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Bakcground: Prognosis of colorectal cancer (CRC) varies due to complex
genetic–microenviromental interactions, and multiple gene-based prognostic
models have been highlighted.

Material and Method: In this work, the immune-related genes’ expression-based
model was developed and the scores of each sample were calculated. The
correlation between the model and clinical information, immune infiltration,
drug response and biological pathways were analyzed.

Results: The high-score samples have a significantly longer survival (overall
survival and progression-free survival) period than those with a low score,
which was validated across seven datasets containing 1,325 samples (GSE17536
(N = 115), GSE17537 (N = 55), GSE33113 (N = 90), GSE37892 (N = 130), GSE38832
(N = 74), GSE39582 (N = 481), and TCGA (N = 380)). The score is significantly
associated with clinical indicators, including age and stage, and further associated
with PD-1/PD-L1 gene expression. Furthermore, high-score samples have
significantly higher APC and a lower MUC5B mutation rate. The high-score
samples show more immune infiltration (including CD4+ and CD8+ T cells, M1/M2
macrophages, and NK cells). Enriched pathway analyses showed that cancer-related
pathways, including immune-related pathways, were significantly activated in high-
score samples and that some drugs have significantly lower IC50 values than those
with low score.

Conclusion: The model developed based on immune-related genes is robust and
reflected various statuses of CRC and may be a potential clinical indicator.
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Introduction

As the fifthmost common cancer, it is estimated that 376,300 new colorectal cancer cases and
160,600 related deaths occurred in China in 2015 (Chen et al., 2016). Despite the reports
regarding the clinical significance of clinical indicators and genomic features, their clinical
utilization and performance are still not satisfactory (Sveen et al., 2020; Yamamoto et al., 2021;
Martelli et al., 2022). Recently, genome-wide screening-based prognostic models have been
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emphasized, due to their robustness in reflecting themultiple features of
various types of cancers for classification, prognosis, and therapy
guidance (Yue et al., 2021; Hou et al., 2022; Zheng et al., 2022), and
somemodels have been recommended under ASCO’s guidance (Andre
et al., 2022; Martelli et al., 2022) across various types of cancers. For
example, Likun et al. developed a LASSO-based model with hypoxia
immune-related lncRNAs and tested its clinical relevance, including
immune cell infiltration and drug sensitivity (Luan et al., 2022). Songtao
et al. developed a model based on ferroptosis-related genes (FRGs) and
validated it with another cohort (Du et al., 2022), and the knocking
down of some genes affects the phenotypes of colorectal cancer cell
lines. Another report used immune-related genes and developed a
model for prognosis (Wang et al., 2020).

Immune escape is one of the hallmarks of cancer, while a lot of
genes and cells participate in this process (Liu et al., 2020; Schmitt
and Greten, 2021). Even genes that regulate metabolism may
participate in this process (Zhang et al., 2021). Their immune
status not only influences the outcomes of immune therapy but
also those of chemotherapy and targeted therapy (Woolston et al.,
2019; Picard et al., 2020; Majidpoor andMortezaee, 2021). However,
these models lack sufficient validation datasets. The robustness of
multiple gene-based models is a result of reflecting the various
statuses of cancer cells, while a lack of sufficient validation datasets
weakens the prognostic value of the model. In addition, the
biological aspect that the models reflect is not deeply discussed
and the function of the genes in the model was not assayed.

In this vein, an immune gene-based model was developed in
TCGA cohort and was validated in six other validation cohorts. In
addition, the clinical and genetic (including mutation, CNA, and
DNA methylation) associations were analyzed. Enriched Gene
Ontology (GO) and KEGG pathways were identified using GO
and gene set enrichment analyses (GSEA), respectively. The
immune status difference between the subtypes was assayed, and
putative drug sensitivity analyses between subtypes were also carried
out. The expression levels of the genes in the model were also
assayed using qPCR and Western blot, and the functions of the
genes used in cell proliferation and migration were verified. As a
result, the genes in the model are associated with clone formation,
proliferation, migration, and invasion in CRC and the model is
shown to reflect multiple statuses of colorectal cancer.

Results

Candidate gene identification and model
development

The gene expression data and clinical information were retrieved
from public databases, including TCGA dataset (N = 380) and
GSE39582 (N = 481), and a correlation between gene expression
and the clinical outcome (including overall survival and progression-
free survival) was evaluated using both Cox univariate regression and
group comparison by dividing the samples into high-expression and
low-expression samples, according to each gene’s median expression
value. The genes significantly associated with both progression-free
survival and overall survival were identified as list1. Furthermore,
immune-related genes were retrieved from MSigDB as list2. Only
genes in both list1 and list2 were identified as candidate genes.

Finally, there were 14 genes being identified as candidate genes. To
narrow down the panel, information redundancy was removed, and the
potential clinical utilization was facilitated; the combination of these
14 genes was enumerated; the performance of each combination was
evaluated in both GSE39582 and TCGA datasets, and a combination of
11 genes was selected as the final panel. Afterward, the Coxmultivariate
regression model was developed using the gene expression value of the
overall survival information in TCGA dataset. The scoring model was
calculated as follows: Score = (0.19745 × PRG3) + (−0.05706 × PAK1) +
(0.15915 × LTB4R) + (−0.30012 × ICOS) + (−1.05201 × SFPQ) +
(0.17938 × LEP) + (−0.15633 × VIM) + (0.14018 × SSC5D) +
(−0.00910 × CASP6) + (0.10686 × SLC11A1) + (0.13690 × UNG).

The score value of each sample was calculated, and patients in
TCGA dataset were divided into the high-/low-score group; the
overall survival difference between these groups was evaluated.
High-score samples have prolonged the survival time compared
to low-score samples (Figure 1A; p <0.01). Consistent with this, the
progression-free survival of high-score samples also has a better
survival than those with a low score (Figure 1B; p <0.01). The three-
year survival receiving operating characteristic (ROC) curve showed
that the score shows good performance in predicting the clinical
outcome of CRC patients in TCGA dataset (Figure 1D). These genes
in the model were used to construct a protein–protein interaction
network in the STRING database, but most genes were not
connected, which is reasonable since these genes were considered
to be complementary for a prognosis (Supplementary Figure S1).

Model verification

Since the model was developed using TCGA dataset, the good
performance of the model may result from the overfit. The model was
further validated in independent datasets. Scores of each sample were
calculated according to the formula listed previously, and the samples in
each dataset were divided into high-/low-score groups. As shown in
Figure 2A, consistently with TCGA dataset, the high-score sample
showed a better survival rate in GSE39582. Notably, despite the fact
that themodel was not developed in theGSE39582 dataset, the candidate
gene selection considered the performance of GSE39582, and five
additional independent datasets, namely, GSE17536, GSE17537,
GSE33113, GSE38832, and GSE37892, were used for validation. As
expected, the survival time of the samples with high scores is significantly
longer than those with a low score (Figures 2B–F). Furthermore, high-
score samples tend to have a low death rate, high expression of tumor
suppressor genes, and low expression of oncogenes, as the training
dataset. Collectively, these results indicate that themodel is robust across
the datasets and platforms that measure gene expression.

Association between the score and clinical
information

Clinically, pathological information is widely used for prognosis
and therapy decisions. Thus, the correlations between the score and
clinical information were evaluated. As shown in Figure 1A, the score
value is independent of gender but is significantly associated with the
age and pathological stage. For immune infiltration and function, PD-1
and PD-L1 activities are an important indicator, and the correlation
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between the score and PD-1/PD-L1 was also estimated. As a result, the
score value is significantly and negatively associated with PD-1 and PD-
L1 mRNA expression (Figure 3B; p <0.0001; R = −0.39 and −0.34,
respectively), which is consistent with the previous results. However, the
score value is not significantly correlated with the tumor mutation
burden (TMB) and the MANTIS MSI score (Figure 3C). The Cox
multivariate regression showed that the score is significantly and
positively associated with a better overall and progression-free
survival (Figure 3D; p <0.05), suggesting that it is an independent
and valuable indicator for survival.

Genetic signature of high-score samples

The genetic signatures of the model were analyzed, including
mutation, copy number variation (CNV), and DNA methylation.
By comparing high-/low-score samples, it is found that the APC
gene mutation rate of high-score samples is significantly higher
than that of low-score samples, while MUC5B values are lower in

high-score samples (p <0.05; Figure 4A). A specific signature of
copy number variations was also detected in high-/low-score
samples (Figure 4B). The DNA methylation status of the
distributed high-score samples is dispersed across the genome
(Figure 4C), which is consistent with the gene distribution in the
model.

Pathways that the score reflected

To investigate the potential pathways and the biological
function/process that the score may reflect, Gene Ontology and
gene set enrichment analyses were carried out to identify the
significantly differentially activated pathways. As shown in
Figures 5A–D, the tumor-related process was significantly
enriched. Consistently, KEGG pathways, including cell adhesion,
the chemokine signaling pathway, and cytokine–cytokine receptor
pathways, were significantly enriched in low-score samples
(Figure 5E). Collectively, these results suggest that they reflect

FIGURE 1
Performance of themodel in the training set, TCGA. The overall survival (A) and progression-free survival (B) in the high-score group are significantly
higher than the low-score samples. The high-score samples showed high expression of tumor suppressor genes and low expression of oncogenes (C).
The samples were ranked according to the score value (low to high), and survival information and gene expression are also visualized using a
heatmap. Survival ROC curve of clinical information and the score is visualized (D).
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various statuses of tumor samples, including immune-related
pathways.

Immune infiltration and the score

Immune escape is one of the hallmarks of cancer, and immune
infiltration is necessary for an immune response. Thus, the

relationship between infiltration and the score was assessed. To
comprehensively assess the immune infiltration status, algorithms
that calculate infiltration abundance, including CIBERSORT,
xCELL, TIMER, EPIC, and MCP-counter, were used for
immune infiltration estimation. As a result, important immune-
related cells, including CD4+, CD8+, Th+, and CD4+ memory cells;
M1/M2 macrophages; NK cells; and dendritic cells, were
differentially infiltrated between high-/low-score samples

FIGURE 2
Validation performance of the model. The score of each sample was calculated, and the samples in each dataset were divided as high-/low-score
groups, according to the median value of each dataset. The survival difference was analyzed among the groups in GSE39582 (A), GSE17537 (B),
GSE33113 (C), GSE37892 (D), GSE38832 (E), and GSE17536 (F). The upper panel showed the survival difference, and the bottompanel showed the detailed
score, survival, and gene expression information. Recurrence-free survival, metastasis-free survival, and disease-free survival. Rec and no-rec
represent recurrence and no-recurrence, respectively; met and no-met indicate metastasis and no-metastasis, respectively; disease-free and with
disease represent the disease-free survival and with the disease, respectively.
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(Figures 6A–E), suggesting that the score reflected the immune
status of CRC.

Putative drug sensitivity and the score

Since the score reflected multiple statuses of CRC, we estimate
whether the score could be an indicator for drug resistance/
sensitivity. The IC50 value of each sample was calculated
according to the “oncopredict” algorithm, and the relationship
between the score and the putative IC50 value was evaluated. As
shown in Figure 7A, the predicted IC50 values in high-score samples
were significantly lower than those in low-score samples, for a lot of
drugs, including docetaxel and paclitaxel, while other drug levels
were significantly higher in high-score samples, including topotecan
and dasatinib (Figure 7B), which may suggest that the score may be
used for making a therapy decision, after careful validation.

Nomogram for the score and clinical
information

To facilitate the clinical utilization of the score, a nomogram
simultaneously considering the score, gender, age, and stage was
plotted. As shown in Figure 8A, clinical information contributed to the
3-year survival rate, and the score is among themost important indicators
for the 3-year survival rate. A calibration curve is also plotted (Figure 8B).

Candidate genes UNG, SLC11A1, and LTB4R
promote proliferation

To validate the function of the candidate genes, the expression of
UNG, SLC11A1, and LTB4R in cancer and normal tissues was
evaluated using qRT-PCR. Despite that, UNG and SLC11A1 were
not differentially expressed, while LTB4R was (Figure 9A). After the
knockdown of UNG, SLC11A1, and LTB4R in the RKO cell line, the
proliferation of the comparison was seen using CCK8 and clone
formation assay. As expected, the knockdown of UNG, SLC11A1,
and LTB4R significantly decreased the clone formation rate
(Figure 9B; p <0.05). Consistently, the knockdown of these genes
also causes a decreased proliferation rate, according to CCK8 assay
(Figure 9C; p <0.05). Collectively, these results suggest that the
candidate genes impact the proliferation of the NSCLC cell line.

Candidate genes UNG, SLC11A1, and LTB4R
promote migration and invasion

Furthermore, migration and invasion assays were performed to
evaluate the impact of UNG, SLC11A1, and LTB4R. The migration
and invasion rate was quantified using the transwell assay. As shown
in Figures 10A,B, the migration rate of RKO cell lines significantly
decreased after the knockdown of these genes, compared to the
control groups (p <0.05), indicating that these genes were involved
in NSCLC development.

FIGURE 3
Clinical associations with the score. Association between the score and clinical categories (A), PD-1/PD-L1 gene expression (B), and MSI/TMB (C) were
analyzed. Coxmultivariate regression showed that the score is an independent and significant indicator, for both overall survival and progression-free survival (D).
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Materials and methods

Candidate gene identification and model
development

The gene expression profile of TCGA, GSE39582 (Marisa
et al., 2013), GSE17536, GSE17537 (Smith et al., 2010), GSE33113
(Kemper et al., 2012), GSE38832 (Tripathi et al., 2014), and
GSE37892 (Laibe et al., 2012) was retrieved from cBioPortal
(https://www.cbioportal.org/) and the Gene Expression
Omnibus (GEO), respectively, according to the accession
number. The TCGA mRNA expression value was converted
into log2-transformed RSEM + 1 while the GEO datasets
demonstrated the log2-transformed signal intensity. The
corresponding clinical information, especially survival
information, was downloaded along with the gene expression
profile. After normalization, the correlation between the gene
expression value and the overall survival was analyzed. After
dividing it into high-expression and low-expression groups
according to the median expression value of each gene, the
survival difference between groups was evaluated, and the
genes significantly associated with survival were retained as
list1. The same analyses were performed on the
GSE39582 dataset, and the genes were retained as list2. To
ensure that the genes function with the immune response, the
“GOBP_IMMUNE_RESPONSE” gene list from MSigDB
(Liberzon et al., 2015) (https://www.gsea-msigdb.org/gsea/

msigdb) was retrieved as list3. The intersected genes were
used as candidate genes for model development. In other
words, the candidate genes fulfill the following criteria: listed
in the “GOBP_IMMUNE_RESPONSE” item and significantly
associated survival in both TCGA and GSE39582 datasets.

After the aforementioned candidate gene identification, 14 genes
were retained. To search the global optimum solution, all possible
combinations of these 14 genes were listed. A Cox multivariate
regression model was developed according to the selected genes in
TCGA dataset. The model was a linear model described as follows:

∑
n

i�1
bixi,

where xi refers to the gene expression value of gene i, while bi
indicates the coefficient calculated according to the gene expression
value and survival information. The best combination in both
TCGA and GSE39586 datasets was used as the global optimized
panel.

Model performance evaluation in the
training and test datasets

In each dataset, the score was calculated according to the same
coefficients (bi), and the samples in each dataset were divided into low-/
high-score samples, according to the median value of the corresponding
dataset. The survival difference (including overall, recurrence-free,

FIGURE 4
Genomic signature of high-score samples. The high-score samples have a significantly higher APCmutation rate and a lower MUC5Bmutation rate
(A), compared to the low-score samples. Copy number variation signaturewas observed (B); the green and red column bars indicate low- and high-score
samples, respectively, and specific DNA methylation distributed across the genome (C).
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disease-free, metastasis-free, and progression-free survival) was analyzed
between high-/low-score samples, in the training and testing datasets.
The detailed survival and gene expression values were plotted using the R
package “pheatmap”. The detailed information on each dataset (gene
expression values, risk score values, and survival information) is
provided in Supplementary Table S1.

Genetic association

Gene mutation, copy number variation, and DNA methylation
status in TCGA dataset were retrieved from cBioPortal.
Differentially mutated genes between groups were evaluated
using Fisher’s exact test (only non-synonymous mutation used),

FIGURE 5
Gene Ontology and GSEA. Differential genes between low-/high-score samples were identified, and Gene Ontology analyses were carried out;
cancer-related biological process (BP), (A), molecular function (MF), (B) and cellular component (CC), and (C) were enriched. Gene set enrichment
analyses showed that cancer-related pathways (D) were enriched, including immune-related pathways (E).
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and significantly different (p <0.05) mutations were identified. The
mutation status of each sample was visualized using the R package
“GenVisR” (Skidmore et al., 2016). The differential CNV and DNA
methylation sites were identified using the Wilcoxon test and R
package “ChAMP” (Tian et al., 2017), respectively.

GO and GSEA analyses

Differentially expressed genes were identified according to the
samples in low-/high-score sample groups, using the R package
“limma” (Ritchie et al., 2015). The differentially expressed genes
were identified as an adjusted p-value <0.01 and |log2 fold

change| >0.5. Afterward, enriched pathways were identified using
the R package clusterProfiler:enrichGO (Yu et al., 2012). Ontology
categories were set as “BP,” “MF,” and “CC,” respectively. For GSEA,
clusterProfiler::GSEA was used according to the fold change of the
genes between high-/low-score samples. The enriched pathways or
sets were visualized using the R package “enrichplot”.

Immune cell infiltration, drug sensitivity
prediction, and nomogram

TCGA dataset was used for cell infiltration analyses. After
transforming the gene expression values into TPM values,

FIGURE 6
Infiltration and score. The score is significantly associatedwith immune cell infiltration, regardless of the calculation algorithm, including CIBERSORT
(A), xCELL (B), TIMER (C), EPIC (D), and MCP-counter (E).
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immune cell infiltration was evaluated with TIMER2 (Li et al.,
2020) (http://timer.cistrome.org/), simultaneously using
algorithms such as CIBERSORT (Newman et al., 2015),
xCELL (Aran et al., 2017), EPIC, and MCP-counter (Becht
et al., 2016). The infiltration difference between low-/high-

score samples of each immune cell type was analyzed and
visualized using the R package “vioplot”.

For drug sensitivity prediction, the R package “oncopredict”
(Maeser et al., 2021) was used and the required dataset was retrieved.
The IC50 values of all samples were calculated, and the drugs with

FIGURE 7
Drug sensitivity difference between low-/high-score samples. The drugs with significantly different IC50 values were identified (A). Detailed
statistical information on some drugs is also shown (B).
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significantly different IC50 values between low-/high-score samples
were identified and visualized. The nomogram was calculated and
visualized using the R package “rms,” and the calibration curve was
also plotted.

qRT-PCR, siRNA, and clone formation

The RNA of each sample was extracted using the TRIzol
(15596026CN) reagent, according to the manufacturer-provided

FIGURE 8
Nomogram and calibration. The nomogram considering clinical information and the score value was calculated and visualized (A), and the
calibration curve was also plotted (B).
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protocol. The primer is listed in Supplementary Table S2. The
siRNA sequences used in this study are listed in Supplementary
Table S3. The cells in each group in the logarithmic growth phase
were digested using trypsin, suspended in the complete medium,

and then counted using a cell counter. Inoculates of 800–1,500 cells
per well (depending on the cell growth) were introduced in each
group of a 6-well culture plate, with three replicates per group. The
culture was placed in a CO2 incubator for 14 days or until the cell

FIGURE 9
UNG, SLC11A1, and LTB4R promote proliferation in the RKO cell line. LTB4R was differentially expressed in 20 paired normal and cancerous tissues,
while UNG and SLC11A1 were not (A). Clone formation assay revealed that after the knockdown of UNG, SLC11A1, and LTB4R, clone formation
significantly decreased (B); the bottom panel is the bar plot showing the number of clones. The profanation of siUNG, siSLC11A1, and siLTB4R group was
also significantly decreased (C). *p <0.05, **p <0.01, and ***p <0.001.
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number in most single clones exceeded 50. The medium was
replaced every 3 days, photographed using a fluorescence
microscope, and washed once with PBS. Each well was fixed with
1 mL of 4% paraformaldehyde for 30–60 min, washed once with
PBS, and then stained with a clean, impurity-free crystal violet
staining solution (500 μL per well) for 10–20 min; then, it was
washed several times with ddH2O, allowed to air dry,
photographed, and the clone number was counted.

CCK8 and transwell assay

Digest logarithmic growth phase cells using trypsin, suspend
in a complete medium, and count the cells. Evaluate the cell
density for each well based on the growth rate, and inoculate

100 μl of cells per well, with 3–5 replicate wells per group. After
preparing the plates, allow the cells to settle completely, and
observe the cell density of each group under a microscope before
incubation. After 48 h, add 10 μL of the CCK8 reagent to each
well, and do not change the medium until the end of the culture
period. Incubate the cells for 1–3 h, shake the 96-well plate for
2–5 min using a shaker, and measure the OD value at 450 nm
using an ELISA reader.

Add 100 µL of the serum-free culture medium to each 24-well
plate chambers and place it in a cell culture incubator for 1–2 h.
Digest the logarithmic cells with trypsin, suspend them in a low-
serum culture medium, and count; carefully remove the culture
medium from the chambers and add 600 µL of the culture medium
containing 30% FBS to the lower chamber. Dilute the cells with the
serum-free culture medium at a certain ratio, add 100 µL of the cell

FIGURE 10
Migration and invasion significantly decreased after UNG, SLC11A1, and LTB4R knockdown. The migration (A) and invasion (B) rate was significantly
decreased using the transwell assay.
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suspension (containing 100,000–200,000 cells) to each chamber,
transfer the chambers to the lower chamber containing the culture
medium with 30% FBS using forceps, and incubate it in a tissue
culture incubator for 4–24 h. Remove the culture medium from the
upper chamber and fix the cells with 4% paraformaldehyde (FPA)
fixative at room temperature for 10–30 min. Remove the 4% FPA
fixative and wash the cells in the upper chamber with 1 × PBS
1–2 times. Immerse the chambers in a staining solution for
5–10 min, and transfer the cells to the underside of a membrane
for staining. Invert the chambers onto an absorbent paper to remove
the culture medium, and gently remove the non-transferred cells
with a cotton swab, wash the upper chamber several times with
ddH2O, air dry, and photograph under a microscope.

Discussion

The clinical demand for a prognosis for colorectal carcinoma
promotes studies regarding cancer biomarkers. In the last few
decades, single biomarkers have been widely reported and some
biomarkers have been used in clinical practice, including TMB and
MSI (Messersmith, 2019; Luo et al., 2021; Ashktorab and Brim,
2022). However, due to genetic heterogeneity and complex
microenviromental interactions, the performance of single
biomarkers is disappointing. Recently, multiple biomarker-based
models, especially those based on transcriptome, have been
emphasized, due to its robustness (Chen et al., 2019; Ecker
et al., 2021; Lin et al., 2021). However, these studies have some
limitations, among which the most important is the lack of totally
independent or insufficient validation sets. For example, Hang
et al. (Zheng et al., 2022) developed a CRC model using stem cell-
related genes and assayed the performance of the model, but no
totally independent dataset was used for validation. It is similar in
another study using immune cycle genes (Hou et al., 2022). Dagui
et al. used a validation set, but only one was used (Lin et al., 2021).
The highlight of multiple gene-based models is the robustness, but
the aforementioned study ignored it, which may result in overfit.
Our study used 1,325 samples across seven datasets from different
countries and centers, generated using different platforms
(including RNA-seq and microarray), indicating the robustness
of the model.

Among the genes in the model, it was noticed that PAK1 was
reported to induce liver metastasis using ERK (Li et al., 2010) and
was required for cell proliferation (Qing et al., 2012). LTB4R was
associated with proliferation by inducing apoptosis (Ihara et al.,
2007). ICOS, SPFQ, and FSTL1 were also reported to be
correlated with proliferation, cell adhesion, and prognosis
(Zhang et al., 2016; Gu et al., 2018; Meng et al., 2022), while
the studies were focused on gene polymorphism of LEP and
CASP6 (Choi et al., 2012; Liu et al., 2014). Notably, SLC11A1 was
reported as a potential biomarker for prognosis and immune
therapy efficiency (Ma et al., 2022). These reports suggest that the
model based on these genes may reflect various statuses of
colorectal cancer. It is notable that the genes were immune-
related genes, according to MSigDB, and SLC11A1 was reported
to be associated with the microenvironment (Ma et al., 2022) in
CRC and a similar result was found for CASP6 in gliomas (Guo
et al., 2022). The other genes were also reported to reflect or

influence the immune status of various types of cancers (Boggio
et al., 2022). Our results indicate that a high proportion of
immune cells were significantly associated with the model,
which is consistent with the previous studies.

There are several limitations to this study. First, despite the fact
that the samples were from different centers, they are still
retrospective samples. Important clinical indicators are not
available. Thus, a double-blind study is still necessary before
clinical utilization. Second, pooled data (to generate the best
cutoff value) are needed for each platform. The datasets used
different platforms, and this study used a median value as the
cutoff, but in clinical practice, the optimized cutoff value is
necessary. In addition, drug sensitivity and immune infiltration
are calculated using algorithms based on the transcriptome,
which may have brought a bias. Lastly, detailed functions of
genes of the model need further investigation.
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