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The COVID-19 pandemic has a significant impact on public health and the
estimated number of excess deaths may be more than three times higher than
documented in official statistics. Numerous studies have shown an increased risk
of severe COVID-19 and death in patients with cancer. In addition, the role of
SARS-CoV-2 as a potential risk factor for the development of cancer has been
considered. Therefore, in this review, we summarise the available data on the
potential effects of SARS-CoV-2 infection on oncogenesis, including but not
limited to effects on host signal transduction pathways, immune surveillance,
chronic inflammation, oxidative stress, cell cycle dysregulation, potential viral
genome integration, epigenetic alterations and genetic mutations, oncolytic
effects and reactivation of dormant cancer cells. We also investigated the
potential long-term effects and impact of the antiviral therapy used in COVID-
19 on cancer development and its progression.
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1 Introduction

Coronavirus disease 2019 (COVID-19), is caused by the novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). The clinical spectrum of COVID-19 ranges from
asymptomatic to severe respiratory failure and death (Parasher, 2021). SARS-CoV-2 is
mainly spread by respiratory droplets during face-to-face contact, such as coughing, talking,
and sneezing, by symptomatic, pre-symptomatic, and asymptomatic carriers and, to a lesser
extent by contaminated surfaces (Wiersinga et al., 2020). In addition, the virus has been
shown to significantly modulate the immune system and induce low-grade chronic
inflammation (Marshall, 2020; Saini and Aneja, 2021). Thus, SARS-CoV-2 infection in
the long term may contribute to the development of cancers. Currently, cancer is one of the
most important worldwide public health problems. Just in the United States, from January
2022 the number of cancer survivors was estimated at 18.1 million (National Cancer
Institute, 2022). Some data suggested the role of SARS-CoV-2 as a potential risk factor for
cancer development. In this review, we summarize the available data on the potential impact
of SARS-CoV-2 infection on cancer development, including effects on host signal
transduction pathways, immune surveillance, chronic inflammation, oxidative stress, cell
cycle dysregulation, and potential viral genome integration. Moreover, we analysed the
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potential impact of the antiviral therapy used in the treatment of
COVID-19 on oncogenesis and cancer progression.

2 Mortality among patients infected
with SARS-CoV-2

The emergence of a global COVID-19 pandemic was an
unprecedented public health crisis. The pandemic affected numerous
people in approximately 200 countries and territories (Zhang et al.,
2020). Themean in-hospital mortality is estimated at around 15%–20%
and among patients admitted to the Intensive Care Unit (ICU) at 40%
(Wiersinga et al., 2020). Moreover, the study analysing data from
191 countries and territories, and 252 regional units for selected
countries from 1 January 2020, to 31 December 2021, estimated the
number of excess deaths due to SARS-CoV-2 infections was nearly
3.07 times (95% CI: 2.88–3.30) higher than documented by official
statistics (18.2 million vs. 5.94 million) (COVID-19 Excess Mortality
Collaborators, 2022). Different chronic diseases including obesity,
diabetes, hypertension, cancer, and respiratory and cardiovascular
diseases are risk factors for a severe course of SARS-CoV-
2 infection, admission to the ICU, and mortality (Gallo Marin et al.,
2021). Numerous studies analysed the association between SARS-CoV-
2 infection and mortality among patients with cancer. Higher mortality
due to COVID-19 among men with cancer was found in the Italian
population (Montopoli et al., 2020). In addition, a systematic review
based on combined studies showed a significantly higher rate of
coexisting malignancies among patients with a severe or deadly
course of COVID-19 (7.3%–20.3% vs. 1%–3.9% of malignancies in
all SARS-CoV-2 infected patients). Moreover, patients with cancer
infected with SARS-CoV-2 have a significantly higher mortality
range than patients without cancer (11.4%–35.5% vs. 3.8%–8.5%)
(Ali et al., 2022).

3 The impact of SARS-CoV-2 infection
on cancer outcomes

SARS-CoV-2 affects the host’s immune response, which may
influence cancer outcomes. Furthermore, the co-occurrence of
SARS-CoV-2 infection and cancer immunotherapy, such as immune
checkpoint inhibitors, maymodify the course of COVID-19. Moreover,
lymphopenia related to chemotherapy, radiotherapy, and steroid
therapy as well as a high ratio of neutrophils to lymphocytes are
poor predictors of cancer progression and the course of COVID-19
(Ali et al., 2022). In addition, inflammation related to SARS-CoV-
2 infection can affect cancer cell proliferation and survival, as well as
angiogenesis, and metastasis. The infiltration of immune cells related to
almost all cancers is a source of secretion of inflammatory cytokines
including IL-6 and tumour necrosis factor–alpha (TNF-alpha), which is
an important link to cancer–inflammation interactions. The increased
release of the same cytokines has been observed in SARS-CoV-
2 infection. Moreover, elevated levels of cancer-promoting growth
factors have been observed in patients with haematological
malignancies up to 3 months after SARS-CoV-2 infection (De
Winter et al., 2021).

Of interest, a study including 500,000 American adults with
COVID-19 showed a 7.8% mortality rate among patients with

recently treated cancer, 5.0% among patients with non-recently
treated cancer and 1.6% among patients without cancer.
Furthermore, the adjusted analysis revealed similar mortality due
to COVID-19 among patients with non-recently treated cancer and
patients without cancer (OR = 0.93; 95% CI: 0.84–1.02) (Chavez-
MacGregor et al., 2022). Moreover, the meta-analysis of 29 studies
including 21,257 patients with lung cancer and SARS-CoV-
2 infection showed significantly higher mortality due to COVID-
19 among these patients (HR = 2.00; 95% CI: 1.52–2.63, p < 0.01) or
patients with other malignancies (HR = 1.91; 95% CI: 1.53–2.39, p <
0.01) than in patients without cancer (Oldani et al., 2022). In
addition, the Italian study found a higher proportion of deaths
among patients with than without cancer infected with SARS-CoV-2
(14.7% vs 4.5%; p < 0.0001) (Rugge et al., 2020). It has also been
shown that SARS-CoV-2 infection caused treatment delay,
permanent discontinuation of treatment, or failure to perform
scheduled diagnostic procedures (Tagliamento et al., 2020).

Data describing the impact of asymptomatic or mild symptoms
of SARS-CoV-2 infection on treatment outcomes in cancer patients
is scarce. Case reports describing a patient with primary mediastinal
B-cell lymphoma and a patient with metastatic sigmoid cancer
showed that asymptomatic SARS-CoV-2 infection did not
contraindicate the use and continuation of chemotherapy
(Woźniak et al., 2021). Similarly, Hempel et al. (2020) showed
that asymptomatic SARS-CoV-2 infection did not affect the
effects of chemotherapy. However, data evaluating the long-term
effects are lacking. It should be noted that asymptomatic or mild
SARS-CoV-2 infection in children with cancer, especially
haematological malignancies, during intensive chemotherapy in
northeast India was associated with a higher risk of death than
in cancer patients without infection (Hazarika et al., 2022).

4 SARS-CoV-2 infection as a potential
risk factor for the development of
cancer

It is known that infectious agents participate in oncogenesis, and
viral infection is responsible for the development of about 15% of
human cancers (Jafarzadeh et al., 2022). There are 7 confirmed viruses
involved in the development of cancer: Epstein-Barr virus (EBV),
hepatitis B virus (HBV), hepatitis C virus (HCV), human
papillomavirus (HPV), human T-lymphotropic virus 1 (HTLV-1),
human herpesvirus 8 (HHV-8) and Merkel cell polyomavirus
(MCPyV). Oncoviruses can induce epigenetic changes and affect
host signal transduction pathways related to cell cycle regulation and
metabolism, stimulating inflammation, and promoting angiogenesis,
invasion, and metastasis. Moreover, they activate cellular oncoproteins
by encoding viral proteins. Furthermore, oncoviruses participate in
oncogenesis inducing oxidative stress, affecting genome instability, and
increasing the number of mutations (Rapti et al., 2022).

4.1 SARS-CoV-2: anti-tumour immunity and
immune escape (IE)

The increased incidence or recurrence of cancer in COVID-19
patients may be a consequence of impaired immune surveillance of
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cancer caused by SARS-CoV-2 infection (Jafarzadeh et al., 2022).
CD8+ cytotoxic lymphocytes, in acquired immunity kill all types of
cancer cells, provided they recognize certain antigens. On the other
hand, CD4+ lymphocytes play a key role in the antitumor response
by inhibiting or stimulating cytotoxic lymphocytes (Ahrends and
Borst, 2018). It has been suggested that lymphopenia and a reduced
number of CD4+ and CD8+ T cells are hallmarks of SARS-CoV-
2 infection. Moreover, a severe course of SARS-CoV-2 infection is
characterised by a reduced number of natural killer cells (NK) and
impaired cytokine production by these cells. In addition,
overexpression of the inhibitory NK group 2-member A
(NKG2A) was observed (O’Connell and Aldhamen, 2020). This
mechanism reduced the expression of interferon γ (IFNγ), IL-2,
TNF-alpha, CD107a, and granzyme B, as well as the functional
depletion of CD8+ T and NK cells. Similar changes in the immune
system occur in some types of cancer displaying tumour growth
(Jafarzadeh et al., 2022). NKG2A is an inhibitory receptor expressed
in T and NK cells. Binding NKG2A with CD94, and the Src
homology region 2 domain-containing phosphatase-1 (SHP-1),
its action interferes with the effector functions of T and NK cells,
causing a reduction in anticancer efficacy (André et al., 2018).

Immune escape (IE) is a phenomenon including the
mechanisms of immune elimination avoidance. Cancer cells
undergo immunoediting, losing their antigenicity or
immunogenicity. Moreover, recruiting immunosuppressive
leukocytes affects the orchestration of the suppressive
microenvironment (Beatty and Gladney, 2015). IE is associated
with tumour progression (Gil et al., 2020), metastasis (Schaller
and Agudo, 2020), and angiogenesis (Liu and Cao, 2016). Viruses
also can enhance IE resulting in an impaired response of the host
immune system to the infectious agent. Different mechanisms have
been observed among others in HCV, influenza A virus, and SARS-
CoV. Several mechanisms affecting immune surveillance have also
been reported in SARS-CoV-2 including dysregulation of IFN-I
production, cytokines release, dendritic cells, macrophages, NK, and
neutrophil cellular function (Chakraborty et al., 2022). However, the
relationship between SARS-CoV-2 and cancer immune surveillance
is not fully known (Liapis and Baritaki, 2022).

4.2 DAMP (damage-associated molecular
pattern) and PAMP (pathogen-associated
molecular pattern) - possible link between
SARS-CoV-2 infection and oncogenesis

Antigenic stimulation induced by DAMP and PAMP molecules
in both cancer and infectious diseases seems similar. Once infected
by a virus, the immune system uses different mechanisms to
recognize and defend against the virus. The first line of host
defence with a viral infection, innate immunity, involves
responding against the virus by recognizing PAMPs and DAMPs
via transmembrane or intracellular pattern recognition receptors
(PRRs) (Li and Wu, 2021). NK cells play a pivotal role in defence
against SARS-CoV-2 infection. NK cells releasing cytotoxic
granules, participating in antibody-dependent cellular
cytotoxicity, and producing numerous cytokines and chemokines,
can kill virus-infected cells (Ma et al., 2021). Moreover, infected cells
can undergo inflammatory cell death and release DAMPs, such as

viral nucleic acids and oligomers (Yap et al., 2020). DAMPs and
PAMPs cause inflammation related to the production of different
cytokines, an increase in reactive oxygen and nitrogen species, tissue
damage, and apoptosis (Hotchkiss and Moldawer, 2014). It has also
been found that hypoxia and the hypoxic microenvironment created
by inflammation provoke oxidative stress and likely malignant
transformation (Baghban et al., 2020). Moreover, the hypoxic
microenvironment induces the synthesis of lysyl oxidase (LOX),
which promotes the invasion and migration of tumour cells (Ye
et al., 2020). However, many cellular processes are associated with
different stages of cancer progression including initiation,
progression, and metastasis (Wang et al., 2017). The tumour
microenvironment (TME) consists of different types of residual
and infiltrating cells, extracellular matrix, and secreted signals that
vary significantly between different cancers (Anderson and Simon,
2020).

Cancer-associated fibroblasts (CAFs) play a specific role in
stimulating cancer cell growth by releasing growth factors (Xing
et al., 2010) and inhibiting the immune response mediated by
natural killer (NK) and T-cell activity (Öhlund et al., 2014).
Activation of CAF causes an increase in collagen-1 synthesis,
resulting in fibrosis that obstructs blood supply and induces
hypoxia (Chauhan et al., 2013). Hypoxia results in the expression
of immune-inhibitory molecules, blunting the effect of tumour-
killing cells and inducing a macrophage-suppressive phenotype
(Pinter and Jain, 2017; Wang et al., 2017).

Of interest, SARS-CoV-2 enters cells through ACE receptors
resulting in the downregulation of the ACE enzyme and
enhancement of angiotensin type 2-ATR1 axis (Hoffmann et al.,
2020) and some TME components, including CAF, also express
elements of the renin-angiotensin-aldosterone system (RAAS) and
RAAS-modulated action of CAF (Pinter and Jain, 2017).
Furthermore, macrophages represent a prominent category of
immune cells within the tumour environment, and tumour-
associated macrophages (TAMs) can be divided into two distinct
phenotypes, namely, M1 and M2. The emergence of the
M1 phenotype is prominent in the early stages of oncogenic
processes, but as the tumour evolves, exposure to hypoxic
conditions within the TME drives a transition to the
M2 phenotype. This transition is particularly induced by IL-4,
IL-10, IL-13 and macrophage colony-stimulating factor (M-CSF).
It appears that cytokine-driven M2 macrophages influence tumour
growth dynamics and remodelling of the TME. Furthermore,
hypoxia has been suggested to play a key role in modulating
tumour immunity. TME hypoxia has a significant impact on the
direct transformation of TAM to a functionally M2-like state. This
transformation is mediated by mechanisms including metabolic
adaptations, lactic acidosis, angiogenic processes, and structural
reconfiguration of stromal elements. As a result, M2-like TAMs
are induced to actively engage in activities directed towards
immunosuppression, angiogenesis, and other supportive
processes essential for the maintenance of the tumour milieu (He
and Zhang, 2021). Similar patterns of immune response have been
observed during SARS-CoV-2 infection. During the progression of
COVID-19, there is a notable shift from the Nod-like receptor
family, pyrin-containing 3 (NLRP3) cytokine storm to a state of
compensatory immunosuppression and transformation of
macrophages to the anti-inflammatory M2 phenotype (du Plessis
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et al., 2022). Moreover, cancer-associated adipocytes (CAA) are a
key component that actively participates within the TME. Through
these mechanisms, including mutual communication with cancer
cells through the exchange of cytokines and lipids, CAA exerts a
discernible influence on the acquisition of pro-inflammatory and
invasive phenotypes in the latter. CAA-generated IL-6 significantly
enhances the invasive potential of neoplastic cells, thereby
increasing the spread of metastatic lesions. The bidirectional
interaction between tumour cells and peritumoral adipocytes is
established. A possible energy source for cancer cells may be the
activation of lipolysis by cancer cells and the increased release of free
fatty acids (FFA). In addition, increased expression of adipose
triglyceride lipase (ATGL) in tumour cells after contact with
adipocytes is associated with tumour aggressiveness and
invasiveness. ATGL is involved in the lipolytic pathway and
affects the release of FFA stored in cancer cells into the
microenvironment. In addition, tumour cell-CAA interactions are
associated with the production of intracellular reactive oxygen
species (ROS) and activation of the HIF1/MMP14 pathway
which promotes cancer invasion (Bouche and Quail, 2023).
Resistance to oncolytic virus therapy has also been shown to be a
lipid-dependent phenomenon (Surendran et al., 2023). It has been
suggested that EBV infection modulates gene expression in
adipocytes, leading to dysregulation of their functionality and
consequent changes in the tumour microenvironment (Liu et al.,
2021).

4.3 SARS-CoV-2: cytokine storm and
oxidative stress

A cytokine storm related to an overactive immune response is a
state of a systemic inflammatory syndrome associated with elevated
levels of circulating cytokines. This life-threatening condition can be
triggered by different factors, including SARS-CoV-2 infection.
Increased cytokine levels in COVID-19 including IL-1β, IL-6,
interferon-inducible protein 10 (IP-10), TNF-alpha, IFN-γ,
macrophage inflammatory protein (MIP) 1α and 1β, and vascular
endothelial growth factor (VEGF) were observed (Fajgenbaum and
June, 2020). It has been suggested that IL-6 levels are an important
predictor of COVID-19 severity (Wang et al., 2020a; Aziz et al.,
2020; Chen et al., 2020). IL-6 is one of the factors involved in the
induction of inflammation, oncogenesis, and cytokine storm. In
addition, IL-6 production by ageing cells is associated with age-
dependent pathologies and cancer. The action of IL-6 is exerted
mainly by activators of the transcription 3 (STAT3) pathway.
Moreover, the involvement of IL-6 in multiple signal
transduction pathways regulating survival, cell proliferation,
angiogenesis, tumour development and progression by the
expression of several genes indicates an important role in cancer
(Hirano, 2021). Furthermore, higher levels of TNF-alpha were
observed in patients with severe/critical than mild or moderate
courses of COVID-19 (Balkwill, 2006). Similarly, the overexpression
of TNF-alpha was found in numerous cancers including ovarian,
breast, and colorectal (Kulbe et al., 2007; Al Obeed et al., 2014; Liu
et al., 2020). This cytokine participates in chronic inflammation,
apoptosis, angiogenesis, and immunity (Kobelt et al., 2020). TNF-
alpha acting by TNFR1 receptors inhibits cancer development while

activating TNFR2 promotes cancer development. Moreover, TNF-
alpha altering the microenvironment increased tumour invasiveness
and promoted cancer metastasis (Ham et al., 2016). Furthermore,
elevated levels of chemokines that contribute to cancer development,
such as CCL2, CCL4, CXCL8, CXCL9 and CXCL10 have been found
in COVID-19. These chemokines participated in oncogenesis
promoting tumour cell expansion, cancer stem cell proliferation,
metastasis, angiogenesis, induction of epithelial-mesenchymal
transition, the attraction of myeloid-derived suppressor cells and
recruitment of fibroblast (Jafarzadeh et al., 2022).

In addition, SARS-CoV-2 infection-dependent deprivation of
ACE2 receptors on the cell surface and increased pro-inflammatory
and oxidative effects of angiotensin II promote oxidative stress. The
production of ROS may also be associated with macrophage activity
in acute COVID-19 and treatment with mechanical ventilation
(Alpalhão et al., 2020). ROS have been involved in cancer
development by several mechanisms, including oxidative damage
to cellular macromolecules by impaired antioxidant and/or DNA
repair mechanisms, and altered gene expression patterns (Klaunig
et al., 2010).

4.4 SARS-CoV-2 genome integration and
cancer induction

The mechanism of integration of the viral genome into the host
genome has been well known, especially for the most important viral
carcinogens including HBV, HCV, EBV and HPV (Plummer et al.,
2016). Insertion of both DNA and RNA of the viral genome into the
DNA of the host cell causes insertional mutagenesis and viral
survival in cells. The transformed cell enters an immortal state
and acquires unlimited replicative potential (Akram et al., 2017).
Epigenetic changes have been linked to oncoviruses-mediated
cancer development. Oncoviruses cause host DNA methylation,
histone modification, chromatin remodelling and virus-encoded
non-coding RNAs (e.g., microRNAs, long non-coding RNAs,
circular RNAs) resulting in control of cellular gene expression
and changes in the host cell genome (Kellogg et al., 2021;
Pietropaolo et al., 2021).

There are some hypotheses describing the integration of SARS-
CoV-2 into the human genome (Dai et al., 2020; Zhang et al., 2021).
Prolonged detection of SARS-CoV-2 RNA in non-infectious
individuals (Li et al., 2020) and recurrence of PCR-positive tests
after recovery from COVID-19 with some “re-positive” cases not
due to reinfection were observed (Yuan et al., 2020; Yahav et al., 2021).

First, SARS-CoV-2 is a positive-strand RNA virus that, like
other beta-coronaviruses, uses RNA-dependent RNA polymerase to
replicate its genomic RNA and transcribe subgenomic RNA (Zhang
et al., 2021). Moreover, it has been found that viral RNA is reverse-
transcribed in human cells by reverse transcriptase (RT) from long
interspersed nuclear elements (LINE) (Kazazian and Moran, 2017).
SARS-CoV-2 sequences can integrate into the host cell genome
through a LINE1-mediated retro position mechanism (Zhang et al.,
2021). LINE-1 in human cells was induced to be over-expressed after
SARS-CoV-2 infection or after a cytokine storm associated with
SARS-CoV-2 in vitro. However, other studies showed that retro
transposition of the SARS-CoV-2 genome involving LINE-1 into
host DNA is rare (Briggs et al., 2021).
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4.5 SARS-Cov-2 and stimulating signalling in
oncogenic pathways

4.5.1 IL-6/JAK/STAT signalling pathway
SARS-CoV-2 infection causes activation of certain signalling

pathways, including Janus kinase/signal transducer and activator of
transcription (JAK/STAT), nuclear factor kappa B (NFκB),
interferon response factor (IRF) 3 and 7. The production of pro-
inflammatory cytokines, described above, in infected cells is
increased by this signalling cascade (Rahimmanesh et al., 2022).
IL-6 participates in oncogenesis and anti-apoptosis signalling
(Vargas and Harris, 2016). IL-6 activates both traditional and
trans-signalling pathways of JAK-STAT3 signalling. In cancer
cells, IL-6 increases the expression of downstream STAT3 targets
(Chang et al., 2013). A key role for IL-6/JAK/STAT3 in the
regulation of the growth, survival, invasiveness, metastasis, and
progression of many cancers was shown. Moreover, IL-6/JAK/
STAT3 inhibits the anti-tumour immune response (Kumari et al.,
2016). Hyperactivation of the JAK/STAT pathway can cause the
development of different types of cancer and is associated with poor
clinical prognosis (Johnson et al., 2018; Braicu et al., 2019).
Increased levels of IL-6 in the tumour microenvironment and/or
mutations of loss-of-function mutations affecting STAT3 negative
regulators result in STAT3 hyperactivation in tumour cells (Walter
et al., 2009). In addition, the ability of STAT3 to promote IL-6 gene
expression by binding to the IL-6 promoter results in a positive
autocrine feedback loop (Hirano and Murakami, 2020). It should be
noted that STAT3 promotes angiogenesis, invasiveness, metastasis,
and immunosuppression. Thus, activation of the IL-6/JAK/STAT
pathway, related to SARS-CoV-2 infection and some cancers, may
play an important role in oncogenesis.

4.5.2 Nuclear factor κB pathway
NFκB signalling is involved in inflammation, cellular immunity

and stress as well as plays a key role in the synthesis of numerous
chemokines and cytokines. This pathway may be activated by viral
genetic materials or proteins (de Wit et al., 2016; Ma et al., 2020).
Hyperactivation of the NFκB pathway participated in the
pathogenesis of severe or critical SARS-CoV-2 infection (Song
et al., 2017). One of the key mechanisms of activation of NFκB
after coronavirus infection is the MyD88 pathway acting by PRRs.
This results in the expression of pro-inflammatory cytokines
including IL-6, TNF-alpha, and chemokines (Sau et al., 2016). It
is suggested that the detection of viral proteins by the innate immune
system results in the hyperactivation of NFκB plays a key role in the
COVID-19 cytokine storm, extrapulmonary symptoms of SARS-
CoV-2 infection and mortality (Kumari et al., 2016).
Hyperactivation of NFκB also participates in oncogenesis. In
addition, the NFκB pathway is a key target in the treatment of
different types of cancer (Sau et al., 2016; Ma et al., 2020).

4.5.3 Type I interferon (INF-I) signalling
Interferons (IFNs) are members of a large family of cytokines

that are currently classified based on receptor specificity and
sequence homology into three groups (type I, II, and III IFNs).

INF-I, as IL-6 binds to the JAK-activating receptor and initiates
signal transduction by the JAK/STAT pathway resulting in the
activation of multiple interferon regulatory factors (IRFs) and

IFN-stimulated genes (ISGs), that promote inflammatory and
innate antiviral response (Snell et al., 2017). It has also been
shown that IFN-I plays a key role in inhibiting tumour
proliferation and promoting tumour cell senescence and death.
While impaired IFN-I signalling is associated with tumour
progression (Fuertes et al., 2011; Lamsal et al., 2023). In addition,
the crucial role of IFN-I response during the early phase of viral
infection was found. Similarly, to other viruses, SARS-CoV-2 has
evolved mechanisms to evade the host antiviral response. It has been
suggested that IFN-I signalling is suppressed in response to SARS-
CoV-2 infection (Blanco-Melo et al., 2020). In patients with severe
and critical course of COVID-19 and with high blood viral excessive
type I IFN response causes activation of NFκB-related inflammatory
response associated with increased TNF-alpha and IL-6 synthesis
(Hadjadj et al., 2020). However, data describing the IFN-I signalling
in SARS-CoV-2 infection are inconclusive. Some studies found
intensified IFN-I response and expression of multiple IFN-
stimulated genes in bronchoalveolar lavage fluid (Wilk et al.,
2020; Zhou et al., 2020). Moreover, IFN-I response co-existed
with the TNF-alpha/IL-1β-driven inflammation was observed in
patients with severe COVID-19 (Lee et al., 2020; Lucas et al., 2020).
While, an excessive but delayed IFN-I immune response was shown
in mouse models during SARS-CoV-2 infection, associated with
increased infiltration and recruitment of monocytes and
macrophages into infected lungs and depleted T-cell responses
resulting in fatal pneumonia (Channappanavar et al., 2016).
Thus, impaired IFN-I signalling induced by SARS-CoV-
2 infection may cause an ineffective anti-tumour response and
tumour progression.

4.6 SARS-CoV-2 and cell cycle dysregulation

It has been suggested that the main oncogenic effect of SARS-
CoV-2 infection is cell cycle dysregulation. Non-structural proteins
3 (Nsp3) and 15 (Nsp15) of SARS-CoV-2 cause the degradation of
tumour suppressor proteins P53 and retinoblastoma (Rb),
respectively (Bhardwaj et al., 2012; Ma-Lauer et al., 2016).
Furthermore, it has been shown that the S2 subunit of SARS-
CoV-2 interacts strongly with the tumour suppressor P53 and
BReast CAncer gene 1/2 (BRCA 1/2) (Singh and Bharara Singh,
2020). Furthermore, the ring-finger ligand of the cellular
E3 ubiquitin ligase and zinc-finger domain of CHY1 (RCHY1)
are the interaction partners of the viral SARS-unique domain
(SUD) and papain-like protease (PLpro); the result engages
cellular p53 as an antagonist of coronavirus replication. Human
coronaviruses antagonise the viral p53 inhibitor by stabilising
RCHY1 and promoting RCHY1-mediated p53 degradation
(Policard et al., 2021). Another possible mechanism promoting
malignancies by SARS-CoV-2 is altering the activity of the
transcription factors E2F RB1. The transition from the G1 to the
S phase in the cell cycle is controlled by Rb by modulation of E2F
activity. It has also been shown that RB1 activity was significantly
decreased and E2F increased in patients with COVID-19. This
suggested that SARS-CoV-2 inactivates the tumour suppressor
Rb resulting in elevated E2F activity and promoting cell
proliferation like some other oncogenic viruses (Rahman et al.,
2021).
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Another possible mechanism responsible for the development of
cancer after SARS-CoV-2 infection may be the disruption of the
physiological process of apoptosis (Chaudhry et al., 2022). The N
protein, the core element of SARS-CoV-2, induces the
immunological effect and antibody production in the infected
host (Wu et al., 2023) and has a functional domain for RNA
binding and viral replication (Bai et al., 2021). The N protein
inhibits cell apoptosis by affecting an anti-apoptotic protein,
myeloid cell leukaemia-1 (MCL-1) protein (Akgul, 2009), and
Casp-3 cleavage (Elmore, 2007). Thus, the SARS-CoV-
2 component N protein may be one of the factors involved in
the oncogenic effect of SARS-CoV-2 infection (Pan et al., 2023).

The association between molecular mechanisms of SARS-CoV-
2 action and oncogenesis is presented in Figure 1.

4.7 The impact of SARS-CoV-2 on renin-
angiotensin system (RAS) function and the
development of haematological
malignancies

The disturbances of COVID-19 infection, among others, may
include lymphopenia, thrombocytopenia, and elevated D-dimer
levels (Costa et al., 2022). It has also been suggested that SARS-
CoV-2 infection influences the development of haematological
malignancies (Haznedaroglu and Malkan, 2016). The RAS occurring
in the bone marrow microenvironment regulates blood cell production
by autocrine, paracrine, and intracrine pathways. Moreover, RAS
regulates the proliferation, differentiation, and engraftment of
hematopoietic stem cells. Furthermore, angiotensin II type 1a
receptors localised on CD34+ hematopoietic cells increase the
production of hematopoietic progenitors in the bone marrow and
cord blood and thus has been suggested that abnormalities in local
RAS function in the hematopoietic system are involved in the

pathogenesis of leukaemias and other haematological malignancies
(Beyazit et al., 2007). Overactive ACE may cause the accumulation
of blasts in the bone marrow and their migration into circulation.
Moreover, elevated ACE levels decreased N-acetyl-seryl-aspartyl-lysyl-
proline tetrapeptide (AcSDKP) levels and impaired the antiproliferative
effect of goralatide on hematopoietic cells and blasts. Angiotensin may
also be an autocrine growth factor for acute myeloid leukaemia cells
(Wiese et al., 2020). SARS-CoV-2 enters cells by ACE2 and
downregulates ACE2 expression and suppresses the protective RAS
pathway (Nekooghadam et al., 2021). It may be a link between SARS-
CoV-2 infection and the development of haematological malignancies
in predisposed individuals. For example, the case of a 35-year-old man
without comorbidities diagnosed with acute lymphoblastic leukaemia
2 months after SARS-CoV-2 infection was described. A short period
between SARS-CoV-2 infection and the development of hematologic
malignancy has also been observed in a 36-year-old man diagnosed
with myelodysplastic syndrome with excess type 1 blast and in a 31-
year-old woman with acute myeloid leukaemia (AML) (Haznedaroglu
and Malkan, 2016). Moreover, significant deterioration of laboratory
tests and the onset of AML was reported in a patient with a severe,
complicated course of COVID-19 (Ioannidou et al., 2021). The
association between SARS-CoV-2 and acute leukaemia in children
has also been suggested. According to Graeves’ hypothesis, the virus
acting as a second triggering stepmay stimulate an exaggerated immune
response in the pre-leukemic clonal population, causing the
proliferation of leukemic cells (Chen et al., 2022).

4.8 SARS-CoV-2 and epigenetic changes
and genetic mutations

Epigeneticmodifications include changes in gene expressionwithout
changes in the underlying DNA sequence. DNA methylation and
histone modifications alter DNA accessibility and chromatin

FIGURE 1
The shared molecular mechanisms between SARS-CoV-2 oncogenesis.
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structure, resulting in gene expression patterns (Handy et al., 2011).
Moreover, transient changes in chromatin structure and post-
transcriptional modifications by non-coding RNAs (ncRNAs) result
in epigenetic modifications (Mattick et al., 2023). Such modifications
influence an individual’s susceptibility to infection and may be involved
in the development of cancer. SARS-CoV-2 infection is associated with
the methylation of the ACE2 receptor (Pinto et al., 2020). Moreover,
SARS-CoV-2 viral proteins interact with several host epigenetic enzymes
including histone deacetylases (HDACs) and bromodomain-containing
proteins, resulting in antagonism of cell signalling (Behura et al., 2023).
Furthermore, epigenetic factors upregulated by SARS-CoV-2, including
PRMT1, TRIM16,HDAC7,HDGF,DTX3L, and downregulated factors,
including PRDM1 and PPARGC1A, PADI3, FOXO1 and HELLS have
been described (Khan and Islam, 2021). In addition, several host
miRNAs target the SARS-CoV-2 genome. A high potential
interaction of miR-1307-3p with the 3′UTR of the SARS-CoV-
2 genome was found. This miRNA may also control the expression
of genes involved in cell survival and proliferation (BCL2, PI3K/Akt
pathway), and cellular trafficking (AP2, PIP5K) associated with viral cell
entry and spread (Balmeh et al., 2020). Moreover, dysregulation of
several miRNAs triggered by SARS-CoV-2 infection and their
association with suppression of TLRs, TRAF6 and IFN signalling
have been observed (Khan et al., 2020). Thus, it appears that SARS-
CoV-2 infection is involved in the development of cancer through
epigenetic mechanisms leading to a dysfunctional immune response.
However, further studies are needed to explain the epigenetic changes
associated with SARS-CoV-2 infection and their links to carcinogenesis.

4.9 SARS-CoV-2 and oncolytic effects

It is known that some viruses, natural or genetically modified, can
kill cancer cells by infecting them and intensively replicating, leading to
lysis (Mondal et al., 2020). Moreover, antiviral immune responses
associated with oncolytic virus infection can prevent the immune
escape of cancer cells (Wang et al., 2020b). Experimental studies
showed cytopathogenic effects of SARS-CoV-2 delta virus infection
on clear cell and papillary renal cell carcinoma (Choong et al., 2023).
Another study found SARS-CoV-2 to be an oncolytic virus in acute
leukaemia (Kandeel et al., 2021). Furthermore, tumour regression was
observed in colorectal cancer during acute infection with SARS-CoV-2
(Ottaiano et al., 2021). The proposed mechanism includes a direct
oncolytic effect (Ottaiano et al., 2021) and an enhanced immune
response against virus-infected cancer cells (Brown et al., 2017). Of
interest, colon cancer cells express ACE receptor and neurolipin (NRP-
1), which facilitate their infection by SARS-CoV-2 resulting in direct
cytotoxic T cell immune action (Daly et al., 2020). In addition, the
massive pro-inflammatory cytokine release induced by SARS-CoV-
2 infection, including IL-2, IL-6 and TNF-alpha attracts NK and
T cells to the neoplastic cells and enhances the immune response
(Pasin et al., 2020).

4.10 Reactivation of dormant cancer
cells (DCC)

SARS-CoV-2 infection can activate dormant cells that survive
cancer treatment, which is associated with reduced numbers and

activity of NK and T cells and altered activation of monocytes,
macrophages, and neutrophils (Anderson and Simon, 2020). One of
the lines of defence against pathogens is the neutrophil-derived
network-like structure of DNA strands and proteins called the
extracellular neutrophil trap (NET) (Barnes et al., 2020;
Francescangeli et al., 2020). The NET releases high
concentrations of anti-pathogen factors, creating a physical
barrier to pathogens. Recent data suggest that neutrophils and
NETs play an important role in the stimulation of dormant
cancer cells (DCC) (Francescangeli et al., 2020). It has been
suggested that the activity of proteases, elastases, and
metalloprotease 9 (MMP-9) results in the degradation of laminin,
revealing the formation of new epitopes that stimulate cell
proliferation and metastasis. The cytokine storm and NET
perturbations associated with SARS-CoV-2 infection may be
responsible for the stimulation of DCC. The main mechanism
appears to be the activation of the NF-kappa pathway by high
levels of IL-6, acting directly by increasing cell proliferation or
indirectly by creating an environment conducive to the
metastatic process (De Cock et al., 2016). It should also be noted
that the prolonged immune response to SARS-CoV-2 infection is a
cause of immune system exhaustion. It favours the activation of
DCC (Qin et al., 2020).

4.11 The disruption of the tumorigenic
environment, immune inhibition,
surveillance, and immunosuppression

SARS-CoV-2 infection with immune system suppression and
immunosuppression creates an optimal tumourigenic environment
for pre-malignant, malignant, and dormant cells. Similarly,
inflammatory infiltrates and high levels of cytokine expression in
the tumour microenvironment have been reported, particularly in
the later stages of the disease (Grivennikov and Karin, 2010;
Grivennikov and Karin, 2011). As mentioned above, a hyper-
stimulated immune response and a subsequent cytokine storm
have been observed in SARS-CoV-2 infection. This results in a
feedback loop that cannot bemediated by anti-inflammatory factors,
and subsequent systemic inflammation in which TNF-alpha and IL-
6 play a key role in cancer progression (Balkwill, 2009; Grivennikov
et al., 2010). Moreover, activation of the NLRP3 inflammasome
plays an important role in promoting tumour growth and metastasis
in both SARS-CoV-2 infection and some cancers, including breast,
colon, lung, and cervical cancers (He et al., 2006; Guo et al., 2016;
Moossavi et al., 2018; Freeman and Swartz, 2020). Another factor
associated with SARS-CoV-2 infection that favours the progression
of tumourigenesis is lymphocyte functional exhaustion, which
causes gradual attrition of effector functions within T-cell
populations, accompanied by metabolic perturbations, impaired
memory retrieval, disrupted homeostatic self-renewal and
changes in epigenetic programming. These changes are associated
with increased activation of these lymphocytes by elevated levels of
IFN-γ and TNF-alpha. The depletion of functional capacity within T
lymphocytes impairs their ability to effectively inhibit tumour
progression (du Plessis et al., 2022; Baitsch et al., 2011;
Watowich et al., 2023; Saka et al., 2020; Slaney et al., 2013; Chen
et al., 2021).
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5 Potential impact of antiviral therapy
on cancer

Some approved drugs are currently available for the treatment of
COVID-19 including remdesivir andmolnupiravir. Several of themmay
increase the risk of cancer. It has been shown that remdesivir, but not
monupiravir, induced lytic reactivation of Kaposi’s sarcoma-associated
herpesvirus (KSHV), and EBV, the two major oncogenic herpesviruses,
in one patient (Chen et al., 2022). Furthermore, KSHV + patients,
especially in endemic areas exposed to SARS-CoV-2 or undergoing
treatment, may increase the risk of the development of virus-related
cancers, even after fully recovering from COVID-19 (Chen et al., 2021).
On the other hand, the spontaneous immunological reaction to SARS-
CoV-2 infection may induce an anti-tumour response (Challenor and
Tucker, 2021). Alleviation of lymphadenopathy in a patient with classical
Hodgkin’s lymphoma (EBV-positive) after infection with SARS-CoV-
2 has been reported (Challenor and Tucker, 2021).

Glucocorticoid therapy is used as one of the therapeutic options
in the severe course of COVID-19 (Garassino et al., 2020; Sahu et al.,
2021). It has been shown that the risk of death in patients receiving
oxygen therapy with and without invasive mechanical ventilation
was reduced by 35% and 20%, respectively after dexamethasone
treatment (Horby et al., 2021). In addition, treatment with
glucocorticoids in the severe course of COVID-19 decreased IL-6
levels (Xiang et al., 2020). IL-6 is a tumorigenic driver, an anti-
apoptotic signal, and a pivotal biomarker in cancer diagnosis and
prognosis (Ryan et al., 2014). Therefore, it would be crucial to assess
not only the protective effect of IL-6 inhibitors on inflammation
caused by COVID-19 but also their therapeutic implications in
cancer therapy (Turnquist et al., 2020).

6 Long-COVID and potential long term
effects of SARS-CoV-2 infection

Long-COVID is a term first used in social media to describe the
occurrence of symptoms associated with SARS-CoV-2 infection,
regardless of the viral status (Raveendran et al., 2021). Currently, it
is estimated that 65 million people worldwide have long-COVID
(Ballering et al., 2022). In people with a long COVID, the
occurrence of one or more symptoms of acute COVID-19 or the
presence of new symptoms was observed. In addition, long-COVID
may be continuous or recurrent and reversible. The most frequent
symptoms of long-COVID include fatigue, reduced quality of life,
shortness of breath, arthralgia, and chest pain (Ballering et al., 2022).
The impact of long-COVID on the course and outcome of cancer
patients has been demonstrated (Cortellini et al., 2022; Monroy-Iglesias
et al., 2022; Dagher et al., 2023). Long-COVID was associated with
elevated levels of pro-inflammatory cytokines and an impaired T-cell
response that persisted several months after the infection was resolved
(Hempel et al., 2020). Studies assessing the oncogenic effects of long-
COVID are necessary. The possible development of cancer and
acceleration of cancer progression associated with SARS-CoV-2’s
ability to modulate oncogenic pathways, promote low-grade chronic
inflammation, and cause tissue damage should prompt thoughtful,
long-term clinical trials (Saini and Aneja, 2021).

Another potential oncogenic effect of SARS-CoV-2 infection
may be associated with the development of chronic conditions

related to an increased risk of cancer. Increased prevalence of
obesity in children and adolescents (Anderson et al., 2023) and
obesity, pre-diabetes and diabetes in adults (Stiegmann et al., 2023)
during the COVID-19 pandemic were shown. It has been suggested
that COVID-19-induced diabetes is a novel form associated with
beta-cell damage and insulin resistance caused by SARS-CoV-
2 infection (Joshi and Pozzilli, 2022). Multiple abnormalities,
including glucose and lipid metabolism, abnormal cytokine and
adipokine profiles, and enhancement of insulin/IGF-1 signalling are
associated with the development of cancer-related to obesity (Scully
et al., 2021).

7 Conclusion

Both the SARS-CoV-2 pandemic and its aftermath pose extreme
challenges to health systems. Recent studies suggest pathogenetic
mechanisms common for both SARS-CoV-2 and oncogenesis.
SARS-CoV-2 exploits host immunity stimulates signalling and
oncogenic pathways and may establish an oncogenic
microenvironment. Persons with clinically recovered COVID-19
show profound immune alterations that persist for several months
after hospital discharge. Patients with cancer are at higher risk of SARS-
CoV-2 infection, severe clinical illness, cancer progression and death.
Therefore, this group of patients requires special care in terms of
adequate prevention of viral transmission and monitoring of the
course of the primary disease. Further studies are needed to
determine the long-term impact of asymptomatic or mild symptoms
of SARS-CoV-2 infection on the course of the primary disease in cancer
patients. Moreover, all patients should be regularly screened for cancer
after SARS-CoV-2 infection, as the virus has been shown not only to
affect cancer progression but also to induce oncogenesis and cancer
recurrence. It should also be noted that cases of a beneficial effect of
SARS-CoV-2 infection on the course of the neoplastic process have
been described. It is therefore necessary to carry out both experimental
and clinical studies that will resolve the existing doubts in the long term.
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