). The 3D structure of the VEGFR-2 target protein (PDB
code: 4ASD) was obtained from the Protein Data Bank (www.rcsb.
org) (Burley et al., 2019). Autodock tools were used to prepare the
protein before docking (Hernández-Santoyo et al., 2013). Water
molecules and co-crystallized small molecules were removed from
the protein structure, the polar hydrogen and Kollmann charges were
added to the structure (Shivanika et al., 2020). The grid box spacing
was set to 0.375 Å, the center to (−24.611 Å, −0.388 Å, −10.929 Å),
and the lattice size to 20 Å × 20 Å × 20 Å where the co-crystallized
ligand interacts with the active residues (Baammi et al., 2023a). Nine
poses were constructed for each protein-ligand complex based on
docking affinity. The Discovery Studio Viewer was used to display and
analyze the docking results to find the important interactions between
the ligands and the protein binding site (Adeniji et al., 2020; Kesari
et al., 2020; Singh et al., 2022).

Redocking

Docking accuracy was determined by comparing the root-mean-
square deviation (RMSD) of the heavy atoms between the docked

FIGURE 2
Observed versus predicted pIC50 of training and test sets of Triazoloyrazine derivatives inhibitors based on (A) CoMFA and (B) CoMSIA models.

FIGURE 3
Williams plot for CoMFA/ES model.
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pose and the crystallographic pose of the ligand (sorafenib) (Wen
et al., 2019). If the RMSD is below 2 Å, a molecular docking
approach is robust (Baammi et al., 2023b).

Molecular dynamics simulation

To determine the structure-function relationship, MD
simulations were performed using the GROMACS
2019.3 software program (Abraham et al., 2015) on the docked
complexes of compound T01, the active molecule (molecule22), and
Foretinib. The CHARMM27 force field was used for the protein
(Lindahl et al., 2010), and the topology for the ligands was generated
using the Swissparam server (Zoete et al., 2011). Prior to
neutralization in the system with counterions, each complex was
resolved in a dodecahedron box (1.0 nm) using the TIP3P water
model, and counterions (Na+) were added to neutralize the system
(Saini et al., 2021). The steepest descent method was used to achieve
both the minimum energy and maximum force, with Fmax set at
1000 kJ/mol/nm (Baammi et al., 2022). To equilibrate the system at
300 K and 1 bar, two 100 ps simulations were performed in rapid
succession using canonical NVT and isobaric NPT ensembles.
Subsequently, 100 ns molecular dynamics simulations were

performed for each molecule. The output trajectories were
generated, and the data files were analyzed to better understand
the behavior of the protein.

Results and discussion

Results of CoMFA and CoMSIA

The main objective of this step is to build powerful CoMFA and
CoMSIA models based on the observed and estimated pIC50 values
of different models used for training and test sets (Supplementary
Table S2) (Sharma et al., 2016). To create the CoMFA model, steric
and electrostatic fields were combined. Meanwhile, thirty one
different combinations of the five fields: steric, electrostatic,
hydrophobic, H-bond donor, and H-bond acceptor were applied
to build the CoMSIA models (Supplementary Table S3) (Lu et al.,
2011). Table 1 displays the results produced using the CoMFA and
CoMSIA models. The Q2 from the cross-validation provides
information about the robustness of the CoMFA and CoMSIA
models. If Q2 ≥ 0.3, the built model is only significant at the 5%
level, while Q2 ≥ 0.5 means that the model is statistically significant
(Chu et al., 2020).

For the CoMFAmodel, PLS regression analysis yielded a high R2

(0.936), F values of 29.265, a cross-tested coefficient of
determination Q2 (0.575), a standard error estimate (SEE) of
0.102, and a small optimal number of components N (6). The
CoMFA model was validated using four triazolopyrazine
compounds yielding an Rpred

2 of 0.956. The steric and
electrostatic fields contributed 64% and 36%, respectively, to the
CoMFA model, with the electrostatic field being more influential
compared to the steric field. For the CoMSIA model, the values of
Q2, R2, F, SEE, and N were 0.575, 0.938, 30.437, 0.100, and 6,
respectively, and the resulting model exhibited a high level of
internal predictability. The same parameters were used to
validate the CoMSIA/SE and CoMFA models. The percentage
contributions of the steric and electrostatic fields were 64.2% and
35.8%, respectively. The consistency of the CoMSIA models was
demonstrated by an external validation correlation coefficient
(Rpred

2) of 0.845 > 0.6, indicating a high level of accuracy

FIGURE 4
Williams plot for CoMSIA/ES model.

FIGURE 5
Electrostatic (A) and steric (B) contour maps of the CoMFA model around molecule 22. When the peripheral part of the molecule is colored green,
the activity of the molecule is enhanced by a group with a large connecting space, and when it is colored yellow, the activity of the compound could be
reduced by the presence of the group with the large connecting space. The blue colored regions indicate a preference for positive groups that may lead
to an increase in anti-VEGFR-2 activity, while the red colored regions indicate a preference for negative groups.
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(Chirico and Gramatica, 2011). Furthermore, all these results
showed that the steric field is the most important factor in the
development of new anticancer drugs. The correlation between
observed and predicted activity for the CoMFA and CoMSIA
models (Figure 2) exhibits a satisfactory linear correlation for all
molecules except molecule 22.

Applicability domain (AD) and Y-
randomization test

William’s plot refers to a graph that compares the leverage
values and standardized residuals of a particular group of
compounds (Beheshti et al., 2016). There are other methods to
define the applicability domainmodels because, without defining the
scope, it is not possible to use any of the QSARmodels to predict the

activities that the new compounds would perform (Roy et al., 2015).
Compounds with leverage greater than the threshold are considered
potentially disruptive to the performance of the model and are
therefore flagged as influential (Moussaoui et al., 2023; Soufi et al.,
2023). In this study, the AD of the CoMFA and CoMSIA QSAR
models is defined using William’s plots (Figures 3, 4). For the
developed CoMFA/ES and CoMSIA/SE models, the warning
leverage (h*) was calculated as 0.47. Our result shows that
neither the training nor the test sets contain any compounds that
are particularly outliers, and all compounds have leverage values
lower than the warning h* value (hi < h*). Hence, the model has such
good predictive capabilities and robust statistical parameters
(Benfenati et al., 2007). In addition, the Y-randomization test
was used to examine the robustness of each model. After each
iteration, the independent variables of the studied compounds
(pIC50) are randomly shuffled (Edraki et al., 2016). The results of

FIGURE 6
Electrostatic (A) and steric (B) contour maps of the CoMSIA model around molecule 22. When the peripheral part of the molecule is colored green,
the activity of the molecule is enhanced by a group with a large connecting space, and when it is colored yellow, the activity of the compound could be
reduced by the presence of the group with the large connecting space. The blue colored regions indicate a preference for positive groups that may lead
to an increase in anti-VEGFR-2 activity, while the red colored regions indicate a preference for negative groups.

FIGURE 7
The 3D-QSAR analysis revealed new insights into the structure-activity relationship.
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TABLE 2 The 3D-QSAR model’s predicted activity pIC50 (Pred).

Compounds Structures Activity estimated pIC50 Binding affinity (Kcal/mol)

CoMFA CoMSIA

T01 6.430 6.594 −9.6

T02 6.182 6.263 −9.7

T03 6.166 6.502 −10

T04 6.357 6.614 −8.9

(Continued on following page)
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20 random shuffles for the Y-randomization test are shown in
Supplementary Table S4 and Supplementary Table S5. After this
test, both models have lower values for Q2 and R2 compared to our
original models, indicating that the developed models are very
robust and reliable and not due to chance.

Contour maps analysis of CoMFA and
CoMSIA

The use of 3D contour maps to represent the QSAR equation is
an effective way to illustrate the relationships between VEGFR-2
inhibitors and their anti-cancer activities. The 3D contour maps
were made using the Stdev* Coeff field type. Due to its high activity,
molecule 22 (Figures 5, 6) was selected as a representative
compound to analyze the performance of CoMFA and CoMSIA
models. Figure 5 shows a contour map of the steric field of CoMFA,

with the effect of the steric field on the activity depicted in green and
yellow. This steric field accounts for 64% of the total contribution.

Figures 5A shows a green contour dispersed around the
R1 substituent, suggesting that adding more groups at the
R1 substituent site could increase the activity of the compound.
For example, the bioactivity of compound 12 (pIC50 = 5.75) with a
methyl ring was significantly higher than that of compound 1 with a
hydrogen ring (pIC50 = 4.86). Figures 5B displays the contour map
of the electrostatic field of CoMFA. The blue (80%) and red (20%)
colors represent the influence of the electrostatic field (36%) on the
activity. The compound of an electron-donating group enhances the
activity of the compound, as shown by the blue contour around the
molecule, while the compound of an electron with drawing group
also decreases the activity of the compound, as shown by the red
contour. The activity of the molecule increases when electron-
withdrawing groups are placed near the X substituent
(Supplementary Table S1), which explains the higher activity of

TABLE 2 (Continued) The 3D-QSAR model’s predicted activity pIC50 (Pred).

Compounds Structures Activity estimated pIC50 Binding affinity (Kcal/mol)

CoMFA CoMSIA

T05 5.808 6.482 −9.8

T06 6.136 6.368 −10

22 5.83 5.82 −8.8
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compound 9 compared to compound 3 (pIC50 = 5.43 vs. pIC50 =
5.19). The same observation was made when the hydrogen was
replaced by a fluorine atom (compounds 16 pIC50 = 4.86 vs.
compound 6 pIC50 = 5.03)

The contour maps of the steric field (Figures 6A) or the
electrostatic field (Figures 6B) of CoMSIA are nearly identical to
those of the CoMFA model. Thus, the CoMSIA fractions (Table 1)
indicate that the major fields potentially characterizing inhibitory
activity are steric (64.2%) and electrostatic (35.8%), which are the
same fields found in COMFA.

Newly designed compounds

Several novel triazolopyrazine derivatives were designed to
increase activity considering the 3D QSAR results and the
predominant modified region determined by the contour map
results, using molecule 22 as a template (Figure 7).

In the case of the newly predicted molecules T01, T02, and T03,
the replacement of methyl by isopropyl, phenyl, and cyclobutyl,
respectively, in R1 increases the activity (Table 2). In addition,
simultaneous substitution of R1 and radical Z increases the activity
from 5.83 to 6.35, which is the case for T04 and T06; A4 (R1 =
isobutyl + Z = fluorite); T05 (Z = pyrroline fluoride); and T06 (R1 =
isobutyl + radical Z = fluorine). All these molecules blocked VEGFR-
2much better than compound 22, suggesting that they could be used
as new VEGFR-2 inhibitors.

ADME/toxicity prediction and analysis

Due to the lack of permeability of the blood-brain barrier,
toxicity problems, and lack of efficacy, most drugs fail in the
research and development phase. Therefore, prediction and
optimization of ADMET properties of novel chemical entities are
crucial to avoid potential problems during clinical trials. pKCSM
(Pires et al., 2015) and the Swiss ADME (Daina et al., 2017) Predictor
are commonly used programs to predict ADMET properties of small
molecules. The in silico ADMET results for the six newly designed
compounds are given in Table 3.

The in silico ADMET results for the six newly designed
compounds are given in Table 3. The ability of a drug to be
absorbed into the bloodstream after being administered is
directly related to its water solubility. Absorption values for all
compounds are greater than 70% (100% for T03), indicating a
greater absorption potential in the human intestine (Table 3). A
drug travels to various organs and systems once it enters the
bloodstream. Because of the blood-brain barrier, most substances
are unable to cross over from the bloodstream into the central
nervous system. This barrier is the primary one that stands between
the bloodstream and the CNS. In order to enter the central nervous
system (CNS), a drug molecule must therefore satisfy a number of
requirements before it can cross the blood-brain barrier (BBB).
These prerequisites include blood-brain permeability surface
product (logPS) greater than −2 and a logarithmic ratio brain-to-
plasma drug concentration (logBB) greater than 0.3. As shown in
Table 1, designed compounds meet these values. In addition, the
activity of an isoenzyme may be decreased or increased, dependingTA
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on the drug. In some cases, the metabolism of a drug requires more
than one isoenzyme. Approximately 90% of commonly prescribed
drugs require the involvement of four isoenzymes for their
metabolism. These isoenzymes are referred to as CYP1A2,
CYP2C9, CYP2D6, and CYP3A4.

The in-silico Swiss-ADME prediction shows that all expected
compounds are both substrates and inhibitors for 3A4, but not for
2D6. The results of this assay showed that none of the chemicals
were mutagenic or carcinogenic. In addition, the acute toxicity
(LD50) of the new compounds ranged from 2.423 to
2.923 mol/kg, and none of the candidates caused skin
sensitization (Table 4). These proposed compounds are reliable
candidates for further clinical studies because they exhibit
exciting properties such as high intestinal absorption,
distribution, permeability, and toxicity across the blood-brain
barrier.

Docking results

The binding pattern of the novel designed inhibitors to VEGFR-
2 was analyzed using molecular docking and compared to the mode
of action of the standard inhibitor (Foretinib). To validate our
approach and parameters before docking all chemicals, we
redocked the native ligand sorafenib of VEGFR-2 into the
binding pocket. The redocked conformation of sorafenib is very
similar to its original conformation; the RMSD between the two
configurations is only 1.2 to 1.01 (Supplementary Figure S1). Once
the binding site was determined, docking was performed for each
compound, including the active compound, proposed compounds,
and Foretinib using the identical docking settings. The 3D and 2D
binding interactions of all compounds are presented in Table 5.

Foretinib, a receptor tyrosine kinase inhibitor, has the potential
for treating breast cancer by acting on multiple kinases involved in
cancer growth. Compared to Tamoxifen and Trastuzumab, which
target specific pathways, Foretinib offers a broader spectrum of
activity. It formed two H-bonds during docking with residues
Cys919, and Asp1046 (Table 5), and several hydrophobic and
electrostatic interactions with Ala866, Leu840, Val848, Val899,
Leu889, Leu1019, His1026, Asp1046 and Leu1035. In addition,

Foretinib formed three carbon-hydrogen bonds with Ala881,
His1026, and Asp1046. Molecule 22, the most active molecule
in the data set, showed two conventional H-bond with Asp 1046,
and Cys919, two carbon-H bonds due to the strong interaction of
Cys1045 and Glu885, twelve hydrophobic via Pi-sigma, Pi-Pi
T-shaped, P-alkyl and alkyl interactions with Cyc919, Leu1035,
Leu840, Ala866, Phe918, Val848, Leu889, Leu1019, Cy1024,
ILe892, Val899, Val916 and two Fluorine interactions with
Cys1045 and Ile1044. By the same token, all complexes formed
by designed compounds (T01-T06) and the VEGFR-2 receptor
have better binding affinity ranging from −9.6 to −10 kcal/mol
(Table 2). Therefore, these complexes are more stable than the
complexes generated by Foretinib (−9 kcal/mol) and compound 22
(−8.8 kcal/mol) in the data set, suggesting that these compounds
have a higher inhibitory potential against VEGFR-2. Furthermore,
the three-dimensional binding interaction of the compounds (T1-
T6) showed a similar H-binding interaction profile with
Asp1046 and hydrophobic and electrostatic interactions with
Val899, Val848, Ala866, Leu1035, Leu889, Leu1019, Leu1035,
and Leu840, with compound 22, and Foretinib suggesting that
these amino acids play a critical role in enhancing activity as
reported in previous studies (Yousef et al., 2022; Parves et al.,
2023). These compounds interact with a higher number of residues
via hydrophobic interactions than molecule 22 and Foretinib,
which increases their stability and affinity in the binding pocket
of VEGFR-2.

Molecular dynamics simulation

Molecular dynamics modeling was used to assess the effects of
molecule 22, the lead compound (Foretinib), and designed
compound T01 with the highest predicted inhibitory activity
(Table 2) on the structure of VEGFR-2 and its stability in the
binding pocket (Agrahari et al., 2018; Agrahari et al., 2019).
Accordingly, Gromacs 2019.3 was used to conduct a molecular
dynamics simulation for these complexes (Figure 8), and various
features such as root mean square deviation (RMSD), Root-mean
square fluctuation (RMSF), and Radius of gyration (Rg) were
examined on the trajectories corresponding data files.

TABLE 4 Toxicity profile of newly designed compounds.

Compounds AMES
toxicity

Max. tolerated dose
(human)

hERG I/II
inhibitor

Oral rat acute
toxicity (LD50)

Oral rat chronic
toxicity (LOAEL)

Skin
sensitization

Yes/No Log mg/kg/day Y/N Mol/kg Log mg/kg_ bw/day Yes/No

T01 No 0.552 No/Yes 2.648 −1.075 No

T02 No 0.547 No/Yes 2.923 −0.985 No

T03 No 0.534 No/Yes 2.625 −0.454 No

T04 No 0.423 No/Yes 2.423 −0.041 No

T05 No 0.285 No/Yes 2.488 −0.426 No

T06 No 0.482 No/Yes 2.649 −0.843 No

Molecule 22 No 0.603 No/Yes 2.729 −0.426 No
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TABLE 5 The 3D and 2D binding interactions showed that all proposed molecules interacted with a higher number of residues via hydrophobic interactions than Foretinib and compound 22.

Complex 3D binding interactions 2D binding interactions

Foretinib-VEGFR-2

MOL22-VEGFR-2
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TABLE 5 (Continued) The 3D and 2D binding interactions showed that all proposed molecules interacted with a higher number of residues via hydrophobic interactions than Foretinib and compound 22.

Complex 3D binding interactions 2D binding interactions

T01-VEGFR-2

T02-VEGFR-2
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TABLE 5 (Continued) The 3D and 2D binding interactions showed that all proposed molecules interacted with a higher number of residues via hydrophobic interactions than Foretinib and compound 22.

Complex 3D binding interactions 2D binding interactions

T03 –VEGFR-2

T04- VEGFR-2
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TABLE 5 (Continued) The 3D and 2D binding interactions showed that all proposed molecules interacted with a higher number of residues via hydrophobic interactions than Foretinib and compound 22.

Complex 3D binding interactions 2D binding interactions

T05- VEGFR-2

T06- VEGFR-2
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Conformation of protein

The RMSD was computed during the simulation to establish the
overall stability of the selected systems. The calculated value was
considered as the main criterion for measuring the convergence of the
system. The RMSD values of the 4ASD, 4ASD-Foretinib, mol22, and

T01 complexes were calculated to be 0.17, 0.19, 0.18, and 0.18 nm,
respectively. Up to 100 ns in the simulation, none of the three systems
had a significant shift in root-mean-square-deviation (RMSD) values,
which quantify conformational changes over time (Figures 8A). The
resulting RMSD plot for 4ASD-Mol22 and 4ASD-T01 showed an
increasing trend with increasing RMSD values between 0 and 25 ns,

FIGURE 8
The results of the molecular dynamics study: (A) Time evolution of the backbone of the target protein; (B) The comparative RMSF values for the
target protein with the referencemolecule, molecule 22, and designedmolecule T01; (C) The comparative Radius of gyration values for the target protein
with the referencemolecule, molecule 22, and designedmolecule T01; (E, F, G) The comparative hydrogen bonds and pairs within 0.35 nm for the target
protein with the reference molecule, designed molecule 20, and designed molecule T01; (H) Hydrogen bond distributions of the reference
molecule, molecule 22, and the designedmolecule T01 with the target protein during the 100 ns. (D): The comparative SASA values for the target protein
with reference molecule 22, and designed molecule T01.
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ranging from 0.10 to 0.30 nm, indicating that the compounds were
adapting to a new conformation within the binding pocket (Aljuaid
et al., 2022). Thereafter, the plateau continued until it reached a final
value of 0.20 nm, which is below the threshold value of 0.3 nm.
However, 4ASD-Foretinib has the same profile but not the same
RMSD values as apo 4ASD. Finally, the lower RMSD values for all
complexes studied indicate that the T01 inhibitor in 4ASD is stable,
which provides a good basis for our investigation.

Root mean square fluctuation (RMSF)

Using the RMSF approach, we analyzed how ligand binding
alters flexible protein structure and essential amino acid behavior.
During simulation, a higher RMSF value indicates greater flexibility,
while a lower RMSF value indicates greater rigidity (En-nahli et al.,
2022). The RMSFs of the Apo 4ASD, 4ASD-Foretinib, 4ASD-mol22,
and 4ASD-T01 complexes were calculated (Figures 8B). Compared
with the apo form of 4ASD, the fluctuations of the residues in the
ligand-bound complexes are quite stable, especially in the region
where the residues participate in ligand binding. Furthermore, the
average RMSF values of the Apo 4ASD, 4ASD-Foretinib, 4ASD-
mol22, and 4ASD-T01 complexes were 0.10, 0.10, 0.09, and 0.08 nm,
respectively. This result indicates that the binding of compound
T01 contributes to the structural stability of 4ASD.

Radius of gyration analysis

We calculated the radius of gyration (Rg) as a function of time to
investigate how the compactness of the protein structure changes when
bound to various ligands.When Rg is sufficiently high, a ligand tends to
be flexible, making it unstable. Conversely, conformations with lower
Rg values tend to be dense and tightly packed (Naz et al., 2023). The
average Rg values of the Apo 4ASD, 4ASD-Foretinib, 4ASD-mol22, and
4ASD-T01 complexes were 1.98, 2.00, 1.98, and 2.00 nm, respectively,
suggesting that the binding of Foretinib, mol22, and the designed

compound T01 to the 4ASD packing does not cause a significant
change. As can be seen in Figure 8C, the Rg of the 4ASD/T01 complex
appears to stabilizemore rapidly during the 100-ns simulation than that
of the 4ASD-Foretinib and 4ASD-mol22 complexes.

Solvent accessible surface area

SASA measures the surface area of the protein that is in direct
contact with the solvent. The interpretation is based on the fact that the
surface of the macromolecule-ligand complex is in contact with the
water molecules surrounding it (Baammi et al., 2023b). The change of
SASA for the complex of protein activemolecule and for the complex of
protein-designed molecules was analyzed during 100 ns (Figures 8D).
The average values of SASA for the Apo 4ASD, 4ASD-Foretinib, 4ASD-
mol22, and 4ASD-T01 complexes were 168.18 nm2, 169.00 nm2,
168.48 nm2, and 168.57 nm2, respectively. Analysis of these data sets
revealed no significant variation in SASA values between complexes.

Hydrogen bonds analysis

Hydrogen bonding is an essential feature that determines
binding affinity and contributes to the binding relationship
between ligands and proteins. In drug discovery, it is also
responsible for drug specificity, metabolization, and adsorption
(Bhardwaj et al., 2020). To confirm the stability of all the docked
complexes, the hydrogen bonds between 4ASD-Foretinib, 4ASD-
mol22, and 4ASD-T01 were estimated in a solvent environment
during MD simulations (Figures 8E, F, G). It was found that
Foretinib formed an average of 2.01 hydrogen bonds and
3.23 bond pairs within 0.35 nm of the active pocket of 4ASD.
Similarly, the designed molecule T01 was linked to 4ASD in the
binding site via an average of 3.97 hydrogen bonds, while the average
number of pairs within 0.35 nm was 4.15. However, for the 4ASD/
molecule 22 complex, the average number of hydrogen bonds was
2.09, and the average number of pairs within 0.35 nm was 3.45.

TABLE 6 The hydrogen bond occupancy of amino acid residues throughout the simulation in various protein-ligand complexes.

Complex H-bond occupancy of amino acid residues

Foretinib Asp1046 (both donor and acceptor) 10.48%, Lys868 (donor) 39.62%, Arg1027 (both donor and acceptor) 23.25%, Tyr1059 (Donor) 0.60%,
Glu885 (acceptor) 70.46%

Molecule 22 Lys868 (donor) 64.37%, Asn923 (donor) 0.20%, Arg1051 (donor) 7.29%, Asp1046 (acceptor) 57.09%

Designed molecule T01 Lys868 (donor) 65.17%, Asp1046 (donor and acceptor) 41.82%, Asp1028 (acceptor) 3.49%, His1026 (donor) 0.10%

TABLE 7 MMPBSA calculations of binding free energy for all complexes.

Complex Binding energy
(kJ/mol)

SASA energy
(kJ/mol)

Polar solvation energy
(kJ/mol)

Electrostaticenergy
(kJ/mol)

Van der Waals energy
(kJ/mol)

4ASD/
Foretinib

−48.084 +/- 49.845 −23.295 +/- 1.286 356.488 +/- 94.279 −187.730 +/- 84.457 −193.548 +/- 21.570

4ASD/Mol22 −34.943 +/- 37.198 −22.269 +/- 1.009 451.645 +/- 64.355 −141.591 +/- 39.791 −173.847 +/- 16.793

4ASD/T01 −59.176 +/- 40.252 −23.316 +/- 1.252 317.898 +/- 60.344 −290.472 +/- 48.945 −212.166 +/- 16.943
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Notably, the H-bonding plot revealed that compound T01 was likely
to interact more strongly with the binding pockets of 4ASD
throughout the simulation compared with molecule 22 and
Foretinib. The Hydrogen bond analysis emphasized the
significant roles played by specific amino acid residues, in
addition to catalytic residues, in the complexes of Foretinib,
Molecule 22, and the developed compound T01 (Table 6). The
distribution of hydrogen bond numbers further showed that the
complex of designed compound T01 formed hydrogen bonds with
affinities ranging from high to low, which is comparable to the
distribution of hydrogen bonds in the complexes of Foretinib
(Figures 8H).

Binding free energy analysis

The MM-PBSA method was used to determine the binding free
energy (ΔE) between the VEGFR-2-Foretinib, VEGFR-2-molecule
22, and VEGFR-2-T01 complexes using the MmPbStat.py script for
whole trajectories (Chen et al., 2016; Gomari et al., 2023). The total
nonpolar, polar, and non-bonded interaction energies (electrostatic
interaction and Van der Waals) were calculated for each complex
and are displayed in Table 7. Foretinib, mol22, and T01 all bind to
VEGFR-2 with free energies of −48.084, −34.943, and −59.176 kJ/
mol, respectively, proving the validity of the molecular dynamic
simulation model used in this study. The non-polar solvation free
energy (Enon polar), electrostatic energy (Eele), and van der Waals
energy (Evdw) all contributed to the binding energy of the two
systems, but the polar energy (E polar) was undesirable,
demonstrating the significance of the intermolecular van der
Waal contribution. This is consistent with the docking study and
MD simulation interactions, where the large interaction of the
ligand with the hydrophobic binding pocket was observed.

Conclusion

To build the 3D-QSAR model, a series of triazolopyrazine
derivatives against the breast cancer cell line MCF-7 were
collected, optimized, and calculated. Statistically, both the
CoMFA and CoMSIA models provide good results, with R2 >
0.9 and Q2 > 0.5. External validation and the Y-randomization
test were used to compare the predictive quality of the 3D-QSAR
model. Thus, we used 3D-QSAR to design and predict the properties
of 6 novel compounds. The results show that the expected activity
and ADME/T curves for these molecules are quite strong. The
molecular docking results show better binding affinity in the
range of—8.9 to–10 kcal/mol, respectively, and strong binding to
VEGFR-2 through several interactions. The MD simulation was
used to study the stability of the conformations with the lowest
binding value of each complex. 4ASD/T01 are stable based on
RMSD, RMSF, Rg and SASA. During this research, the
calculation of MM-GBSA confirmed the result of molecular
docking by showing that the novel compound Pred T01 is more
stable and has the lowest binding energy. Compared to the leading
known breast cancer drug (Foretinib) the proposed six molecules
exhibit enhanced binding and inhibitory activity against VEGFR-2,

the major breast cancer receptor. This result provided the basis for
the synthesis of novel triazolopyrazine analogs as improved drugs
which expand the number of the new potential agents to face the
rising resistant breast cancer. Chemical synthesis and further
experimental validation to assess the proliferative activities of the
designed molecule represents the main limitation of the present
study.
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