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Background: Although the exact mechanisms of nonalcoholic fatty liver disease
(NAFLD) are not fully understood, numerous pieces of evidence show that the
variations in mitochondrial DNA (mtDNA) level and hepatic Fibroblast growth
factor 21 (FGF21) expression may be related to NAFLD susceptibility.

Objectives: The main objective of this study was to determine relative levels of
mtDNA copy number and hepatic FGF21 expression in a cohort of Iranian NAFLD
patients and evaluate the possible relationship.

Methods: This study included 27 NAFLD patients (10 with nonalcoholic fatty liver
(NAFL) and 17 with non-alcoholic steatohepatitis (NASH)) and ten healthy subjects.
Total RNA and genomic DNA were extracted from liver tissue samples, and then
mtDNA copy number and FGF21 expression levels were assessed by quantitative
real-time PCR.

Results: The relative level of hepatic mtDNA copy number was 3.9-fold higher in
patients than in controls (p < 0.0001). NAFLD patients showed a 2.9-fold increase
in hepatic FGF21 expression compared to controls (p < 0.013). Results showed that
hepatic FGF21 expression was positively correlated with BMI, serum ALT, and AST
levels (p < 0.05). The level of mitochondrial copy number and hepatic
FGF21 expression was not significantly associated with stages of change in
hepatic steatosis. Finally, there was a significant correlation between
FGF21 expression and mitochondrial copy number in NAFLD patients (p = 0.027).

Conclusion: Our findings suggest a considerable rise of hepatic FGF21 mRNA
levels and mtDNA-CN and show a positive correlation between them in the liver
tissue of NAFLD patients.
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Introduction

Chronic liver diseases are rapidly growing as health priorities
globally. Fatty liver disease can occur in the setting of both
nonalcoholic fatty liver disease (NAFLD) and alcoholic liver
disease (ALD) (Toshikuni et al., 2014). NAFLD is among the
most prevalent chronic liver disorders worldwide, with a pooled
global prevalence of 25.24% and over the past 2 decades there has
been a steady increase in its incidence across many populations.
(Mitra et al., 2020). NAFLD is characterized by steatosis affecting
more than 5% of hepatocytes in individuals who do not consume
excessive amounts of alcohol, do not have other liver diseases, and
do not take steatogenic drugs. The histological spectrum of NAFLD
comprises nonalcoholic fatty liver (NAFL), which involves steatosis
without hepatocellular injury, and steatohepatitis (NASH), which
involves inflammation and hepatocyte ballooning degeneration in
addition to steatosis. Patients with NAFLD can progress to fibrosis,
and ultimately, cirrhosis (Chalasani et al., 2012; Younossi et al.,
2018). Patients with cirrhosis are at risk of potentially life-
threatening liver-related complications such as portal
hypertension, hepatic failure, and hepatocellular carcinoma
(Ascha et al., 2010; Bhala et al., 2011; Nusrat et al., 2014).
Knowledge about the mechanisms that are potentially involved in
the pathogenesis of NAFLD is still incomplete. However, new
evidence suggests that the pathogenesis of NAFLD involves
complex mechanisms collectively referred to as the “multiple
parallel hits hypothesis”. This theory proposes that multiple
components act in parallel to contribute to the development of
NAFLD, rather than in a linear series (Lonardo et al., 2017; Caturano
et al., 2021). According to this theory, these factors are believed to
play role in the development of NAFLD: insulin resistance (IR),
genetic and epigenetic factors, mitochondrial dysfunction,
endoplasmic reticulum stress, microbiota, chronic low-grade
inflammation, and dysfunction of adipose tissue (Acierno et al.,
2020).

The pathogenesis of NAFLD is impacted by changes in the
mitochondria, such as mitochondrial DNA depletion, as well as
modifications in the beta-oxidation and respiratory chain functions.
(Pessayre and Fromenty, 2005). If mitochondrial and peroxisomal
functions are unable to handle the increased lipid flow, it can cause
respiratory oxidation to collapse, leading to disruption in lipid
balance, production of harmful metabolites, and an excess of
reactive oxygen species (ROS) (Begriche et al., 2006; Wang et al.,
2020). These events contribute to oxidative stress, hepatic necro-
inflammatory processes, and worsening of mitochondrial damage.
In fact, it has been proven that mitochondrial dysfunction is directly
associated with IR, obesity, and the release of pro-inflammatory
cytokines levels like tumor necrosis factor-alpha (TNF-α) (Paradies
et al., 2014). Furthermore, ROS and oxidized low-density
lipoprotein (LDL) cholesterol particles can activate Kupffer and
hepatic stellate cells, leading to the deposition of collagen and the
progression of liver fibrosis (Cusi, 2009).

In addition, endoplasmic reticulum (ER) malfunction
probably leads to accumulation of unfolded proteins inside the
ER, increased protein synthesis, reduction of Adenosine
triphosphate (ATP), and activation of the unfolded protein
response (UPR). UPR is a compensatory response to decrease
protein synthesis, increase protein trafficking capacity through

the ER, and increase protein degradative pathways (Wang and
Kaufman, 2014). UPR failure to solve the protein-folding defect,
may induce hepatocytes apoptosis.

Based on the mentioned multi-hit hypothesis, and factors like
ATP deficiency, increased lipid flow, and dysfunction of beta-
oxidation which are directly linked to mitochondria, several
studies have suggested that NAFLD might be a mitochondrial
disease (Begriche et al., 2006; Dornas and Schuppan, 2020; Xu
et al., 2021). This condition leads to mitochondrial damage and
mitochondrial DNA copy number (mtDNA-CN) variations in
hepatocytes (Pirola et al., 2015; Kamfar et al., 2016).

Circulating fibroblast growth factor 21 (FGF21), a member of
the FGF family, is predominantly liver-derived and is involved in the
hormonal regulation of glucose and lipid metabolism, energy
homeostasis, insulin sensitivity, and other metabolic functions
(Cuevas-Ramos et al., 2009). Numerous preclinical and clinical
evidence suggested that aberrant FGF21 signaling may play a role
in the pathogenesis and progression of NAFLD (Liu et al., 2015;
Rusli et al., 2016; Tucker et al., 2019). Both FGF21 serum levels and
FGF21 expression were discussed to be indicators of NAFLD
(Falamarzi et al., 2022). It has been shown that FGF21 stimulates
lipolysis by decreasing fat stores leading to reducing hepatic steatosis
and lipotoxicity (Xu et al., 2009; Tanaka et al., 2015; Bao et al., 2018).
Moreover, several studies have also reported that FGF21 reduces
oxidative stress and endoplasmic reticulum stress (Ye et al., 2014;
Boparai et al., 2015) and enhances mitochondrial function (Lee et al.,
2016).

In this observational case-control study, considering the role of
FGF21 and mitochondria in NAFLD pathogenesis, our first aim was
to assess FGF21 expression and mtDNA-CN in Iranian NAFLD
patients in different stages of the disease and compare those to
healthy control group. Our second objective was to investigate the
possible relation between the levels of FGF21 expression and
mtDNA-CN in liver samples from Iranian NAFLD patients.

Methods

Study population

Over one and a half years, this study was carried out on NAFLD
patients identified from a sub-specialist tertiary NAFLD clinic at the
Khatam Ol-Anbia Hospital, Tehran, Iran. Participants were selected
based on liver ultrasonography, clinical, and laboratory findings.
Patients with other liver problems, cancer, family history of diabetes,
history of alcohol drinking, viral hepatitis (B or C), steatogenic
medications, and glucocorticoid therapy were carefully excluded.
Control group consisted of healthy volunteers who did not have any
history of liver and metabolic related disorders. A liver needle biopsy
was used to obtain liver samples. two to three samples were obtained
from each participant which were used for histological assessment
and nucleic acid extraction. Relevant clinical and laboratory data
were collected from the time of liver biopsy. Patients with NAFLD
were classified into NAFL and NASH based on the histologic
findings and were approved by at least two pathologists. The
same method was used for control group classification and
individuals with pathologic findings in their samples were
excluded from the control group. The medical ethics committee
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approved the Protocol of Hamadan University of Medical Sciences
(P/16/35/9/3481), and all the participants signed Written Informed
Consent before participating in this research study. The study
protocol conformed to the ethical guidelines of the World
Medical Association Declaration of Helsinki.

Anthropometric assessment and results of
biochemical analysis

Relevant clinical details such as age, gender, weight, and height
were obtained from all patients at the time of liver biopsy. The body
mass index (BMI) was calculated by the formula: weight (kg)/height2

(m2). Blood tests taken at the time of liver biopsy were used to
determine related paraclinical parameters. An automated enzymatic
procedure assayed with alanine transaminase (ALT), aspartate
transaminase (AST), cholesterol, triglyceride, HDL cholesterol,
and fasting blood glucose (FBS) levels. The Friedewald formula
was used for calculation of LDL-cholesterol levels.

Histological assessment

Percutaneous liver biopsies were performed using a Menghini
needle. Liver biopsies were all >15 mm in length and were read by
two experienced hepatopathologists. And any disagreement was
resolved with discussion between them. “NASH” was defined as
steatosis with hepatocyte ballooning degeneration and inflammation
with or without fibrosis (Yeh and Brunt, 2014). “NAFL” was defined
as steatosis only, or steatosis with mild inflammation without
hepatocyte ballooning degeneration.

DNA/RNA extraction

Genomic DNA and total RNA were extracted simultaneously
from fresh liver samples using the AllPrep DNA/RNA Micro
(Qiagen, Dubai, United Arab Emirates). According to the
manufacturer’s instructions, hepatic tissue samples were first
lysed and homogenized in a buffer for inhibition of DNases and
RNases to obtain intact DNA and RNA. The lysate was passed
through an AllPrep DNA spin column to selectively and efficiently
isolate DNA. The column was then washed and DNA was eluted.
Ethanol was added to the flow-through from the AllPrep DNA spin
column to allow proper binding conditions for RNA, and the sample
was then applied to RNeasyMinElute spin column, where total RNA
binds into the membrane and contaminants were effectively washed
away. Finally, RNA was then eluted in water.

Mitochondrial DNA copy number

Quantification of mtDNA-CN was assessed using quantitative
real-time PCR (qPCR). According to the manufacturer’s Protocol,
this assay was carried out using the SYBR master mix (Real qPCR 2x
Mix, Amplicon, Wrocław, Poland). Amplification was done with
two pair primers: ONP86/ONP89 and B-actin (Shakhssalim et al.,
2013; Kamfar et al., 2016; Zabihi Diba et al., 2016). The first set of

primers (86/89) was used to amplify a normal fragment in mtDNA,
and the second set (B-actin) was used as an internal control for
nucleic DNA. Primer-BLAST was used to check the primer
specificity (Ye et al., 2012). The amplification was done for
40 cycles using the following conditions: 95°C for 15 min, then
95°C for 30 s, and 58°C for 1 min. All samples were run in triplicate.
Relative levels of mtDNA-CN were measured by using the 2−ΔΔCT

method (Jensen, 2012).

Hepatic mRNA expression of FGF21

RNA isolated from liver biopsy was reverse transcripted using
the cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA,
United States of America) and the obtained cDNA was used as
template in the qPCR reaction. According to the manufacturer’s
Protocol, the quantitative real-time PCR assay was carried out using
specific primers in a 20 µL reaction volume containing SYBR Green
master mix (Real QPCR 2x Mix, Amplicon, Wrocław, Poland). Each
reaction was run in duplicate, and the accuracy of qPCR product size
was confirmed by gel electrophoresis. Two primer pairs were
designed to analyze FGF21 and B-actin as housekeeping genes
(Table 1).

Statistical analysis

Analyses were performed using SPSS 18.0 software package
(SPSS Inc., United States). Data were presented as means ±
standard deviation (SD). The student’s t-test was used for
comparing normally distributed variables. Logistic regression was
used to adjust for age, BMI, and lipid level confounders. Pearson
correlation coefficient was carried out to describe the relationship of
FGF21 expression and mtDNA-CN with variables related to
NAFLD. In all statistical tests, p < 0.05 was regarded as
statistically significant.

Results

Baseline characteristics of participants, including 27 patients
with NAFLD (17 NASH, 10 NAFL) and ten healthy control
subjects, are presented in Table2. The mean TG, ALT, AST,
and BMI in NAFLD patients were significantly higher than in
the control group (p < 0.05). No statistically significant difference
was found in the other parameters between these two groups.
According to the results, we observed a 3.9-fold increase in relative
mtDNA-CN in the livers of NAFLD patients compared to healthy
controls (p < 0.0001) (Figure1). A comparison of mtDNA-CN
showed a 4.3 (p < 0.008) and 3.5-fold (p < 0.013) increase in
patients with NAFL and NASH compared to control subjects,
respectively. No substantial differences were observed in mtDNA-
CN between the NAFL and NASH patients (p < 0.615)
(Supplementary Table S1). No relation was observed after
adjustment for age and BMI between mtDNA-CN and variables
such as lipid levels and blood pressure (p > 0.05). In addition, no
significant association was found between mtDNA-CN and age
(p > 0.05) (Supplementary Table S2).
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Our findings also indicated that FGF21 expression in hepatic
tissue was 2.9-fold higher in patients with NAFLD than in control
subjects (p = 0.013) (Figure 2). No significant difference was
observed between patients with NAFL and NASH (p = 0.843)
(Supplementary Table S1). Our results also showed a positive

correlation between FGF21 expression and BMI (p = 0.035), AST
(p = 0.02), and ALT (p < 0.01) levels (Supplementary Table S2). We
found no sex difference in the expression of FGF21 between NAFL
and NASH groups (p > 0.05). In addition, there was no significant
relation between FGF21 expression and other anthropometric and

TABLE 1 Sequences of primers used for quantitative real-time PCR.

B-actin Forward 5′- AGACGCAGGATGGCATGGG-3′ 161bp P60709 Accession number

Reverse 5′- GAGACCTTCAACACCCCAGCC-3

FGF21 Forward 5′-TCAAGACATCCAGGTTCC-3′ 109 bp Q9NSA1

Reverse 5′-TATCCGTCCTCAAGAAGC-3′

TABLE 2 Anthropometrics parameters and biochemical indexes among control and NAFLD group.

Parameter NAFLD (n = 27) Control (n = 10) P valueα

Gender (Male/Female) (11/16) (2/8) 0.440

Age (year) 43.19 ± 9.60 38.00 ± 8.96 0.143

Body Mass Index (kg/m2) 44.21 ± 9.90 26.90 ± 2.56 <0.001a

Systolic blood pressure (mmHg) 120.37 ± 10.37 115.0 ± 7.07 0.141

Diastolic blood pressure (mmHg) 75.07 ± 5.99 74.00 ± 5.16 0.620

LDL-Cholesterol (mmol/L) 100.14 ± 32.59 110.50 ± 24.36 0.381

HDL-Cholesterol (mmol/L) 46.04 ± 9.70 54.80 ± 6.07 0.012

Triglycerides (mmol/L) 193.0 ± 80.27 129.8 ± 36.13 0.023a

Total Cholesterol (mmol/L) 187.85 ± 29.87 188.3 ± 28.04 0.967

FBS (mmol/L) 112.30 ± 28.94 115.1 ± 34.72 0.806

ALT (U/L) 38.65 ± 23.72 16.00 ± 3.80 <0.001a

AST (U/L) 25.68 ± 12.24 17.30 ± 1.57 0.002a

ALP (U/L) 189.74 ± 65.38 175.50 ± 34.86 0.519

p values were computed by t-test.

Abbreviations: FBS: fasting blood glucose; HDL: high-density lipoprotein; LDL: low-density lipoprotein; ALT: Alanine transaminase, AST: Aspartate Aminotransferase, ALP: Alkaline

Phosphatase Test.
aStatistically significant.
bValues are presented as mean±SD, or median (interquartile range).

FIGURE 1
Comparison of the relative mtDNA copy number between
NAFLD and control group. *p-value was computed t-test and data are
shown as Mean ± SEM.

FIGURE 2
Comparison of the FGF21 relative expression between NAFLD
and control group. *p-value was computed by t-test and data are
shown as Mean ± SEM.
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biochemical measurements after adjusting for age and BMI in these
groups.

Finally, our findings in this study demonstrated a positive
correlation between mtDNA-CN and FGF21expression levels in
NAFLD patients (p = 0.027) (Figure 3). This comparison remained
statistically significant after adjusting for age and BMI (p = 0.035).

Discussion

Recent studies have shown that NAFLD can be classified as a
mitochondrial disease, in fact mitochondrial malfunction leads
to abnormal hepatic fatty acid oxidation causing fat
accumulation and hepatic steatosis. In addition to that, such
mitochondria produce more ROS and less ATPs which cause
more damages to mitochondria and hepatic cells making a
destructive cycle (Koroglu et al., 2016; Dornas and Schuppan,
2020; Dabravolski et al., 2021). Thus, measuring relative
mtDNA-CN as determining factor for mitochondrial damage
and activity rate can be helpful for identifying the stage and
prognosis of the disease (Cao et al., 2020; Filograna et al., 2021).
On the other hand, in some stages of different mitochondrial
disorders mtDNA-CN can be within the normal range and its
changes should be interpreted along with clinical, histological,
and other laboratory findings (Mavraki et al., 2023). However,
despite its flows, mtDNA-CN is widely accepted among
researchers as a useful method to assess mitochondrial
function (Castellani et al., 2020; Zhang et al., 2022). Our
results showed significant elevation in relative mtDNA-CN in
NAFLD patients’ liver which were in accordance with our
previous work (Kamfar et al., 2016). Also, Malik et al.
demonstrated a rise in hepatic mtDNA content during the
initial stages of hepatic steatosis in mice models (Malik et al.,
2019). Chiappini et al. also found that the mtDNA to nuclear
DNA (nDNA) ratio was higher in hepatic steatosis than in
normal liver tissues (Chiappini et al., 2006). However, in
contrast to these results Sookian et al. and Pirola et al.
reported significant lower mtDNA/nDNA ratio in the liver of

NAFLD patients compared to that of healthy control group
(Sookoian et al., 2010; Pirola et al., 2015). Studies suggested that
mtDNA-CN upregulation in humans with mitochondrial
diseases, mostly concomitant with an overall rise in
mitochondrial biogenesis, is regularly occurring and typically
considered as a compensatory mechanism to support cellular
bioenergetics (Hsin-Chen et al., 2000; Lee et al., 2018;
Skuratovskaia et al., 2019; Filograna et al., 2021). We
assumed that in NAFL patients this compensatory
mechanism leads to mtDNA-CN upregulation and when this
mechanism fails, due to disease progression and significant
higher oxidative stress in NASH patients, the mtDNA-CN
falls down. On the other hand, an increase in defective
mitochondria can be considered detrimental rather than
protective because of ROS accumulation as byproducts of the
defective mitochondria (Sanyal et al., 2001; Shami et al., 2021).
So, the precise involvement of mitochondrial biogenesis in these
patients remains a topic of debate. In the present study we
investigate NAFL and NASH patients separately in this regard.
Although in our results relative mtDNA-CN was higher in
NASH samples compared to NAFL ones, the difference was
not significant. Thus, the interpretation of this data can be
challenging, partly due to method-, specimen- and study
design-related issues.

Some studies reported substantial depletion of mtDNA-CN in
hepatic cells with aging in animal models (Barazzoni et al., 2000;
Hartmann et al., 2011). Wachsmuth et al. suggested that mtDNA-
CN decreased with age in human muscle tissue (Wachsmuth et al.,
2016). However, Frahm et al. reported no age-related increase of
mtDNA amount in brain, skeletal muscle and human heart (Frahm
et al., 2005). Their result was in accordance with our present and
previous studies (Kamfar et al., 2016) on human liver cells. This can
have several reasons, for example, beside limited number of samples,
our studies had a case-control design and we did not investigate liver
mtDNA-CN in individuals through long duration of time. Also,
evidence indicated that mtDNA-CN can vary between different cell
types and answer differently to various physiologic and pathologic
states including NAFLD (Tapia et al., 2018; Ma et al., 2020; Filograna
et al., 2021) suggesting a dynamic nature for this parameter.

In the current study, we detected a significant increase in
FGF21 expression in patients with higher BMI. This results were
in concordance to many previous studies conducted on children
(Reinehr et al., 2012) and adults (Dushay et al., 2010; Tyynismaa
et al., 2011). According to our results, FGF21 expression rise was
also significantly correlated to high AST and high ALT.
Nakanishi et al. supported this result in their study which
showed that FGF21 level was remarkably associated with AST
and ALT elevation (Nakanishi et al., 2021). This emphasizes
FGF21 role as an ameliorating agent which its production
increases in liver injuries.

Numerous evidence showed that circulatory FGF21 rise in
NAFLD patients and discussed its role as a protective factor
(Tucker et al., 2019; Tillman and Rolph, 2020). FGF21 elevation
can be seen as another compensatory mechanism in these patients.
However, we do not fully understand the molecular regulatory
mechanisms behind its function yet (Watanabe et al., 2020; Tan

FIGURE 3
Comparison of the relative mtDNA copy number and
FGF21 expression in NAFLD patients.
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et al., 2023). In our study we detected remarkable increase in its
expression in liver tissue of NAFLD patients compared to of control
group. This result was supported by other previous works (Kamfar
et al., 2016; Liu et al., 2023). Li et al. suggested that FGF21 may
mirror the severity and progression of NAFLD due to its association
with obesity, triglyceride, and gama-glutamyltransferase (Li et al.,
2010). They reported that hepatic FGF21 mRNA expression in
NAFLD patients with grade 1 was 4-fold higher than that in
grade 0 (p < 0.01), and grade 2–3 was 14.71-fold higher than
that in grade 0 (p < 0.01). In another study conducted by Flisiak-
Jackiewicz et al. serum FGF21 levels were higher significantly in
obese children with NAFLD compared to obese children without the
disease and had a positive correlation with steatosis grades in
biopsies (Flisiak-Jackiewicz et al., 2019). However, we did not
detect any significant difference in its expression between NAFL
and NASH patients. This can be due to the failure of FGF21 related
compensatory mechanisms in more advanced stages of the disease.
In this regard Alisi et al. found that FGF21 levels increased
progressively with the increase of hepatic steatosis, but when
hepatic fat content reached the fourth quartile, FGF21 levels
tended to decline (Alisi et al., 2013). The authors of that study
suggested that decreased production of this molecule by hepatocytes
due to their injury or death caused by lipotoxicity and hepatic
inflammation may be the cause of its decline in adult patients with
severe liver steatohepatitis. Their results were also in accordance
with the study conducted by Dushay et al. who reported lower
hepatic FGF21 expression in NASH compared to NAFLD and
suggested it may reflect more advanced hepatic injury (Dushay
et al., 2010).

Finally, we reported a positive correlation between mtDNA-
CN and FGF21 expression levels in liver tissue samples of
patients with NAFLD which as mentioned before might be a
mitochondrial disease. Based on current results, these two
factors may play critical roles at the early stages of disease in
inhibiting NAFLD development to NASH. In a recent
systematic review, Lin et al. reported that FGF21 is highly
sensitive and specific for diagnosis of mitochondrial diseases
(Lin et al., 2020). According to a study conducted by Ji et al.
FGF21 expression in mitochondrial diseases increases as a
compensatory mechanism in energy metabolism.
Furthermore, they showed that FGF21 regulates energy
homeostasis by increasing expression of mitochondrial genes
and mtDNA-CN (Ji et al., 2015). A more accurate explanation of
the relation between these two factors in NAFLD remains to be
investigated. Despite the importance of this matter, there are
currently no approved therapies for treating NAFLD or NASH
globally (Francque and Vonghia, 2019). Exercise prescription is
considered a central strategy in treatment (van der Windt et al.,
2018). In confirmation of this proposed option, in one study, J
Henkel et al. showed that exercise improved glucose tolerance in
NAFLD by inducing FGF21 production by the liver (Henkel
et al., 2019).

Our study holds some limitations. Firstly, limited number of
participants is an important barrier for making a reliable
conclusion that needed to be noticed. Secondly, because of the
dangers of sample collection in this study we could not match our
controls with patients perfectly. We tried to minimize the effect
of this bias by adjusting for some confounding factors like age

and BMI in our analysis. Thirdly, we did not collect data during
the progression of the disease in individuals hence our results
regarding changes in parameters during disease progression are
subject to error. Finally, like any study using liver biopsy as a
standard, miss-diagnosis of disease stage at biopsy can be caused
by sampling error (Ratziu et al., 2005). The potential for sampling
error in this study was minimized by collecting 2 to
3 biopsies >15 mm from each participant and consulting two
hepatopathologists to examine each sample.

In the present study we did not collect data on
FGF21 protein levels in liver tissues and blood samples of
patients and just reported and analyzed FGF21 mRNA levels.
It has been shown that the protein levels can be independent of
associated mRNA levels in tissues and blood (Greenbaum et al.,
2003; Silva and Vogel, 2016). This can be caused by several
factors affecting FGF21 production like mRNA degradation,
translation, and protein degradation (Battle et al., 2015;
Bayoumi et al., 2021). Hence, making it challenging to find a
direct cause-and-effect relationship between different gene
expressions. We tried to tackle this issue by measuring
mRNA levels which become affected prior to changes in
protein levels and to help clarifying ambiguities. More
studies with larger number of participants and measuring
protein levels through disease progression are needed to
track the changes more specifically.

As for studying mitochondrial changes we only collected data on
mtDNA-CN in liver tissues of participants as previous literature
suggested it to be a biomarker of mitochondrial function (Castellani
et al., 2020; Zhang et al., 2022). However, further studies on
mitochondrial changes with different methods like electron
microscopy and evaluation of consequences of mtDNA-CN
changes are needed.

Taken together, in this case-control study, we have shown a
considerable rise in FGF21 expression and mtDNA-CN in NAFLD
patients compared to healthy control group. While the data
presented here suggest that mitochondrial dysfunction and
FGF21 expression are involved in the disease mechanism, they
are not conclusive in predicting prognosis or progression of the
disease. Furthermore, our results suggested a positive correlation
between hepatic FGF21 expression and mtDNA-CN in the liver
tissue of NAFLD patients. Further research is needed to determine
the exact relationship between mtDNA-CN and FGF21 with
NAFLD susceptibility.
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