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Introduction: The severe acute respiratory syndrome coronavirus 2 (SARS-COV-
2) has posed a significant challenge to individuals’ health. Increasing evidence
shows that patients with metabolic unhealthy obesity (MUO) and COVID-19 have
severer complications and higher mortality rate. However, the molecular
mechanisms underlying the association between MUO and COVID-19 are
poorly understood.

Methods: We sought to reveal the relationship between MUO and COVID-19
using bioinformatics and systems biology analysis approaches. Here, two datasets
(GSE196822 and GSE152991) were employed to extract differentially expressed
genes (DEGs) to identify common hub genes, shared pathways, transcriptional
regulatory networks, gene-disease relationship and candidate drugs.

Results: Based on the identified 65 common DEGs, the complement-related
pathways and neutrophil degranulation-related functions are found to be mainly
affected. The hub genes, which included SPI1, CD163, C1QB, SIGLEC1, C1QA,
ITGAM, CD14, FCGR1A, VSIG4 and C1QC, were identified. From the interaction
network analysis, 65 transcription factors (TFs) were found to be the regulatory
signals. Some infections, inflammation and liver diseases were found to be
most coordinated with the hub genes. Importantly, Paricalcitol, 3,3′,4,4′,5-
Pentachlorobiphenyl, PD 98059, Medroxyprogesterone acetate, Dexamethasone
and TretinoinHL60UPhave shownpossibility as therapeutic agents against COVID-
19 and MUO.

Conclusion: This study provides new clues and references to treat both COVID-19
and MUO.
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1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
COV-2) is a highly contagious coronavirus responsible for the
life-threatening COVID-19. By December 2022, more than
650 million people were infected by SARS-COV-2, and it also
caused more than 6 million deaths in more than 300 countries
and regions around the world (WHO’s Monthly Operational
Update on Health Emergencies, 2022). The risk of severe
symptoms and complications, mortality and hospitalization in
COVID-19 patients have been recently reported to be
significantly increased due to some unhealthy pre-existing
conditions, including hypertension, type 2 diabetes, and
obesity (Fang et al., 2020). Compared with metabolic healthy
patients, patients with metabolic disturbances also were observed
to have a much poorer prognosis (Hu and Wang, 2021).
Additionally, it has been reported that obesity can severely
hamper the immune cells responsiveness to weaken the long-
term protection against SARS-COV-2 (Stefan et al., 2021).
Metabolic disturbances are a common complication of obesity,
and only 15%–20% of obese patients are not affected by them
(Soverini et al., 2010). Metabolic disturbances have been proven
to be a significant aggravating factor in many obesity-related
diseases, so the underlying mechanisms linking COVID-19 and
metabolic unhealthy obesity (MUO) are need to be better
clarified.

Angiotensin Converting Enzyme 2 (ACE2), whose gene
expression is found in many human tissues, has been known to
play a vital role as a receptor for SARS-CoV-2 entry and infection in
target cells (Yan et al., 2020). MUO is a systemic disease, which has
been discovered to be associated with the upregulated
ACE2 expression in tissues in the whole human body (Zheng
et al., 2020). As reviewed by Goossens et al., with the increased
number of adipose tissues, the ACE2 expression is upregulated,
making the concentration of SARS-COV-2 in adipocytes
significantly higher than in other tissue cells, becoming a viral
reservoir for SARS-CoV-2 (Goossens et al., 2020). Additionally,
the contribution of MUO-related upregulated Transmembrane
Serine Protease 2 (TMPRSS2) expression, hyperglycemia, and
weakened immune surveillance to the poorer prognosis of
COVID-19 in the corresponding patient population are also
being in-depth investigated. This serves to demonstrate the
potential importance of interaction between MUO and COVID-19.

In this study, we compared transcriptional profiles of COVID-
19 with MUO patients. Two datasets were collected from the Gene
Expression Omnibus (GEO) database, where GSE196822 (Banerjee
et al., 2022) for COVID-19 and GSE152991 (Cifarelli et al., 2020) for
MUO. Shared Differentially Expressed Genes (DEGs) were
identified through cross-analysis of the two datasets, and the
result was used to discover the relevant signaling pathways as
well as the genes that are potential therapeutic targets for
patients with MUO and COVID-19. Also, efforts to reveal the

FIGURE 1
Overall flowchart of this research. Several analyses were conducted based on the gene expression analysis of datasets (GSE152991 and GSE196822)
acquired from the GEO database.
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molecular mechanisms linking MUO and COVID-19 were made,
including predictive transcription factor -gene interaction, protein-
drug interaction, and gene-disease network analysis based on the
identified DEGs. We further determined the association with other
diseases that might provide further insights for the study about
complications of and treatments for COVID-19. Figure 1
demonstrates the workflow of the entire system biology and
bioinformatics analysis. We hope that the findings of this study
will provide preliminary information that may help to understand
the interaction between COVID-19 and MUO and help in selecting
proper drugs and inventing future treatments that can combat
COVID-19 and MUO.

2 Methods

2.1 Gene expression datasets

In this study, the RNA-seq data were obtained from the GEO
database (https://www.ncbi.nlm.nih. gov/geo/) of the National
Center for Biotechnology Information (NCBI). The GEO
accession ID of the COVID-19 dataset is GSE196822, which is
transcriptional profiling of COVID-19 whole blood samples through
high throughput sequencing Illumina HiSeq 4,000 (Homo sapiens)
for RNA sequence extraction. The COVID-19 dataset contains
thirty-four infection samples and nine healthy controls
(Supplementary Table S1). Besides, the GSE152991 dataset
consists of twenty metabolic unhealthy obese subcutaneous
adipose samples and eleven healthy controls. The adipose
samples were sequenced by a high-throughput sequencing system
called Illumina NovaSeq 6,000 (Homo sapiens).

2.2 Identification of DEGs and common
DEGs among COVID-19 and MUO

A gene is characterized as DEG when tested at the
transcriptional level under different conditions, and there were
significant differences. The purpose of this analysis is to obtain
DEGs for the datasets. The DEGs from GSE196822 were identified
using DESeq2 (Love et al., 2014) of R programming language. Cutoff
criteria (False Discovery Rate (FDR) < 0.05 and |log2 Fold Change| ≥
1) was applied to obtain significant DEGs from both datasets.
Intersection analysis was performed using an online analysis tool
called Jvenn (http://bioinfo.genotoul.fr/jvenn.) to acquire the
common DEGs of GSE196822 and GSE152991.

2.3 Gene ontology and pathway enrichment
analysis

EnrichR (https://maayanlab.cloud/Enrichr/) was utilized to
conduct gene ontology (biological process, cellular component
and molecular function) and pathway enrichment analysis of
common DEGs. Pathway enrichment analysis concluding Kyoto
Encyclopedia of Genes and Genomes (KEGG), WikiPathways,
Reactome and BioCarta were performed to identify the
overlapped pathways among MUO and COVID-19. The adjusted

p-value <0.05 was taken as a metric for quantifying the top-listed
pathways and gene ontological processes.

2.4 Protein–protein interactions analysis

The common DEGs were used to construct protein subnetworks
and further reveal the protein interactions between MUO and
COVID-19. STRING—a protein interactome database is used in
this analysis. The protein–protein interaction (PPI) network was
constructed and visually represented by Cytoscape (v3.9.1).

2.5 Hub gene extraction

Nodes, edges, and their connections establish the PPI network.
The nodes are the essential component of the network, and the most
involved ones are regarded as the hub genes. Cytohubba (http://
apps.cytoscape.org/apps/cytohubba) is a novel Cytoscape—plugin
for ranking and extracting potential or targeted elements of a
biological network based on various network features. The top
10 genes were identified depending on the degree algorithm, a
commonly used centrality criterion. Among the 11 methods
provided by Cytohubba that can be used to investigate networks
from viewpoints, Maximal Clique Centrality (MCC) (Chin et al.,
2014) has the best accuracy and effectiveness, which is used to
identify the top 10 hub genes from the PPI network.

2.6 Recognition of transcription factors
engaged with common DEGs

The transcription rate of a gene is closely related to the
regulation of the TFs that attach to it. Therefore, TFs are very
important for exploring gene activity at the molecular level. The
topologically credible TFs are located using the NetworkAnalyst
platform (3.0) (http://www.networkanalyst.ca) from the JASPAR
database (http://jaspar.genereg.net/).

2.7 Suggested drug analysis

In this analysis, the protein–drug interactions have been
predicted using the hub genes that COVID-19 shared with MUO
based on the DSigDB database via Enricher. DSigDB database is a
new gene set resource that related drugs/compounds and their target
genes for gene set enrichment analysis (Yoo et al., 2015). DrugBank
(www.drugbank.ca) Database and Comparative Toxicogenomics
Database (http://ctdbase.org/) are used to screen out the drugs
that have not been approved by the Food and Drug
Administration (FDA).

2.8 Gene–disease association analysis

DisGeNET is a comprehensive database of gene–disease
associations that synchronizes the biomedical characteristics of
many diseases to determine the relationship between genes and
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specific diseases. It emphasizes the critical role of key genes in the
occurrence and development of diseases. The gene-disease
relationship via NetworkAnalyst was examined to reveal
correlated diseases and their complications with hub genes based
on the DiGeNET database.

3 Results

3.1 Identification of DEGs and common
DEGs among MUO and COVID-19

To study the relationship and interaction between MUO and
COVID-19, an analysis of the human transcriptomic datasets
from the GEO database was conducted to identify and classify the
common differentially expressed genes of MUO and COVID-19.
The expression abundance information of transcriptome was
shown in Supplementary Table S2 and Supplementary Table
S3. Firstly, 1,668 DEGs were identified for COVID-19,
including 839 upregulated and 829 downregulated DEGs
(Figure 2A and Supplementary Table S4). In the same way,
441 upregulated and 108 downregulated DEGs for MUO were
selected after completing the different statistical analysis
processes (Figure 2A and Supplementary Table S5). Secondly,
65 common DEGs from MUO and COVID-19 datasets were
identified after performing the intersection analysis (Figure 2B).
These results suggested there are some similarities between MUO
and COVID-19.

3.2 Gene ontology and pathway enrichment
analysis

To further investigate the functions and components of
common DEGs, the gene ontology analysis has been performed.
The top 10 terms in the biological process, molecular function and
cellular component categories are summarized in Table 1. Figure 3
shows that the most significantly ontology terms including
neutrophil-related terms, complement component C3b binding
and granule-related terms.

In addition, pathways analysis was performed to reveal the
interaction between MUO and COVID-19 through basic
molecular or biological processes. WikiPathways, BioCarta,
Reactome and KEGG databases were used for pathway analysis.
The top 10 enriched pathways of the shared DEGs obtained from the
selected database are enlisted in Table 2. For the result demonstrated
in Figure 4, the top significant pathways were microglia pathogen
phagocytosis (WikiPathways), inhibition of matrix
metalloproteinases (BioCarta), immune system (Reactome),
complement and coagulation cascades (KEGG) and osteoclast
differentiation (KEGG).

3.3 PPI network analysis and classification of
hub genes

PPI is an important part of the cellular biochemical response
network and can be used to map the functional and structural
knowledge of cellular protein networks (De Las Rivas and
Fontanillo, 2010). Key proteins that affect how cells and systems
function biologically have been discovered due to the assessment
and analysis of the PPI networks (Song et al., 2023). To study the
mechanisms of the interactions and connectivity between DEGs, the
PPI network was constructed. This PPI network consists of 65 nodes
and 167 edges and all the interconnected nodes are depicted in
Figure 5. The most interconnected nodes in the PPI network are
acknowledged as hub genes. The top 10 identified hub genes are,
namely, SPI1, CD163, C1QB, SIGLEC1, C1QA, ITGAM, CD14,
FCGR1A, VSIG4 and C1QC, which is depicted in Figure 6.
Supplementary Table S6 shows the basic information of the hub
genes.

3.4 Identification of TF–gene interactions
for the common genes

Transcription factors are the molecules that control the activity
of genes by determining whether the genes’ DNA is transcribed into
RNA. Together, they make up a complex transcriptional regulatory
network (Jiang et al., 2016). To understand the interaction between

FIGURE 2
The differential expression levels of COVID-19 and MUO. (A) Number of DEGs at transcriptional levels. The red and blue bars refer to the number of
upregulated and downregulated genes, respectively. (B) Venn diagram showing common DEGs of MUO and COVID-19.
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TABLE 1 Ontological analysis of common DEGs between MUO and COVID-19.

Category GO ID Term Adjusted
p-values

Genes

GO Biological
Process

GO:
0043312

neutrophil degranulation 7.43E-10 ITGAM/CR1/NFAM1/STXBP2/HSPA6/SLC2A5/LILRB3/MMP9/
CHIT1/HK3/TRPM2/DOK3/VNN1/ALOX5/CD14/TLR2

GO:
0002283

neutrophil activation involved in immune
response

7.43E-10 ITGAM/CR1/NFAM1/STXBP2/HSPA6/SLC2A5/LILRB3/MMP9/
CHIT1/HK3/TRPM2/DOK3/VNN1/ALOX5/CD14/TLR2

GO:
0002446

neutrophil mediated immunity 7.43E-10 ITGAM/CR1/NFAM1/STXBP2/HSPA6/SLC2A5/LILRB3/MMP9/
CHIT1/HK3/TRPM2/DOK3/VNN1/ALOX5/CD14/TLR2

GO:
0098883

synapse pruning 2.64E-06 C1QB/C1QA/ITGAM/C1QC

GO:
0030449

regulation of complement activation 9.05E-05 C1QB/C1QA/CR1/C2/C1QC

GO:
0150146

cell junction disassembly 9.05E-05 C1QB/C1QA/C1QC

GO:
0002697

regulation of immune effector process 9.05E-05 C1QB/C1QA/CR1/C2/C1QC

GO:
0002920

regulation of humoral immune response 9.05E-05 C1QB/C1QA/CR1/C2/C1QC

GO:
0001819

positive regulation of cytokine production 1.21E-04 CD2/CCDC88B/ITK/NFAM1/SERPINE1/SLAMF6/CD14/TLR2/
LILRA5

GO:
0006958

complement activation, classical pathway 2.27E-04 C1QB/C1QA/C1QC

GO Molecular
Function

GO:
0001851

complement component C3b binding 4.47E-05 CR1/ITGAM/VSIG4

GO:
0001540

amyloid-beta binding 9.14E-03 C1QA/ITGAM/LILRB3/TLR2

GO:
0016176

superoxide-generating NADPH oxidase
activator activity

1.31E-02 NCF1/NCF4

GO:
0016175

superoxide-generating NAD(P)H oxidase
activity

1.92E-02 NCF1/NCF4

GO:
0050664

oxidoreductase activity, acting on NAD(P)H,
oxygen as acceptor

2.91E-02 NCF1/NCF4

GO:
0002020

protease binding 9.65E-02 ADAMTS4/SERPINE1/TIMP1

GO:
0016462

pyrophosphatase activity 9.65E-02 TRPM2/ALPL

GO:
0004645

1,4-alpha-oligoglucan phosphorylase activity 9.65E-02 PYGM

GO:
0047631

ADP-ribose diphosphatase activity 9.65E-02 TRPM2

GO:
0016019

peptidoglycan immune receptor activity 9.65E-02 CD14

GO Cellular
Component

GO:
0030667

secretory granule membrane 1.46E-06 TRPM2/ITGAM/CR1/DOK3/VNN1/NFAM1/CD14/SLC2A5/
LILRB3/TLR2

GO:
0070820

tertiary granule 4.09E-05 CHIT1/TRPM2/ITGAM/CR1/DOK3/STXBP2/MMP9

GO:
0101002

ficolin-1-rich granule 5.89E-05 HK3/TRPM2/CR1/DOK3/ALOX5/HSPA6/MMP9

GO:
0045121

membrane raft 2.97E-04 ITGAM/CR1/NFAM1/CD14/MS4A4A/TLR2

GO:
0030659

cytoplasmic vesicle membrane 4.95E-04 TRPM2/CD163/CR1/DOK3/NCF4/CD14/LILRB3/TLR2

(Continued on following page)
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TABLE 1 (Continued) Ontological analysis of common DEGs between MUO and COVID-19.

Category GO ID Term Adjusted
p-values

Genes

GO:
0032010

phagolysosome 1.38E-03 NCF1/NCF4

GO:
0044853

plasma membrane raft 1.68E-03 ITGAM/CR1/KCNMA1/MS4A4A

GO:
0042581

specific granule 1.73E-03 CHIT1/TRPM2/ITGAM/STXBP2/SLC2A5

GO:
0014731

spectrin-associated cytoskeleton 2.30E-03 SPTA1/SPTB

GO:
0031235

intrinsic component of the cytoplasmic side
of the plasma membrane

2.30E-03 SPTA1/SPTB

FIGURE 3
The bar graphs of gene ontology enrichment analysis of shared DEGs among MUO and COVID-19. (A) Biological Process, (B) Molecular Function,
and (C) Cellular Component. Bar chart color depth represents significance. The lighter the color, the more significant it is.
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TABLE 2 Pathway enrichment analysis of common DEGs between MUO and COVID-19.

Category Pathways Adjusted
p-values

Genes

WikiPathways Microglia Pathogen Phagocytosis Pathway 6.11E-09 C1QB/C1QA/ITGAM/NCF1/NCF4/FCGR1A/C1QC

Complement and Coagulation Cascades 2.14E-06 C1QB/C1QA/CR1/SERPINE1/C2/C1QC

Complement Activation 3.08E-05 C1QB/C1QA/C2/C1QC

IL1 and megakaryocytes in obesity 3.34E-05 TIMP1/MMP9/PLA2G7/TLR2

Oxidative Damage 2.21E-04 C1QB/C1QA/C2/C1QC

TYROBP causal network in microglia 9.99E-04 CD84/ITGAM/CXCL16/C1QC

Allograft Rejection 3.74E-03 C1QB/C1QA/C2/C1QC

IL-18 signaling pathway 3.74E-03 NCF1/TIMP1/MMP9/ACACB/PLA2G7/CXCL16

Complement system 3.74E-03 CR1/VSIG4/TLR2/C2

ApoE and miR-146 in inflammation and
atherosclerosis

3.74E-03 SPI1/TLR2

BioCarta Classical Complement Pathway 1.35E-07 C1QB/C1QA/C2/C1QC

Inhibition of Matrix Metalloproteinases 2.88E-04 TIMP1/MMP9

Eicosanoid Metabolism 2.52E-03 ALOX5/ALOX5AP

Toll-Like Receptor Pathway 5.77E-03 CD14/TLR2

Regulators of Bone Mineralization 3.52E-02 ALPL

Lectin Induced Complement Pathway 4.14E-02 C2

Platelet Amyloid Precursor Protein Pathway 4.46E-02 SERPINE1

Fibrinolysis Pathway 4.77E-02 SERPINE1

The Co-Stimulatory Signal During T-cell
Activation

6.31E-02 ITK

Ras-Independent pathway in NK cell-mediated
cytotoxicity

6.91E-02 CD2

Reactome Immune System 6.39E-11 C1QB/LILRA6/ITK/C1QA/IL1RN/ITGAM/NCF1/NCF4/STXBP2/SLC2A5/
LILRA5/TRPM2/ALOX5/SLAMF6/TIMP1/FCGR1A/CR1/BCL11B/NFAM1/
HSPA6/MMP9/LILRB5/CHIT1/DOK3/VNN1/SIGLEC1/IL7R/TLR2/C1QC

Innate Immune System 5.71E-09 C1QB/LILRA6/ITK/C1QA/ITGAM/CR1/NCF1/NFAM1/NCF4/HSPA6/SLC2A5/
MMP9/CHIT1/TRPM2/DOK3/VNN1/ALOX5/FCGR1A/TLR2/C1QC

Neutrophil Degranulation 2.27E-07 LILRA6/ITGAM/CR1/NFAM1/HSPA6/SLC2A5/MMP9/CHIT1/TRPM2/DOK3/
VNN1/ALOX5/TLR2

Classical Antibody-Mediated Complement
Activation

3.82E-05 C1QB/C1QA/C1QC

Immunoregulatory Interactions Between A
Lymphoid And A non-Lymphoid Cell

1.38E-04 LILRA6/SLAMF6/SIGLEC1/FCGR1A/LILRB5/LILRA5

Creation Of C4 And C2 Activators 4.55E-04 C1QB/C1QA/C1QC

Regulation Of Complement Cascade 4.60E-04 C1QB/C1QA/CR1/C1QC

Complement Cascade 8.99E-04 C1QB/C1QA/CR1/C1QC

Initial Triggering of Complement 1.09E-03 C1QB/C1QA/C1QC

Adaptive Immune System 2.79E-03 LILRA6/ITK/NCF1/NCF4/SLAMF6/SIGLEC1/FCGR1A/LILRB5/TLR2/LILRA5

KEGG Complement and coagulation cascades 3.15E-10 C1QB/C1QA/ITGAM/CR1/SERPINE1/VSIG4/C2/C1QC

Osteoclast differentiation 7.89E-09 LILRA6/SPI1/NCF1/NCF4/FCGR1A/LILRB3/LILRB5/LILRA5

Pertussis 1.70E-07 C1QB/C1QA/ITGAM/CD14/C2/C1QC

(Continued on following page)
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COVID-19 and MUO at the transcriptional level and further
investigate the transcription factors regulatory network, the TFs
were decoded through a network-based approach. The interaction
network between common DEGs and TFs is depicted in Figure 7.
From the interaction network analysis, 65 TFs were found to be the
regulatory signals that regulate common DEGs, implying that they
interact. Supplementary Table S7 shows the basic information of the
top 10 transcription factors.

3.5 Identification of candidate drugs

To uncover the drug molecules for the therapy of MUO and
COVID-19, the DSigDB database was used to extract the possible
drug molecules based on the transcriptome signature. The top
6 potential effective drugs are screened based on their p-value of
common DEGs. These drugs are Paricalcitol, 3,3′,4,4′,5-
Pentachlorobiphenyl, PD 98059, Medroxyprogesterone acetate,
Dexamethasone, Tretinoin HL60 UP. Table 3 shows detailed
information concerning these drug compounds. The functions of
these drugs respectively are vitamin D analog, inhibiting or
antagonizing the action or biosynthesis of estrogenic compounds,
inhibiting MAP-kinase kinase activation, a progestin analogue, a
glucocorticoid, a vitamin A derivative. Among these drugs, in the
vast majority of them, their function is related to the inhibition of
inflammatory response. Given the fact that MUO patients have
poorer immunity surveillance and higher inflammatory receptor
expression the inflammation suppression is highlighted as the most
promising target for selecting and developing drugs.

3.6 Identification of gene-disease
associations

Different diseases can be associated are that they have one or
more overlapped disease-associated genes (Barabási et al., 2011).
Unveiling the correlation between different diseases is helpful to
expand the indications of existing drugs so as to reducemedical costs
from the perspective of health economics. In order to further
identify the diseases most related to MUO and COVID-19, the
gene-diseases relationship analysis was conducted to review the
disease that were most coordinated with our reported hub genes,
which is depicted in Figure 8. It showed that the Asthma, Non-

alcoholic Fatty Liver Disease, Liver Cirrhosis, Recurrent infections
and Glomerulonephritis were most coordinated with the hub genes
identified in this study. Some of these identified diseases involve
inflammation.

4 Discussion

MUO is a type of metabolic disorder regarded as the main
obesity-related complication. Patients with MUO usually preserve
insulin resistance, hypertension, chronic inflammation, and altered
liver inflammation, all of which are negative preconditions for the
prognosis of COVID-19 infection (Cifarelli et al., 2020). Here, MUO
and COVID-19 transcriptomics analysis revealed that 65 shared
DEGs show similar expression patterns in these two disorders.

GO pathway analysis was conducted to assess the biological
importance of the identified common DEGs in the pathogenesis of
MUO and COVID-19. Three types of GO analysis were conducted.
Neutrophil-related pathways are among the top GO terms for the
biological process, including neutrophil degranulation (GO:
0043312), neutrophil activation involved in immune response
(GO:0002446) and neutrophil mediated immunity (GO:0002283).
Increasing evidence suggests that inhibiting neutrophil
degranulation is beneficial for ameliorating inflammation-induced
myocyte damage, hepatic acute phase response and thrombosis
formation in severe COVID-19 patients (Gutmann et al., 2022).
In the molecular function, complement component C3b binding
(GO:0001851) and amyloid-beta binding (GO:0001540) are two top
GO pathways. Concerning COVID-19, C3b recruits immune cells to
the sites of infection and induces activation and further
differentiation towards an inflammatory phenotype with the
subsequent activation of lectin pathway (LP)-mediated C3b
deposition, which is critical for the induction and maintenance of
a severe inflammatory response to SARS-CoV-2 (Ali et al., 2021).
Moreover, a previous study found that the raised level of C3b in
serum is linked to obesity (Oberbach et al., 2011), which may
provide essential insight into the severe inflammation that is
occurred in patients with both MUO and COVID-19. In
addition, recent research has proved that SARS-CoV-2 infection
elevates neuroinflammation by inducing dysregulation of microglia
and astrocyte subpopulations, alters brain structure leads to
abnormal accumulation of amyloid-beta (Douaud et al., 2022).
Similarly, the pathway of activating and modifying

TABLE 2 (Continued) Pathway enrichment analysis of common DEGs between MUO and COVID-19.

Category Pathways Adjusted
p-values

Genes

Leishmaniasis 1.84E-07 ITGAM/CR1/NCF1/NCF4/FCGR1A/TLR2

Staphylococcus aureus infection 6.45E-07 C1QB/C1QA/ITGAM/FCGR1A/C2/C1QC

Hematopoietic cell lineage 8.23E-07 CD2/ITGAM/CR1/CD14/FCGR1A/IL7R

Legionellosis 1.14E-06 ITGAM/CR1/HSPA6/CD14/TLR2

Phagosome 9.96E-06 ITGAM/NCF1/NCF4/CD14/FCGR1A/TLR2

Chagas disease 2.03E-05 C1QB/C1QA/SERPINE1/TLR2/C1QC

Neutrophil extracellular trap formation 3.42E-05 ITGAM/CR1/NCF1/NCF4/FCGR1A/TLR2
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proinflammatory cells in the central neuron system (CNS) is also the
way that MUO increases the risk of Alzheimer’s disease (Guo et al.,
2021). It implicated the underlying synergistic effect of increasing
Alzheimer’s disease occurrence on COVID-19 patients with MUO.
The top GO terms based on the cellular component were secretory
granule membrane (GO:0030667) and tertiary granule (GO:
0070820). Besides the neutrophil degranulation, which has been
discussed above, the secretory granule is essential for SARS-COV-
2 exiting the cell. Intracellular transport of SARS-COV-2 within the
cells involves secretory granules, each containing a single virus

particle. These vesicles then fuse with the plasma membrane of
host cells, releasing the virus outside the cell and facilitating the
transmission of SARS-COV-2 (Eymieux et al., 2021). Yeming Yang
et al., revealed that metabolic unhealthy disorders could alter the
membrane phospholipid distribution in multiple physiological
systems (Yang et al., 2021), affecting secretory granule membrane
synthesis.

The top pathways terms from the four selected databases were
complement and coagulation cascades (KEGG), osteoclast
differentiation (KEGG), microglia pathogen phagocytosis

FIGURE 4
The bar graphs of pathway enrichment analysis of shared DEGs among MUO and COVID-19. (A)WikiPathways, (B) BioCarta, (C) Reactome, and (D)
KEGG. Bar chart color depth represents significance. The lighter the color, the more significant it is.
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(WikiPathways) and inhibition of Matrix Metalloproteinases (MM)
(BioCarta). Here, complement and coagulation cascade activation
are the common pathways in virus infection and metabolic
disorders. COVID-19 induces the pro-inflammatory state, which
stimulates uncontrolled activation of the complement system and
neutrophil extracellular traps (NETs)-formation, both of which
promote the coagulation cascade and induce a state of “thrombo-
inflammation” (Borczuk and Yantiss, 2022). In patients with MUO,
the dysregulation of secreted proteins and the secretory machinery
in the liver lead to the abnormally regulated complement and
coagulation cascades (Stocks et al., 2022), suggesting that this
cascade can be an important target for developing alternative
management measures for patients with both MUO and COVID-
19. In addition, recent studies about patients diagnosed with
COVID-19 have reported bone loss. Preliminary research showed
that it might be due to the SARS-COV-2-induced cytokine
dysregulation, as the circulating pro-inflammatory cytokines
upregulate osteoclast differentiation in bone tissues (Qiao et al.,
2022). Based on that, in MUO patients, the lipid-altering conditions
can be aggravated by the altered activity and differentiation of
osteoclast, which directly lead to more severe bone loss (Kim
et al., 2021). Aside from the skeletal system lesions, the
degenerative changes in CNS caused by the neuroinflammation
has been identified in SARS-CoV-2 infection patients. It has been

FIGURE 5
The PPI network of common DEGs between SARS-CoV-2 and
MUO. The circle nodes represent the common DEGs and the edges
represent the interaction between nodes. The PPI network has
65 nodes and 167 edges.

FIGURE 6
The hub genes were obtained from the PPI network. The colorful nodes indicate the highlighted top 10 hub genes and their interactions with other
molecules. This network consists of 33 nodes and 141 edges.
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believed by some researchers that its underlying pathological
pathways can be attributed to microglia pathogen phagocytosis,
which is also the key in the sortilin-mediated microglia phagocytes
production in obesity patients (Talbot et al., 2018; Ma et al., 2022).
After COVID-19 patients were discharged from the hospitals, the
pulmonary long-term consequences have been found to depend
mainly on the activity of matrix metalloproteinases. The deregulated
abnormal accumulation of extracellular matrix protein is crucial in
the presence of LONG-COVID symptoms, since that the enzymes
are deeply related to tissue repairment (Blanco et al., 2021). As for
the obesity patients, the inhibition of matrix metalloproteinases has
been proved to suppress glomerular inflammation and fibrogenesis
(Niu et al., 2016).

Based on the identified DEGs, a PPI network was constructed to
analyze interconnected proteins’ functional characteristics in-depth
and predict potential drug targets. The hub genes essential in the
pathogenesis of COVID-19 and MUO could be key drug targets and
biomarkers in them. The top 10 hub genes associated with COVID-
19 and MUO were retrieved through MCC method, including SPI1,
CD163, C1QB, SIGLEC1, C1QA, ITGAM, CD14, FCGR1A, VSIG4,
C1QC. Protein SPI1 is the essential transcription factor used to
predict dysregulated hematopoiesis in bone marrow in severe
COVID-19 patients. Recent evidence has proved the link between
hematopoietic dysfunction of bone marrow and COVID-19, which
is characterized by the accumulation of immature myeloid
progenitors and a dramatic reduction of lymphoid progenitors

(Wang et al., 2021). Obesity-related abnormal glucose
metabolism has also been reported to impair bone marrow
function, especially hematopoiesis (Liu et al., 2018). Therefore,
patients with MUO precondition are more likely to suffer from
severe SARS-COV-2 infection complication. Furthermore, the hub
genes C1QA, C1QB, C1QC, VSIG4 and CD14 have been regarded as
the main biomarkers for predicting macrophage and neutrophil
mediated inflammation, especially in the respiratory and
cardiovascular systems (Zhang and Zhang, 2022). They are also
the essential biomarkers that have been identified in the unfavorable
metabolic profile of MUO patients (Chang et al., 2019).
Additionally, during the recovery process of patients, especially
in the early recovery stage (ERS), the ratio of classical CD14+

monocytes was reported to be elevated, accompanied by high
expression of inflammatory genes, which prevented patients from
achieving a better prognosis. The hub protein ITGAM is an essential
molecular receptor that plays a vital role in many complements
mediated pathways that aggravate the COVID-19 symptoms, such
as the C5a-C5aR1 axis in the pathophysiology of acute respiratory
distress syndrome (Carvelli et al., 2020). It is also a critical marker
for inflammatory macrophages, whose infiltration can be elevated
due to obesity (Moreno-Indias et al., 2016). Bronchoalveolar lavage
fluid CD4+ T cells of patients with COVID-19 were TH1-skewed and
showed de-repression of genes downregulated by Vitamin D which
notably activates the recruiting of c-JUN and switches on the pro-
inflammatory programs of TH1 cells (Chauss et al., 2022). This

FIGURE 7
The interaction network between TFs and common DEGs. The circular and squared nodes represent the DEGs and the TFs, respectively.
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TABLE 3 The recommended drugs for COVID-19 and MUO.

Name p-value Chemical formula Structure

Paricalcitol CTD 00003033 3.30E-08 C27H44O3

3,3′,4,4′,5-Pentachlorobiphenyl CTD 00001077 7.37E-08 C12H5Cl5

PD 98059 CTD 00003206 1.72E-07 C16H13NO3

Medroxyprogesterone acetate CTD 00006623 4.53E-06 C24H34O4

Dexamethasone CTD 00005779 8.56E-06 C22H29FO5

(Continued on following page)
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c-JUN mediated cascade has also been discovered to be activated by
increased metabolic stress caused by obesity (Wang et al., 2020).
Based on this information, we can speculate that the induced raised
degree of macrophage infiltration and transcriptional factors
activation by glucose metabolism and oxidative phosphorylation
can lead to a poorer prognosis and higher mortality of COVID-19.

TFs mainly regulated transcription and expression of target
genes. This result revealed transcription factors regulator network
in the COVID-19 and MUO, including FOXC1, GATA2, YY1,
DHRS9, NFIC, CREB1, JUN, TMC5, HINFP, and FOXL1. In
previous bioinformatics analysis, several separate studies revealed
that some essential TFs, including FOXC1, GATA2, YY1 and
FOXL1, are associated with SARS-CoV-2 infection (Islam et al.,
2020; Auwul et al., 2021; Ahmed et al., 2022; Lu et al., 2022; Hossain
et al., 2023). GATA2 is associated with hematopoietic and immune
deficiency of COVID-19 (Collin et al., 2015). JUN is a subunit of
activating protein 1, an inducible transcription factor composed of
multiple protein complexes, that plays a role in several types of cell
differentiation and inflammation (Chang et al., 2013). Moreover,
CASP1 is the most involved pathway in cytokine storm, and YY1 is a
crucial TF in CASP1 expression (Zheng et al., 2022). In obese mouse
models, YY1 was markedly upregulated (Lu et al., 2014), which may
provide us with the possible cause of increased mortality in COVID-
19 patients with MUO.

Several drugs have been extracted as candidate treatments
against COVID-19 and MUO. We discovered 3,3′,4,4′,5-
Pentachlorobiphenyl, a compound that inhibits or antagonizes
the action or biosynthesis of estrogenic compounds, as the
candidate drug for treating COVID-19. This may reason for
the observed moderate decrease of pulmonary
ACE2 expression after administration of the androgen
receptor antagonist enzalutamide, which is documented in
recent studies (Lott et al., 2022). This effect may play a
positive role in reducing the incidence of respiratory
complications in patients with MUO. Another extracted drug
was PD 98059, which is applied for the inhibition of MAP-kinase
(MAPK) kinase activation. The MAPK pathway is one of the
most involved pathways causing cytokine storm in patients with

severe COVID-19 (COvid-19 Multi-omics Blood ATlas
COMBAT ConsortiumCOvid-19 Multi-omics Blood ATlas
COMBAT Consortium, 2022; Geng et al., 2021). The
inhibition of this pathway is a promising therapeutic target for
preventing severe COVID-19. PD 98059 can relieve obesity
induced by high fat diet (Zheng et al., 2023). Moreover, this
study found medroxyprogesterone acetate, dexamethasone and
tretinoin as potential drugs. Medroxyprogesterone acetate, a
progestin, was recently tested as a drug for HIV patients
(Vanpouille et al., 2021). Several clinical trials have been
carried out to study dexamethasone’s therapeutic effect on
COVID-19 infection. Many results have proved that it can
regulate inflammation-mediated lung injury (Horby et al.,
2021), thereby reducing the progress of respiratory failure and
death; at the same time, attention has been paid to its positive
effect on neutrophil aggregation and interferon system imbalance
caused by COVID-19 (Sinha et al., 2022). Moreover, as has been
shown by drug tests in human cell lines and human lower
respiratory organoids, tretinoin, as a derivative of vitamin A,
has antiviral activity against all SARS-COV-2 antibodies (Tong
et al., 2022). Several studies have indicated that carotenoids and
carotenoid conversion products with provitamin A activity have
anti-obesity activity (Gomes et al., 2021).

The gene-disease analysis was performed to predict
relationships between common DEGs and different disorders.
The analysis showed various diseases correlated with MUO and
COVID-19, including liver, immune and cardiovascular system
disorders. Liver cirrhosis has also been found in our gene-disease
network; the patients with it have a higher probability of severe
COVID-19 symptom, particularly high rates of hepatic
decompensation and death (Marjot et al., 2021). Furthermore,
COVID-19 infection and MUO have been shown to cause and
aggravate various chronic liver diseases (Steenblock et al., 2021;
Kouvari et al., 2022). The immune system diseases also showed a
strong correlation in the gene-disease network. IGA
Glomerulonephritis is a kind of immunoglobulin A related
inflammation and usually occurs following viral infection.
Increasing evidence supports that COVID-19 infection and

TABLE 3 (Continued) The recommended drugs for COVID-19 and MUO.

Name p-value Chemical formula Structure

Tretinoin HL60 UP 1.30E-05 C20H28O2
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vaccination against SARS-CoV-2 may trigger or exacerbate IGA
Glomerulonephritis (Bronz et al., 2022). Another strongly
correlated immune disease identified in the network is Lupus
Erythematosus, Systemic. During the COVID-19 pandemic,
patients with Lupus Erythematosus, Systemic have lowered
risk of COVID-19, hospitalized COVID-19 or severe COVID-
19 (Ran et al., 2022), suggesting that this specific precondition
blocks the entry of the virus and transmission in some way.
Moreover, the involvement of myocardial ischemia in COVID-19
is directly associated with cytokine-mediated plaque destabilization

and hypercoagulability, which induce ischemic stroke and acute
myocardial infarction (Modin et al., 2020). Additionally, there is a
significant correlation between metabolic disorders and prolonged
QTc interval, which is the early marker of transient myocardial
ischemia (Guo et al., 2017).

In addition to presenting some interesting findings, our study
has some limitations. These results, including DEGs and candidate
drug identification, as well as all the network analysis, were obtained
by bioinformatics and system biology approach. The results need
further experimental verification. Additionally, the selected datasets
include different groups of people with two different diseases, rather
than the same population with both MUO and COVID-19. Thus,
further studies and clinical trials are needed to validate the biological
functions of the identified hub genes and the safety and efficacy of
the specified candidate drugs, as well as their pharmacological
characteristics.
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