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Hypoxia induced by high altitude can lead to severe neurological dysfunction.
Mitophagy is known to play a crucial role in hypoxic nerve injury. However, the
regulatory mechanism of mitophagy during this injury remains unclear. Recent
studies have highlighted the role of Sestrin2 (SESN2), an evolutionarily conserved
stress-inducible protein against acute hypoxia. Our study demonstrated that
hypoxia treatment increased SESN2 expression and activated mitophagy in
PC12 cells. Furthermore, the knock-out of Sesn2 gene led to a significant
increase in mitochondrial membrane potential and ATP concentrations, which
protected the PC12 cells from hypoxic injury. Although the AMPK/mTOR pathway
was significantly altered under hypoxia, it does not seem to participate in
mitophagy regulation. Instead, our data suggest that the mitophagy receptor
FUNDC1 plays a vital role in hypoxia-induced mitophagy. Moreover, SESN2 may
function through synergistic regulation with other pathways, such as SESN2/
AMPK, to mediate cellular adaptation to hypoxia, including the regulation of
mitophagy in neuron cells. Therefore, SESN2 plays a critical role in regulating
neural cell response to hypoxia. These findings offer valuable insights into the
underlying molecular mechanisms governing the regulation of mitophagy under
hypoxia and further highlight the potential of SESN2 as a promising therapeutic
target for hypoxic nerve injury.
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1 Introduction

In recent years, increasing numbers of people, including Europeans and Americans, are
traveling to high altitude regions for various purposes including recreation, religion and
adventure sports such as mountain climbing in the Everest, Qogir or other high altitude
locations around the world (Burtscher, et al., 2021; Mikołajczak, et al., 2021). Despite the
inherent risks associated with exposure to high altitude hypoxia, mountaineers are drawn to
the breathtaking scenery and the physical and mental challenges presented by these
environments. Climbing to high altitudes can lead to exposure to hypoxia, which may
result in severe neurological dysfunction such as cognitive impairment, memory loss, and
even life-threatening conditions such as high-altitude cerebral edema (HACE) and high-
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altitude pulmonary edema (HAPE) (Singh and Ansari, 2022).
Epidemiological studies and laboratory studies have confirmed
that acute exposure to high altitude can contribute to
neurological decline (Limmer and Platen, 2018). Mechanistically,
declined working memory capacity is closely related to insufficient
oxygen supply in the central nervous system. As the “power plant” of
cells, mitochondria have a vital function in maintaining neuronal
homeostasis in neurons.

Mitophagy is important to remove fragmented or damaged
mitochondria and in their quality control (Onishi, et al., 2021).
Mitophagy induced by hypoxia mainly exerts a protective function,
and is activated principally by autophagy-related proteins
(Sulkshane, et al., 2021). Beclin1, LC3, P62 and other conserved
proteins participate in the autophagy process and are regarded as

autophagy-related proteins (Lv, et al., 2021). Studies have proven
that BCL2 interacting protein 3 (BNIP3) and its homolog
BCL2 interacting protein 3 like (BNIP3L) belong to the BH3-
only protein family and interact directly with microtubule
associated protein 1 light chain 3 alpha (LC3) to promote
mitophagy (Zhang, et al., 2008). NOD-like receptor (NLR) family
member X1 (NLRX1) is suggested to participate in a variety of
pathophysiological processes, such as cell death, mitochondrial
dynamics, and oxidative damage (Imbeault, et al., 2014; Stokman,
et al., 2017; Killackey, et al., 2019). Moreover, recent evidence
suggested that FUN14 domain containing 1 (FUNDC1) could
serve as a receptor for LC3 and is involved in autophagy (Liu,
et al., 2012). The mitophagy receptors harbor LC3-interacting region
(LIR) consensus sequences (Ploumi, et al., 2017; Killackey, et al.,

FIGURE 1
Hypoxia led to decreased cellular activity, elevated ROS levels, and elevated apoptosis rates in PC12 cells. (A) Cellular activity over hypoxia time in
PC12 cells (0, 12, 24, 36, and 48 h at 0.5% O2). (B) ROS levels over hypoxia time in PC12 cells. (C) Quantitative analysis of (B). (D) Apoptosis rate over
hypoxia time in PC12 cells. (E)Quantitative analysis of (D). (F) Protein levels of SESN2 over hypoxia time in PC12 cells (0, 12, 24, 36, and 48 h at 0.5%O2). (G)
Quantitative analysis of (F). Data are presented as mean ± SD. * indicates a significant increase compared with the control value (p < 0.05, n = 3).
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2022). Therefore, we hypothesized that BNIP3L, BNIP3, NLRX1,
and FUNDC1 function as receptors for selective mitophagy in
response to hypoxia via interaction with LC3.

Sestrin2 (SESN2), also known as hypoxia-induced 95 (HI95), is a
member of the Sestrin family that has been conserved throughout
evolution (Budanov, et al., 2002). SESN2 has been shown to activate
adenosine monophosphate-activated protein kinase (AMPK)
signaling and downregulate mechanistic target of rapamycin
(mTOR) signaling to regulate autophagy (Hou, et al., 2015). In
addition, studies have suggested that, as an adaptive response to
ischemia-reperfusion (IR), SESN2 plays an essential role in
maintaining the function and integrity of mitochondria, thus
regulating substrate metabolism (Ren, et al., 2021). However,
despite considerable research on SESN2 focusing on hypoxia-
ischemia injury and IR injury, the extent to which it regulates
hypoxia-induced mitophagy remains unclear (Shi, et al., 2016;
Yang, et al., 2017; Quan, et al., 2018). The pathophysiological
causes of hypoxic nerve injury vary considerably between IR
injury and simple hypoxic injury. Therefore, it is important to
investigate the specific role of SESN2 in hypoxia-induced brain
injury.

Our study investigated the role of SESN2 in regulating
hypoxia-induced mitophagy and neuronal cell adaptation. To
this end, we used PC12 cells to investigate the role of SESN2 in

the AMPK/mTOR/mitophagy downstream signaling pathway in
response to hypoxia-induced injury. We found that hypoxia
treatment increased SESN2 expression and activated the
mitophagy in PC12 cells. Additionally, our findings suggest
that SESN2 may function synergistically with other pathways,
such as SESN2/AMPK, to mediate cellular adaptation to hypoxia,
potentially making it a therapeutic target for hypoxic nerve
injury.

2 Materials and methods

2.1 Culture of cells and modeling of hypoxia

PC12 cells (BFN60070191) were grown in a 5% CO2 atmosphere
at 37°C in Dulbecco’s modified Eagle’s medium (DMEM [Sigma-
Aldrich Corporation, D6429]) containing 10% fetal bovine serum
[FBS (Atlanta Biologicals, S12450)], 2 mmol L-glutamine (GIBCO,
25,030-081), and 1% penicillin/streptomycin (Life Technologies,
15140163). Cells to be treated with hypoxia were placed in a tri-
gas incubator (InvivO2, I400) at 37°C under 5% CO2 and 0.5% O2.
The incubator could control the oxygen conc from 0.1% to 23.0% by
regulating the ratio of N2/O2. The Subsequent steps would continue
in this incubator if needed.

FIGURE 2
Sesn2 knockout improved mitochondrial function of PC12 cells under hypoxia. (A) Effect of Sesn2 knockout. (B) Knockout of Sesn2 decreased
intracellular ROS levels of PC12 cells under hypoxic conditions for 24 h. 3 replicate data of HC and HC + SESN2−/− group was shown respectively. (C)
Quantitative analysis of (B). (D) Knockout of Sesn2 increased mitochondria membrane potential in PC12 cells under hypoxic conditions for 24 h. (E)
Quantitative analysis of (D). (F) Knockout of Sesn2 upregulated the mitochondrial ATP content in PC12 cells under in hypoxic conditions for 24 h.
HC: Hypoxia Control. Data are presented as mean ± SD. * indicates a significant increase compared with the control value (p < 0.05, n = 3).
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2.2 Knockout of Sesn2 using a lentivirus-
delivered CRISPR/cas9 system

A Sesn2-knockout cell line was generated using the CRISPER/
Cas9 system (Shanghai Jikai Gene Chemical Technology Co., Ltd).
Green fluorescent protein (GFP)-LC3 (Shanghai Jikai Gene
Chemical Technology Co., Ltd.) was used to assess autophagic
flux by an inverted light microscope (Leica DMi8; Leica
Microsystems, Wetzlar, Germany). Stable cell lines were
produced by selection with 2.5 μg/mL puromycin (Sigma).

2.3 Cell viability detection

1A Cell Counting Kit-8 [CCK-8 (Biosharp, BS350C)] was
used to test cell viability. Briefly, cells were seeded at 8,000 cells
per well into 96-well plates. Then, the cells were exposed to
hypoxia, followed by the addition of 100 μL fresh medium with
10 μL of CCK-8 reagent and incubated for 30 min at 37°C. The
absorbance of the cells at 450 nm was assessed using a
Microplate Reader (M5; Molecular Devices, San Jose, CA,
United States).

FIGURE 3
Levels of autophagy-related proteins under hypoxia in PC12 cells. (A) Protein levels of Beclin1, LC3 I, LC3 II, and p62 over hypoxia time in PC12 cells
(0, 12, 24, 36, and 48 h at 0.5%O2). (B–D)Quantitative analysis of (A). (E) AMPK, p-AMPK, mTOR and p-mTOR levels over hypoxia time in PC12 cells. (F–G)
Quantitative analysis of p-AMPK-AMPK and p-mTOR-mTOR. (H) Protein levels of BNIP3L, BNIP3, FUNDC1, NLRX1, and Tomm20 over hypoxia time in
PC12 cells. (I–M) Quantitative analysis of (H). (N–Q) mRNA expression of Bnip3l, Bnip3, Fundc1, and Nlrx1 over hypoxia time. Blue indicates a
decrease in the protein level and red indicates an increase in the protein level. Data are presented as mean ± SD. * indicates a significant increase
compared with the control value (p < 0.05, n = 3).
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2.4 Determination of cell reactive oxygen
species (ROS)

A ROS assay kit (Beyotime, S0033M) was applied to measure
ROS levels. Briefly, PC12 cells were added with 10 μM 2,7-
dichlorodihydrofluorescein diacetate (DCFH-DA) and incubated
for 30 min. Thereafter, the DCFH-DA was removed by rinsing
the cells two times using Phosphate-buffered saline [PBS (Procell,
PB180327)]. The cells were then digested using pancreatin,
resuspended in PBS, and subjected to flow cytometry (BD
Biosciences, San Jose, CA, United States) to detect the ROS levels.

2.5 Cell apoptosis assay

Flow cytometry was used to determine cell apoptosis. Collected cells
were rinsed using PBS and incubated in the presence of propidium iodide
(PI) and annexin V-fluorescein isothiocyanate (FITC) (BD Biosciences,
556,547) for 15 min at room temperature in the dark. Flow cytometrywas
then used to determine cell apoptosis following the supplier’s protocols.

2.6 Determination of the mitochondrial
membrane potential (MMP)

The MMP was detected using the fluorescent probe JC-1
(Beyotime, C2005). Briefly, 1 mL of JC-1 working solution was
added to PC12 cells and incubated for 20 min at 37°C, washed
two times using JC-1 buffer, and then subjected to flow cytometry
analysis.

2.7 ATP content determination

Cells were collected into pre-cooled PBS, frozen quickly as
aliquots, and stored in liquid nitrogen. For use, aliquots were
allowed to melt slowly in an ice water bath and vortexed for 10 s.
The ATP content was assayed via Luciferase driven bioluminescence
using an ATP Bioluminescence Assay Kit HS II (Sigma-Aldrich,
11699709001). The relative light units of each sample were detected
with Microplate Reader (M5; Molecular Devices, San Jose, CA,
United States).

FIGURE 4
3MA led to elevated ROS levels, increased mitochondrial membrane potential, and upregulated mitochondrial ATP content. (A) In PC12 cells
subjected to hypoxia (0.5% O2, 24 h), 3MA increased intracellular ROS. 3 replicate data of HC and HC + 3MA group was shown respectively. (B)
Quantitative analysis of (A). (C) In PC12 cells subjected to hypoxia (0.5%O2, 24 h), 3 MA increased themitochondrial membrane potential. (D)Quantitative
analysis of (C). (E) In PC12 cells subjected to hypoxia (0.5% O2, 24 h), 3 MA upregulated the mitochondrial ATP content. HC: Hypoxia Control. Data
are presented as mean ± SD. * indicates a significant increase compared with the control value (p < 0.05, n = 3).
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2.8 Western blotting

Western blotting was performed according to a standard
protocol. The cell lysates (20 μg/lane) were separated using
4–12% or 15% SDS-PAGE gel and then transferred to
nitrocellulose membranes. The membrane was blocked with
5% skim milk diluted in TBST, and further incubated with
primary antibodies overnight at 4°C. Primary antibodies to the
following proteins were used: SESN2 (1:1,000, Cell Signaling
Technology, 8,487), AMPK (1:1,000, Cell Signaling Technology,
5,832), phosphorylated (p)-AMPK (1:1,000, Cell Signaling
Technology, 2,535), mTOR (1:1,000, Cell Signaling
Technology, 2,983), p-mTOR (1:1,000, Cell Signaling
Technology, 2,974), Beclin1 (1:1,000, Cell Signaling
Technology, 3,495), P62 (1:1,000, Cell Signaling Technology,
23,214), LC3B (1:1,000, Cell Signaling Technology, 2,775),

translocase of outer mitochondrial membrane 20 (Tomm20)
(1:1,000, Cell Signaling Technology, 42,406), BNIP3L (1:1,000,
Cell Signaling Technology, 12,396), BNIP3 (1:1,000, Cell
Signaling Technology, 3,769), FUNDC1 (1:1,000, Cell
Signaling Technology, 49,240), NLRX1 (1:1,000, Cell
Signaling Technology, 13,829), and β-actin (1:50,000,
Abclonal, AC038). Secondary antibodies to the following
proteins were used: Goat Anti-Rabbit HRP (1:10,000,
Abclonal, AS014). Membrane stripping was performed by
incubating the membrane in Stripping Buffer (CWBIO,
Stripping Buffer, CW0056M) according to the manufacturer’s
instructions. The immunoreactive protein bands were exposed
by the enhanced chemiluminescence (ECL) method (General
Electric, Boston, MA, United States) and normalized by
densitometry using ImageJ (NIH, Bethesda, MD,
United States).

FIGURE 5
Effect of SESN2 knockout on mitophagy-related proteins under hypoxia in PC12 cells. (A) Levels of Beclin1, LC3 I, LC3 II, and p62 proteins were
determined after Sesn2 knockout using western blotting in PC12 cells subjected to hypoxia (0.5%O2, 24 h). (B) AMPK, p-AMPK,mTOR and p-mTOR levels
after Sesn2 knockout in PC12 cells subjected to hypoxia (0.5% O2, 24 h). (C) Protein levels of BNIP3L, BNIP3, FUNDC1, NLRX1, and Tomm20 after Sesn2
knockout in PC12 cells (0.5% O2, 24 h). (D) mRNA expression of Bnip3l, Bnip3, Fundc1, and Nlrx1 after knockout in PC12 cells subjected to hypoxia
(0.5%O2, 24 h). Data are presented asmean ± SD. * indicates a significant increase comparedwith the control value (p < 0.05, n= 3). (E)Detection of GFP-
LC3 autophagosomes after Sesn2 knockout in PC12 cells subjected to hypoxia (0.5%O2, 24 h, magnification: ×400). HC: Hypoxia Control. NC: Normoxia
Control. Blue indicates a decrease in the protein level and red indicates an increase in the protein level.
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2.9 Quantitative real-time reverse
transcription PCR (qRT-PCR)

The Trizol reagent (Invitrogen, 15596026) was used to extract total
RNA following the manufacturer’s protocol. The mRNA was reverse
transcribed to cDNA. The cDNA was then used as the template in the
quantitative real-time PCR (qPCR) step, which was carried out using a
SYBR Green Real-time PCR Master Mix (Thermo Fisher Scientific,
A46109), and Actb (encoding β-actin) as the internal control. The
2−ΔΔCT method was used to analyze the results (Livak and Schmittgen,
2001). The primers used had the following sequences:

Bnip3l forward, 5′-TCTCACTTAGTCGAGCCGC-3′ and reverse
5′-CTCCACCCAGGAACTGTTGA-3’; Bnip3 forward, 5′-TCTCAC
TTAGTCGAGCCGC-3′ and reverse 5′-CTCCACCCAGGAACT
GTTGA-3’; Fundc1 forward, 5′-TCTCACTTAGTCGAGCCGC-3′

and reverse 5′-CTCCACCCAGGAACTGTTGA-3’; Nlrx1 forward,
5′-TCTCACTTAGTCGAGCCGC-3′ and reverse 5′-CTCCACCCA
GGAACTGTTGA-3′

2.10 Statistical analysis

The statistical analyses were carried out using GraphPad
Prism (GraphPad Inc., V5.0.1). Student’s t-test was used to
calculate the difference between two groups, whereas analysis
of variance (ANOVA) followed by the Tukey-Kramer multiple
comparisons test or an unpaired two-tailed Student-t-test were
used to analyze three and more groups of data. All data are shown
as mean ± SD for each group. p < 0.05 was considered statistically
significant.

FIGURE 6
Effect of 3 MA onmitophagy-related proteins under hypoxia in PC12 cells. (A) Effects of 3 MA on the protein expression of SESN2, Beclin1, LC3B, and
P62 proteins by western blotting in PC12 cells subjected to hypoxia (0.5% O2, 24 h). (B) Effects of 3 MA on p-mTOR, mTOR, p-AMPK, and AMPK levels in
PC12 cells subjected to hypoxia (0.5% O2, 24 h). (C) Effects of 3 MA on the protein levels of BNIP3L, BNIP3, FUNDC1, NLRX1, and Tomm20 in PC12 cells
subjected to hypoxia (0.5% O2, 24 h). (D) mRNA expression of Bnip3l, Bnip3, Fundc1, and Nlrx1 after 3 MA intervention in PC 12 cells subjected to
hypoxia (0.5%O2, 24 h). Data are presented asmean± SD. * indicates a significant increase comparedwith the control value (p < 0.05, n= 3). (E)Detection
of GFP-LC3 autophagosomes after 3 MA intervention in PC12 cells subjected to hypoxia (0.5% O2, 24 h, magnification: ×400). HC: Hypoxia Control. NC:
Normoxia Control. Blue indicates a decrease in the protein level and red indicates an increase in the protein level.
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3 Results

3.1 Hypoxia induced PC12 cell injury and
increased expression of SESN2

Firstly, a hypoxia-induced model of PC12 cell damage was
constructed. In the model, hypoxia induced injury to PC12 cells
in a time-dependent manner. Hypoxic (0.5% O2) conditions for 12 h
resulted in significant injury to PC12 cells, with the OD450 value in
the CCK8 assay (representing cell viability) decreasing by about 50%
after 48 h (Figure 1A). Hypoxia increased ROS activity in PC12 cells,
and the ROS level correlated with increased hypoxia time (Figures
1B, C). The apoptotic rate of PC12 cells increased with hypoxia time
in culture (Figures 1D, E). Furthermore, western blotting showed
that the level of SESN2 increased at first and then decreased, with the
highest levels being observed at 24 h (Figures 1F, G). Thus, we
hypothesized that SESN2 might be involved in response to the
duration of hypoxia.

3.2 Sesn2 knockout could protect
mitochondrial function in hypoxia-damaged
PC12 cells

Based on above results, to investigate the role of SESN2 in
hypoxic metabolism, the Sesn2 gene was knocked out using the
CRISPR/cas9 system, and a stable Sesn2−/− PC12 cell line was
constructed, which was screened using puromycin for 5–7 days.
Western blotting of proteins extracted from Sesn2−/− PC12 cells

showed the almost complete absence of SESN2 (Figure 2A).
To determine the effect of Sesn2 knockout on mitochondrial
function, we determined the ROS and ATP levels, and the
incorporation of JC-1 to assess the mitochondrial membrane
potential (MMP), in response to hypoxia 24 h. The results
showed knockout of Sesn2 reduced ROS levels under hypoxic
conditions compared with those under normal conditions
(Figure 2B, C). The mitochondrial membrane potential and
mitochondrial ATP levels were increased after Sesn2 knockout
under hypoxic conditions compared with those under normal
conditions (Figures 2D–F).

3.3Mitophagy is involved in the regulation of
hypoxic metabolism in PC12 cells

Hypoxic injury involves damage to mitochondria; therefore,
to assess to changes to mitochondria and autophagosomes, the
levels of autophagosome-associated proteins and mitophagy
receptors were assessed using western blotting. Hypoxia
increased the levels of the autophagy proteins Beclin1 and
LC3II/I, but reduced the expression of P62 under hypoxic
conditions compared with those under normal conditions
(Figures 3A–D). The Sestrin2/AMPK/mTOR pathway has been
well-established as a critical regulator of autophagy; therefore,
the levels of AMPK, p-AMPK, mTOR, and p-mTOR were
determined. Somewhat to our surprise, there was no change in
the level of p-AMPK and p-mTOR in response to hypoxia (Figures
3E–G). Moreover, we evaluated changes in mitophagy protein

FIGURE 7
SESN2 upregulation activated mitophagy in PC12 cells by hypoxia treatment. Mitophagy receptor FUNDC1 plays a vital role in hypoxia-induced
mitophagy. Moreover, SESN2 upregulation may function through synergistic regulation with other pathways, such as SESN2/AMPK, to mediate cellular
adaptation to hypoxia. Therefore, SESN2 plays a critical role in regulating neural cell response to hypoxia.
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markers. Hypoxia increased the levels of BNIP3L, BNIP3, and
FUNDC1, but decreased the levels of NLRX1 (Figure 3H–L).
TOMM20, which served as a mitochondrial marker, decreased
in a time dependent manner in response to hypoxia.
Concomitantly, the expression levels of mitophagy-related genes
were investigated using qRT-PCR, the results of which were
consistent with those of western blotting (Figure 3M–Q).

3.4 Inhibition of autophagy by 3-
methyladenine (3MA) also improved
mitochondrial function after hypoxia

To further validate the role of mitophagy in hypoxia-injured
neural cells, the autophagy inhibitor 3 MA was used to pretreat cells
at 5 mM for 12 h. Compared with Sesn2-knockout cells, the analysis
of ROS showed the opposite results, i.e., 3 MA pre-treatment caused
elevation of ROS levels (Figure 4A, B). The results from the JC-1 and
ATP experiments showed the same trend to those obtained in the
Sesn2-knockout cells, indicating the protective effect of autophagy
inhibition on mitochondrial repair in response to hypoxia
(Figures 4C–E).

3.5 Sesn2 knockout significantly inhibited
p-AMPK levels and mitophagy processes
after hypoxia

Next, in view of its role in hypoxia regulation, AMPK-
mediated mitophagy was investigated to further study the
mechanism by which Sesn2 knockout protected mitochondria
against hypoxic injury. Sesn2 knockout did not affect Beclin1 and
P62 levels significantly, whereas the level of LC3II/I decreased
(Figure 5A). Moreover, Sesn2 knockout decreased the p-AMPK:
AMPK ratio significantly, but had no effect on the p-mTOR:
mTOR ratio (Figure 5B). The expression of mitophagy proteins
and mitochondrial outer membrane proteins were measured
using western blotting and qRT-PCR. We found that the
mRNA and protein levels of BNIP3 and FUNDC1 decreased
significantly, and NLRX1 and TOMM20 mRNA and protein
levels increased significantly after Sesn2-knockout (Figure 5C,
D). Concomitantly, transfection with GFP-LC3 was employed to
assess autophagic flux, which confirmed the above results:
Hypoxia caused mitophagy and Sesn2-knockout inhibited
autophagy activation (Figure 5E).

3.6 Mitophagy was inhibited by 3MA but did
not alter SESN2 expression

To confirm that the expression of SESN2 mediates mitophagy
by autophagy activation, we used an autophagy inhibitor (3 MA)
to block the initiation of autophagy. The AMPK signaling
pathway and mitophagy proteins were then detected. 3MA
reduced the level of Beclin1 and LC3B, but exhibited no
appreciable effect on the levels of SESN2 and P62 (Figure 6A).
3MA activated mTOR by inhibiting AMPK (Figure 6B).
Furthermore, 3 MA treatment significantly decreased the

BNIP3L, BNIP3, and FUNDC1 levels, increased the level of
TOMM20, and had no effect on NLRX1 (Figure 6C, D).
Consistent with Sesn2 knockdown, the addition of 3 MA also
decreased the numbers of GFP-LC3–positive cells after hypoxia
treatment (Figure 6E).

4 Discussion

SESN2 is a stress-responsive protein that has been shown to
respond to various insults, such as oxidative stress, genotoxic
stress, energy deficiency, and hypoxia (Budanov, et al., 2002;
Pan, et al., 2021). While the role of SESN2 has been extensively
studied in I/R-related diseases, its effect on high altitude
hypoxia has been rarely reported (Shi, et al., 2016; Wang,
et al., 2019a; Wang, et al., 2019b). The present study aimed
to investigate whether SESN2 plays a role in the hypoxic
response and to elucidate its possible mechanisms. Using
in vitro studies, we found that SESN2 promotes mitophagy
and reduces the mitochondrial quantity of hypoxic
neuroblasts. Our results suggest that the SESN2/AMPK/
mTOR/FUNDC1 signaling pathway regulates the process of
mitophagy, as shown in Figure 7. These findings provide new
insights into the molecular mechanisms underlying hypoxia-
induced neuronal injury and highlight SESN2 as a promising
therapeutic target for treating cognitive impairment caused by
high altitude. In our experiments, we observed significant
upregulation of SESN2 expression following hypoxia
treatment, consistent with previous reports investigating
hypoxia-ischemia (Shi, et al., 2016) and ischemia-reperfusion
(Liu, et al., 2020).

To assess autophagic flux, we measured the levels of LC3-II,
Beclin1, and p62 proteins, which are indicators of autophagy.
Our results indicated that hypoxia treatment activated autophagy
and increased autophagic flux. Autophagy can be triggered by
either mTOR downregulation or AMPK activation (Egan, et al.,
2011). However, our findings suggested that hypoxia-induced
autophagy flux is not dependent on the AMPK/mTOR pathway.
Degradation of damaged or dysfunctional mitochondria involves
mitophagy, a specific form of autophagy (Ashrafi and Schwarz,
2013). Mitophagy receptors such as BNIP3L, BNIP3, FUNDC1,
and NLRX1 recruit LC3 to initiate mitophagy in response to
mitochondrial stress (Rouschop and Wouters, 2009; Fang, et al.,
2015), including oxidative stress, bioenergetic stress, and IR
stress (Liu, et al., 2012; Ney, 2015). The different mitophagy
mechanisms that sense these stresses are still unclear. Our results
suggest that BNIP3L, BNIP3, FUNDC1, and NLRX1 are involved
in hypoxia-induced mitophagy.

To determine the role of SESN2 in neurocytes under hypoxia,
we knocked out Sesn2 in PC12 cells. We observed that Sesn2
knockout increased ROS and ATP levels and mitochondrial
membrane potential. Mechanistically, Sesn2 knockout
significantly reduced AMPK phosphorylation, inhibited
mitophagy, and protected PC12 cells. Sesn2 knockout also
suppressed BNIP3 and FUNDC1 expression, while increasing
NLRX1 protein. Treatment with 3MA, an autophagy inhibitor,
effectively suppressed hypoxia-induced mitophagy, resulting in
increased mitochondrial membrane potential and ATP
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production without any notable effect on SESN2 protein levels.
Therefore, we conclude that SESN2 acts upstream of the
autophagic cascade. Our experiments further suggest that
Sesn2 knockout repairs mitochondrial function by inhibiting
AMPK-mediated mitophagy.

Previous studies have indicated that the SESN2/AMPK/mTOR
pathway plays a dominant role in mediating autophagy in hypoxia-
related diseases (Hou, et al., 2015; Hwang, et al., 2017). To test
whether SESN2 regulates AMPK and its downstream mitophagy
receptor, we carried out a series of experiments. Sesn2 knockout
suppressed AMPK activation, while upregulation of
SESN2 contributed to AMPK phosphorylation. Further, Sesn2
knockout significantly reduced BNIP3 and FUNDC1 expression,
but NLRX1 protein was decreased too. Zhang et al. (2019a)
identified NLRX1 as a novel mitophagy receptor that induces
mitophagy, and Li et al. (2021) demonstrated that intestinal I/R
injury downregulates NLRX1 levels, consistent with our findings.
The pathophysiological role of BNIP3 in our experiments remains
unknown, though most studies have reported that it can induce
apoptosis (Prabhakaran, et al., 2007; Jia, et al., 2020) while Zhang
et al. revealed that BNIP3 could promote mitophagy (Zhang, et al.,
2019b).

In summary, our study provides valuable insights into the role
of SESN2 in hypoxia-induced nerve injury and its potential as a
therapeutic target. Hypoxia treatment increases SESN2 expression,
while Sesn2 knockout leads to reduced AMPK activation and
mitophagy signaling. These observations highlight the critical role
of the SESN2/AMPK pathway in regulating hypoxia-induced
autophagy to exert neuroprotective effects and provide a deeper
understanding of the role of SESN2 in regulating hypoxia-induced
autophagy. Hence, our study reveals a previously unexplored role for
SESN2 as a therapeutic intervention for hypoxic nerve injury.
Furthermore, targeting SESN2 may hold promise in regulating
the response to high altitude hypoxia. However, further research
is required to confirm these findings and fully understand the
underlying pathways involved.
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