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Introduction: Chronic Suppurative Otitis Media (CSOM) and Middle Ear
Cholesteatoma are two common chronic otitis media diseases that often
cause confusion among physicians due to their similar location and shape in
clinical CT images of the internal auditory canal. In this study, we utilized the
transfer learningmethod combinedwith CT scans of the internal auditory canal to
achieve accurate lesion segmentation and automatic diagnosis for patients with
CSOM and middle ear cholesteatoma.

Methods: We collected 1019 CT scan images and utilized the nnUnet skeleton
model along with coarse grained focal segmentation labeling to pre-train on the
above CT images for focal segmentation. We then fine-tuned the pre-training
model for the downstream three-classification diagnosis task.

Results: Our proposed algorithm model achieved a classification accuracy of
92.33% for CSOM and middle ear cholesteatoma, which is approximately 5%
higher than the benchmark model. Moreover, our upstream segmentation task
training resulted in a mean Intersection of Union (mIoU) of 0.569.

Discussion: Our results demonstrate that using coarse-grained contour boundary
labeling can significantly enhance the accuracy of downstream classification tasks.
The combination of deep learning and automatic diagnosis of CSOM and internal
auditory canal CT images of middle ear cholesteatoma exhibits high sensitivity and
specificity.

KEYWORDS

chronic suppurative otitis media (CSOM), middle ear cholesteatoma, CT images,
computer-aided diagnosis (CAD), transfer learning (TL)

Introduction

Otitis media is a prevalent ear disease that affects a significant portion of the global
population, with an estimated 65 to 350 million individuals affected worldwide (World
Health Organization, 2004). In developing countries, the prevalence of Chronic Suppurative
Otitis Media (CSOM) ranges from 0.4% to 33.3% (Kaur et al., 2017). Our study mainly
focuses on non-invasive temporal bone CT images, in order to help clinicians quickly get a
relatively accurate preliminary diagnosis and lay the foundation for further judgment of
whether patients need surgical treatment.
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Otitis media is classified into three categories: acute otitis media,
chronic otitis media (COM), and middle ear cholesteatoma. Chronic
otitis media typically exhibits more pronounced pathological changes
on CT images due to its protracted course, whereas acute otitis media
does not usually display this characteristic. Consequently, it is often
recommended that patients with chronic otitis media undergo internal
auditory canal CT scan to assess their condition. Chronic otitis media is
further divided into two subcategories: chronic non-suppurative otitis
media and chronic suppurative otitis media (CSOM) (Schilder et al.,
2017). CSOM and Middle Ear Cholesteatoma are two typical otitis
media diseases that are diagnosed primarily through temporal bone CT
scans (Fukudome et al., 2013; Lustig et al., 2018). CSOM typically occurs
following improper treatment of acute otitis media, often resulting in
tympanic membrane perforation and persistent middle ear purulence
(Ahmad et al., 2022). Middle ear cholesteatoma, on the other hand, is
the pathological outcome of abnormal accumulation of keratin
squamous epithelium, primarily composed of keratinized, exfoliated
epithelium. It often accumulates in the middle ear, with a tendency to
erode the ossicular chain, tympanic wall, and/ormastoid area (Sun et al.,
2011; Jang et al., 2014).

Clinicians usually identify CSOM and middle ear cholesteatoma
through CT scanning of the internal auditory canal. However, CT
reports of these two types both show erosion and/or loss of the ossicular
chain with diffuse abnormal soft tissue shadow (Madabhushi and Lee,
2016). Theoretically, the two types differ in bone erosion margins and
soft tissue shadow contours: The soft tissue shadow of cholesteatoma
has a smooth, clear outline, while that of CSOM lacks a clear outline and
is often accompanied by pus accumulation. In addition, the edge of the
bone erosion caused by CSOM is serrated, while bone destruction
caused by cholesteatoma is frequently surrounded by a ring of sclerosis.
Therefore, our group proposed using deep learning to differentiate
between CSOM and cholesteatoma to achieve more accurate clinical
diagnoses based on the theoretical differences between these two
diseases (Kemppainen et al., 1999; Yorgancılar et al., 2013).

Deep learning techniques have seen widespread use in the medical
field in recent years, enabling the extraction of key features from patients
to facilitate predictivemodeling (Elfiky et al., 2018). Transfer learning is a
deep learning technique that involves leveraging knowledge gained from
solving one problem to address another related problem. It is particularly
useful when the amount of labeled data for the target task is limited. By
leveraging transfer learning, a pre-trained model developed for one task
can be fine-tuned and adapted for another task with different data but
similar features. This approach enables the model to benefit from the
knowledge learned by the pre-trained model on a larger dataset and
adapt it to the new task by making only minor adjustments to the
model’s architecture or parameters. A bunch of researches have
uncovered that superiority of transfer learning over traditional
strategy. S. Deepak implement brain tumor classification using deep
CNN features via transfer learning (Deepak and Ameer, 2019). For
tuberculosis detection, a VGGNet based model had been proposed
combining transfer learning (Ahsan et al., 2019). Dube S presented an
automatic content-based image retrieval system for brain tumors on
contrast-enhanced MRI (Dube et al., 2006).

Given the small morphological differences between various
types of otitis media, the challenge of manual identification, and
the unclear contour of lesions, we sought to establish a transfer
learning framework by integrating coarse-grained labeled contour
information as pre-trained data and employing the CNN model

skeleton to extract high-level features from internal auditory canal
CT images. Specifically, the deep representation of images obtained
through pre-training was utilized to accurately classify CSOM,
middle ear cholesteatoma, and normal samples in downstream tasks.

In conclusion, this paper’s key contributions are:

1. We propose a transfer learning-based framework that utilizes
coarsely annotated segmentation data as input for pretraining
the model. The proposed model effectively extracts implicit
information from the data and can subsequently be used for
classification prediction.

2. We propose an end-to-end learning model that can effectively
improve the accuracy of middle ear infection classification
prediction. Our proposed model outperforms non-pretrained
models in all metrics.

3. In the field of deep learning combined with medicine, we look
forward to replacing the heavy and repetitive manual labeling
task with more mature machine automated labeling.

4. Our combination of otological diseases and computer learning
can increase the coverage of related research and provide more
precise and diversified help for clinicians in diagnosis
and treatment.

Materials and methods

Data acquisition

We conducted a retrospective study at Zhongshan Hospital
Affiliated to Xiamen University to investigate patients diagnosed
with otitis media and middle ear cholesteatoma from 2012 to 2021.
This study was approved by the ethics committee and informed
consent was waived due to the retrospective nature of the study. The
inclusion criteria for the study were based on pathology or medical
history, ear examination, audiogram, and imaging examination of
the surgical side of the ear. We referred to the previous medical
records of the hospital to obtain specific diagnosis results. A total of
6,967 axial high-resolution CT images of temporal bone were
collected from 180 patients, including 27 female patients with
middle ear cholesteatoma, 31 male patients with middle ear
cholesteatoma; 50 female patients and 51 male patients with
chronic otitis media, including 40 females and 39 males with
CSOM, and Chronic otitis media with effusion, including
10 females and 12 males. Besides, there were 15 normal controls
(6 females and 9 males), and 2 children with middle ear
cholesteatoma, 2 children with CSOM (less than 10 years old),
and 2 normal controls. Except for children, the patients collected
were between 30 and 80 years of age. All the patients information
has been shown in Table 1.

The CT features of chronic otitis media with effusion (COME)
are often very similar to those of chronic suppurative otitis media
(CSOM), with both conditions typically presenting with varying
degrees of effusion in mastoid cells. As such, we excluded a total of
412 axial CT data from 22 patients diagnosed with COME. For each
patient, we selected approximately 10–20 CT images that showed
well-defined lesions. Ultimately, we used 410 CSOM CT images,
398 middle ear cholesteatoma CT images, and 211 normal CT
control images for our analysis.
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CT scanner settings

Temporal bone CT is derived from GE LightSpeed 64-row
volume CT. Its detector is the core technology of multi-slice
spiral CT. The detector arrangement adopts 64 × 0.625 mm
detector unit to ensure the maximum coverage of 40 mm/circle
at present, and at the same time, it can also perform sub-millimeter
thick scanning in any mode. The isotropic resolution is up to
0.30 mm, which ensures a large range of volume acquisition and
high resolution acquisition. The CT imaging parameters used were
as follows: CT collimator 128 × 1.0 mm, field of view 220 × 220 mm,
matrix size 1,024 × 1,024, voltage 120 kV, current 240 mAs, and
axial CT slice number 30–50 per scan.

Data marking

The CT findings of chronic suppurative otitis media are often
difficult to distinguish frommiddle ear cholesteatoma. To accurately
identify middle ear cholesteatomas, we marked local or isolated
cholesteatomas in the erosion area of the incudostapedial joint or
hammer-incus joint in the rotation plane of the middle tip of the
cochlea. We also highlighted areas of bone destruction within the
tympanic sinus, epitympanic region, or mastoid process in other
levels. Additionally, we marked any irregular soft tissue shadows
with smooth edges on any plane. In contrast, when marking CT
images of suppurative otitis media, we identified the soft tissue
shadow around the auricle in the tympanic cavity, the sclerotic

TABLE 1 The collected patients information.

Female
(30–80 years
old)

Male (30–80 years old) Pediatric patients (<10 years old)

Middle Ear Cholesteatoma 27 31 2

CSOM 40 39 2

Chronic Otitis Media with Effusion 10 12 0

Normal 6 9 2

Totall 83 91 6

Data sources: Zhongshan Hospital Affiliated to Xiamen University.

Note: numbers represent the quantity of patients.

FIGURE 1
Schematic representation of labeling and pre-trained model predictions for middle ear cholesteatoma and CSOM. ((A, B) are cholesteatomas, and
(C, D) are CSOM).
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hyperplasia part of the mastoid, and the bone with uniform density
and serrated edge in the tympanic sinus at the vestibular level. These
characteristics helped distinguish them from the sclerosing ring that
is formed by the compression of a cholesteatoma. At the apical spiral
layer of the cochlea, we marked the hammer-incus joint of the
ossified epitympanic, the “ice cream cone-like structure,” and the
serrated bone around the mastoid cavity and sinus. At the bottom
spiral level of the cochlea, we marked the thickened mucosa on the
promontory surface. Finally, at the mastoid level, we marked the
erosion of the mastoid bone and the thickening of the mucous
membrane caused by suppurative effusion (Gomaa et al., 2013;
Zelikovich, 2004). We provide visual examples of typical lesion
markers and predictions for these two diseases in Figure 1.

The original data was stored in the Dicom format, which we
converted into PNG image data using MicroDicom software. This
step allowed us to separate the patient’s personal information from
the image, thereby ensuring patient privacy.

To mark the lesion area on each image, we enlisted the help of a
team consisting of five professional otolaryngologists and two
radiologists. They used polygonal markers on LabelMe software
to eliminate background interference and generate unified
coordinates for each lesion area.

Data pre-processing

To improve the robustness of our model, we applied various
image data augmentation and processing techniques during the
training process. Specifically, we randomly transformed the input
images by performing horizontal and vertical translations, flipping,
rotation, slight scaling, and adjustments to hue, contrast, and
numerical values.

In order to balance the size of our training model and the time
required for training, we scaled all images to a uniform size of 224 ×
224 using bilinear interpolation. This allowed us to efficiently process
and train on a large dataset of images while still maintaining a high level
of accuracy and performance in our final model.

Model architecture and training strategy

We utilized the nnUnet (Isensee et al., 2021)architecture as the
foundation for our deep learning model to extract critical features
from CT images. This model has demonstrated exceptional
performance in various medical image segmentation tasks. Our
model consists of two branches: coarse-grained segmentation task
and exact classification task.

In our workflow, we first pre-trained a model for lesion
segmentation, which includes the nnUnet skeleton and a
pixel-level prediction head that outputs three classification
results for each pixel: CSOM, middle ear cholesteatoma, or
normal samples. On the back of the above-mentioned process,
our goal was to acquire a well-trained backbone that could extract
underlying information containing pixel-level features, which
would then be fine-tuned for picture-level classification. We
trained this model using the gradient descent algorithm until
convergence was achieved.

The nnUNet model is composed of an encoder and a decoder. The
encoder reduces the image size layer by layer while capturing features of
varying granularity fromdifferent images. It consists of seven layers, each
containing {1, 3, 4, 6, 6, 6, 6} blocks, with each block containing two
convolutional layers, two activation layers, and two normalization layers.
Successive layers are directly connected with a pooling layer, which
reduces the image size by half. The first layer of the encoder contains
32 features, and the number of features in each subsequent layer doubles
but does not exceed the maximum number of features, which is 512.

The decoder has six layers, each consisting of {2, 2, 2, 2, 2, 2}
blocks. These layers use linear interpolation upsampling to increase
the image size. The encoder and decoder are connected using
residual layer hopping. The decoder outputs the hidden variables
of the image as inputs to both the pixel-level projection head and the
image-level projection head for further processing.

Once the model was successfully trained, we extracted the
hidden variables before the pixel-level prediction head of the
image as inputs for the downstream classification prediction
head. This allowed us to efficiently classify images with high
accuracy by leveraging the previously extracted features.

We employed a five-fold cross-validation approach to train and
evaluate our model (see Figure 2). Given that a series of adjacent CT
images from the same subject tend to exhibit strong similarities, we
took care to avoid overfitting due to data leakage. Specifically, during
the training process, we randomly divided the dataset into a training
set and validation set at a ratio of 4:1, based on the subject’s name.
This ensured that CT images from the same subject were assigned to
either the training or validation set, but not both.

Our models were compiled using Python 3.8, trained with
PyTorch version 1.10, and accelerated with Nvidia A100 high-
performance GPUs. During the training process, we set the
maximum training epoch to 500 epochs, with a training batch
size of 8 samples. We used Adam as the model optimizer, with
an initial learning rate of 0.001. The dynamic learning rate decreased
gradually with each increase in training batch until it reached 10e-5.
For pre-training optimization, we utilized the cross-entropy of each
pixel classification of the image. Downstream training utilized the
cross-entropy of the image classification as the loss function. Our
specific workflow is depicted in Figure 3 for further visualization.

(The pre-training phase uses the pixel-level labels of route A to
train the CNN, and the pixel predictor is responsible for output the
category of each pixel. When performing the downstream picture
classification task, according to route B, the pre-trained model is
used to fine-tune the neural network through the category classifier,
and the final picture prediction result is output.)

Result

In the upstream segmentation task, our deep learning model
achieved a mean Intersection of Union (mIoU) index of 0.5376,
indicating excellent performance in accurately removing
background noise. Subsequently, we employed this well-
performing model for the downstream fine-tuning step, where we
aimed to classify otitis media into three distinct categories. Our
model achieved a micro-f1 index of 92.33%, a significant
improvement of 4.83% compared to the benchmark model.
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On the other hand, the pre-trained model exhibits an overall
area under the receiver curve of 0.9689, which is slightly higher
than that of the benchmark model which reach 0.9603. As is
depicted in Figure 4, it can be observed that the performance in
distinguishing chronic suppurative otitis media (CSOM) is the
best, by a margin of 8.15%, as is showed in Table 2. These results

indicate that the pre-trained model has a superior ability to
accurately classify CSOM cases compared to the benchmark
model. These results highlight the potential of deep learning
technology in medical image analysis and its ability to
significantly improve diagnostic accuracy and
treatment outcomes.

FIGURE 2
Schematic diagram of five-fold cross validation.

TABLE 2 Comparison of results.

Accuracy Auc

nnUnet Normal vs. the others 0.8732 ± 0.1694 0.9558 ± 0.0454

CSOM vs. the others 0.8619 ± 0.0776 0.9695 ± 0.0212

Cholesteatoma vs. the others 0.9013 ± 0.0394 0.9555 ± 0.0242

p_nnUnet Normal vs. the others 0.8873 ± 0.1593 0.9530 ± 0.0526

CSOM vs. the others 0.9434 ± 0.0343 0.9916 ± 0.0069

Cholesteatoma vs. the others 0.9290 ± 0.0170 0.9622 ± 0.0316

p represents the fine-tuning results after using the pre-trained model. The above results are the means after five-fold cross-validation. The mIoU index is used to describe the average ratio of

intersection and union of all pixel categories in the image segmentation task. In this experiment, the background normal tissue categories were removed to obtain more accurate prediction

results. mIoU is described as follows.

FIGURE 3
Transfer learning strategy.
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mIoU � 1
D| | ∑i∈D

TPi

TNi + FPi + FPi

Note: In the above equation, FN is the false negative class, FP is
the false positive class, FP is the true class, and D represents the
CSOM and cholesteatoma set.

On the other hand, we demonstrate the disparity in accuracy
between AI models and manual diagnosis by clinicians. We
intentionally randomized and combined a total of 1013 CT images of
middle ear cholesteatoma, CSOM, and normal control images, while
effectively concealing the actual diagnostic labels. These images were then
distributed to both the manual diagnosis group and the model diagnosis
group for a double-blind evaluation of diagnostic accuracy. The
comprehensive test results are shown in Tables 3, 4, and it can be
observed that CSOMand cholesteatoma exhibit a highmisdiagnosis rate.

Our experimental results show that in the otitis media
classification task, the use of contour boundary labeling can well
improve the accuracy of downstream classification tasks, and the
area under the receiver operating characteristic curve is better than
that of the non-pre-trained model shown in Figure 4. These results
indicate that the predictive power of our model on this task has the
possibility of real-world application.

(p-represents the fine-tuning results after using the pre-
trained model. In the multi-classification ROC curve, the
positive samples belong to a particular category while the
negative samples belong to all other categories combined.
Based on this distinction, the true positive rate and false
positive rate have been accurately calculated).

Discussion

Otitis media is characterized by a prolonged course of illness,
high incidence, easy recurrence, conductive deafness, and potentially
fatal intracranial infection (Otten and Grote, 1990; Hutz et al., 2018).
A case analysis conducted in a public hospital in the United States
revealed that the incidence of postoperative complications
associated with complex chronic otitis media with middle ear
cholesteatoma was similar to that observed in developing regions
(Greenberg and Manolidis, 2001). As a result, early diagnosis,
intervention measures, and clinical management of this disease
are especially crucial, regardless of whether one resides in
developed or developing regions. In our study, we utilized CT
images of CSOM and middle ear cholesteatoma labeled by

FIGURE 4
Receiver curves for each category of the model.

TABLE 3 Diagnostic accuracy results of manual diagnostic group.

The clinical experts (n = 3)/Real diagnose (n = 3,039) COSM (n = 1,182) Cholesteatoma (n = 1,224) Normal (n = 633)

CSOM 948 (80.20%) 489 (39.95%) 48 (7.58%)

Cholesteatoma 222 (18.78%) 708 (57.84%) 9 (1.42%)

Normal 12 (1.01%) 27 (2.20%) 576 (90.99%)

The horizontal represents the actual diagnosis results, while the vertical represents the manual diagnosis results.
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medical experts as the training set for our algorithmic model. Our
algorithm model accurately predicted unlabeled CT images with a
high degree of precision, achieving excellent agreement between
predicted lesion types and actual clinical findings.

So far, CT scan and Endoscopy of ear, as the classical methods
for the diagnosis of various types of otitis media, are still the latest
diagnostic methods (Gomaa et al., 2013; Zelikovich, 2004). The
golden standard for the diagnosis of CSOM and middle ear
cholesteatoma is intraoperative histopathological examination.
However, it takes a long time to make a preliminary diagnosis of
one single patient. Despite efforts to reduce the prevalence of
Chronic Suppurative Otitis Media (CSOM) in underdeveloped
areas, clinical diagnosis, treatment, and prognosis of the disease
remain suboptimal. Recent epidemiological investigations have
shown that CSOM has shifted to a population dominated by
adults, despite a decrease in overall prevalence during the past
2 decades (Orji et al., 2016). Additionally, an Australian survey
highlighted the high incidence of CSOM and middle ear
cholesteatoma among impoverished individuals and the need for
early diagnosis (Benson and Mwanri, 2012).

Deep learning has emerged as a valuable tool in various medical
fields. A substantial amount of research on deep learning applied to
clinical datasets, using high-quality medical examination images,
has showcased its efficacy in defining patient categories, identifying
and locating lesions, and other relevant tasks (Wang et al., 2020).
With our transfer learning model, medical researchers can avoid the
time-consuming and resource-intensive process of training models
from scratch, while also benefiting from the wealth of knowledge
captured in existing non-medical datasets. In the field of
computational vision, pre-trained models have become a
commonly used tool in many applications, particularly in
addressing medical imaging challenges. These challenges can
arise from imaging modalities such as X-ray, Magnetic
Resonance Imaging (MRI), CT scan, and Ultrasound data. Many
works have demonstrated the potential of pre-trained models to
improve diagnostic accuracy, reduce processing time, and assist in
the development of automated diagnosis systems. Our transfer
learning model could also be used in other diseases which need
CT scan or endoscope or any examinations that take images as the
method to diagnose. Once the medical examination images are too
similar to find the differences, our model could give several
suggestions in differential diagnosis based on the previous history
image labels.

Among the different types of otitis media, there are varying
methods for diagnosis and treatment. However, the CT image
features tend to be similar across these types, which can pose
challenges for clinicians in terms of differential diagnosis. Such
challenges can lead to delays in proper treatment, and potentially
result in errors or overmedication. Moreover, the COVID-19

patients were found to have relationship with Otitis media (Choi
et al., 2022), they demand to be diagnosed earlier than before, as
otitis media always intend to recurrence and even cause
Sensorineural-hearing-loss (Xia et al., 2022). As a result,
achieving rapid differential diagnosis for otitis media is crucial to
ensure optimal patient outcomes, in this situation, an efficient
diagnosis can be given using our transfer learning model.

However, our transfer learning models have shown some
limitations in classifying certain ear diseases. For instance, when
differentiating between secretory otitis media and suppurative otitis
media, deep learning models tend to confuse the two because their
CT scans are very similar. This could be attributed to inadequate
data sets. As such, there is a need for more comprehensive and
diverse medical data to improve the accuracy of diagnostic models
used to differentiate between various ear diseases. Moreover, our
model showed significant differences in lesion information
extraction. For instance, some predicted lesions would perform
fewer or more lesions compared to those marked by medical
experts. Also, in images with unclear lesions, there were
discrepancies in identifying the lesion. For example, the images
of the mastoid layer of chronic suppurative otitis media often have
varying degrees of mucosal thickening due to chronic inflammation,
while the images of the mastoid layer of chronic secretory otitis
media show fluid levels caused by chronic effusion. These conditions
are quite similar, with only slight differences in the contour of the
mucosal within the mastoid bone. In most cases, our transfer
learning networks could detect and label prominent lesions such
as large soft tissue shadow of middle ear cholesteatoma, eroded bone
structure surrounded by soft tissue shadow, and eroded bone
structure of chronic suppurative otitis media. Unfortunately, the
CT images of chronic otitis media with effusion (COME) do not
have the typical erosive features of CSOM and middle ear
cholesteatoma. Therefore, our research group excluded the CT
images of chronic secretory otitis media and focused solely on
collecting CT images of middle ear cholesteatoma and chronic
suppurative otitis media as the objects of our study. In the
future, when the amount of data collection is large enough, we
will continue to promote the application of new migration models to
this type of classification project.

What’s more, due to the limited clinical applications of deep
learning and the laborious, time-consuming nature of acquiring
supervised data such as lesion regions, our research group aims to
identify alternative weakly supervised signals for model transfer
learning pre-training. “Human-in-the-loop” is an effective
interactive mode between doctors and models, which can provide
weakly supervised signals and ensure continuous learning of the
model. This approach also represents a practical scenario for the
clinical application of the model. This can help reduce manual
labeling costs and improve overall prediction performance. In the

TABLE 4 Diagnostic accuracy results of model diagnosis group.

The AI model/Real diagnose (n = 1,013) COSM (n = 394) Cholesteatoma (n = 408) Normal (n = 211)

CSOM 336 (85.28%) 16 (3.92%) 7 (9.52%)

Cholesteatoma 44 (11.17%) 336 (82.35%) 2 (0.95%)

Normal 14 (3.55%) 20 (4.90%) 188 (89.52%)

The horizontal represents the actual diagnosis results, while the vertical depicts the diagnostic outcomes of the deep learning model.
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future, we hope to replace the repetitive, cumbersome task of manual
labeling with more advanced machine automated labeling
techniques in the field of deep learning combined with medicine.

Regarding the types of otological diseases combined with deep
learning models, there are few studies on using detection results of
acoustic immittance, acoustic reflex, and pure tone hearing
threshold to achieve accurate predictions, prognosis, and
treatment. Additionally, while otitis media and vertigo have
received significant research attention, other diseases such as
otosclerosis, ear tumors, and sudden neurotropic hearing loss
remain understudied. Future research on combining otological
diseases with computer learning may increase the coverage of
relevant studies and provide clinicians with more precise and
diverse tools for diagnosis and treatment.
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