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Background: Endometrial cancer (UCEC) is a highly heterogeneous gynecologic
malignancy that exhibits variable prognostic outcomes and responses to
immunotherapy. The Familial sequence similarity (FAM) gene family is known
to contribute to the pathogenesis of various malignancies, but the extent of their
involvement in UCEChas not been systematically studied. This investigation aimed
to develop a robust risk profile based on FAM family genes (FFGs) to predict the
prognosis and suitability for immunotherapy in UCEC patients.

Methods: Using the TCGA-UCEC cohort from The Cancer Genome Atlas (TCGA)
database, we obtained expression profiles of FFGs from 552 UCEC and 35 normal
samples, and analyzed the expression patterns and prognostic relevance of
363 FAM family genes. The UCEC samples were randomly divided into training
and test sets (1:1), and univariate Cox regression analysis and Lasso Cox regression
analysis were conducted to identify the differentially expressed genes (FAM13C,
FAM110B, and FAM72A) that were significantly associated with prognosis. A
prognostic risk scoring system was constructed based on these three gene
characteristics using multivariate Cox proportional risk regression. The clinical
potential and immune status of FFGs were analyzed using CiberSort, SSGSEA, and
tumor immune dysfunction and rejection (TIDE) algorithms. qRT-PCR and IHC for
detecting the expression levels of 3-FFGs.

Results: Three FFGs, namely, FAM13C, FAM110B, and FAM72A, were identified as
strongly associated with the prognosis of UCEC and effective predictors of UCEC
prognosis. Multivariate analysis demonstrated that the developed model was an
independent predictor of UCEC, and that patients in the low-risk group had better
overall survival than those in the high-risk group. The nomogram constructed
from clinical characteristics and risk scores exhibited good prognostic power.
Patients in the low-risk group exhibited a higher tumor mutational load (TMB) and
were more likely to benefit from immunotherapy.

Conclusion: This study successfully developed and validated novel biomarkers
based on FFGs for predicting the prognosis and immune status of UCEC patients.
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The identified FFGs can accurately assess the prognosis of UCEC patients and
facilitate the identification of specific subgroups of patients who may benefit from
personalized treatment with immunotherapy and chemotherapy.
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1 Introduction

Uterine corpus endometrial carcinoma (UCEC) is a prevalent
malignant tumor among women and accounts for a significant
proportion of cancer cases worldwide (Bray et al., 2018). Despite
various treatment options, including surgery, chemotherapy,
radiotherapy, and hormonal therapy, the incidence and mortality
rates of UCEC continue to rise each year (Soslow et al., 2019).
Traditional clinicopathological staging is used to guide treatment
regimens such as immunotherapy and chemotherapy, but its
accuracy in predicting disease prognosis may be limited. Hence,
there is an urgent need to identify novel prognostic biomarkers and
molecular targets for UCEC (Zhou et al., 2020). By improving the
accuracy of prognostic prediction, personalized treatment can be
provided to improve patient outcomes and quality of life. Research
efforts should therefore focus on identifying and characterizing new
biomarkers to better understand the pathogenesis of UCEC and
develop targeted treatments.

The FAM gene family comprises a group of genes that have
not been fully characterized but possess similar protein sequences
(Zhang et al., 2019). Several lines of research have reported on the
significant participation of FAM family genes in various types of
tumor pathogenesis, including proliferation, invasion, migration,
and drug resistance (Bartel and Jackson, 2017; Chen et al., 2017;
Li et al., 2019; Herrero et al., 2020). Furthermore, specific
members of the FAM gene family have been recognized as
promising therapeutic targets and/or prognostic biomarkers
for the management of multiple types of cancer, such as
Glioblastoma multiforme (Rahane et al., 2019), Lung
adenocarcinoma (Yu et al., 2020) and Colon adenocarcinoma
(Wang et al., 2020a). For example, FAM175B is mutated at a high
frequency in familial breast cancer and is associated with DNA
damage repair (Cava et al., 2021). These findings provide new
insights into the molecular mechanisms of tumorigenesis and
progression and help to reveal the pathogenesis of tumors and
further investigate therapeutic approaches for tumors. Secondly,
the study of FAM family genes also helps to discover new tumor
markers and provides new methods and tools for early diagnosis
and prognosis assessment of tumors. For example, FAM129A has
decreased expression in a variety of tumors and can be used as a
marker for early diagnosis and prognostic assessment of tumors
(Ayesha et al., 2022). These findings provide a theoretical basis
for the development of new therapeutic approaches and drugs
targeting FAM family genes.

Bioinformatics techniques have made significant
advancements in identifying potential biomarkers for various
diseases (Lai et al., 2021; Jin et al., 2022; Shen et al., 2022; Wu
et al., 2022; Chi et al., 2023a; Zhao et al., 2023a; Chi et al., 2023b;
Zhao et al., 2023b; Wu et al., 2023). Prognostic models using

specific gene families have also been developed through extensive
research (Zhang et al., 2020; Pan et al., 2022; Wang et al., 2022).
However, despite the well-established roles and mechanisms of
some FAM family genes (FFGs) in various cancers, no studies
have yet evaluated their prognostic and therapeutic potential in
UCEC. Therefore, this investigation aimed to analyze the
expression patterns of FFGs in relation to UCEC prognosis,
utilizing the TCGA-UCEC dataset. By constructing a risk
score, we identified three FFGs (FAM13C, FAM110B, and
FAM72A) and developed a prognostic model based on FFGs.
We further explored the correlation of this model with the
immune microenvironment, chemotherapy, and
immunotherapy. This comprehensive genomic data analysis
aimed to demonstrate the potential of FAM gene family-
related features in improving UCEC prognosis and patient
diagnosis, providing an innovative tool for personalized
treatment strategies.

2 Materials and methods

2.1 Data sources

Gene expression profiles and clinical data, including age, grade,
and overall survival (OS), were obtained from the TCGA database
(https://portal.gdc.cancer.gov/) for the TCGA-UCEC cohort
comprising 552 UCEC samples and 35 normal samples. After
excluding incomplete clinical data, 543 UCEC samples were
included for subsequent analysis. The HTSeq-Fragments per
kilobase million (FPKM) level 3 data for TCGA-UCEC was
transformed to transcripts per million reads (TPM) using the
formula TPMn = FPKMn * 106/(FPKM0 + . + FPKMm), where
n represents the gene and m represents the total number of all genes.
Log2-transformation was then applied to the TPM values. The cart R
package was used to randomly divide the UCEC cohort into a
training risk group and a test risk group in a 1:1 ratio, based on
relevant clinical information.

2.2 Model construction

To determine the FAM family genes that may impact UCEC
patient prognosis, we conducted univariate Cox regression
analysis. Subsequently, we utilized the R package “glmnet” to
perform Lasso-Cox regression analysis (Huang et al., 2023),
which identified key genes and their corresponding regression
coefficients among the FAM family genes that were significantly
associated with UCEC patient prognosis (p < 0.05) (Friedman
et al., 2010).
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2.3 Model formulae

We generated risk scores for all patients using the model
equations and then determined the optimal cut-off values using
the R package “survminer”. Subsequently, all UCEC patients were
categorized into high-risk and low-risk groups based on these values,
and we plotted survival curves accordingly. To assess the
discriminatory ability of our model, we conducted principal
component analysis (PCA) using R software and calculated the
C-index using the “pec” R package (Zhang et al., 2022a). Moreover,
we utilized the “survivalROC” R package (Zhang et al., 2023a; Zhang
et al., 2023b) to perform time-dependent ROC curve analysis and
evaluate the predictive ability of genetic traits.

2.4 Independent prognostic analysis and
nomogram construction

We conducted univariate and multivariate Cox regression
analyses to assess the independent prognostic value of the risk
score (Pei et al., 2023a; Pei et al., 2023b; Liu et al., 2023).
Furthermore, we utilized the rms R package to generate column
line plots that incorporated age, tumor stage, model gene expression,
and the risk score to forecast overall survival rates at 1, 3, and 5 years
for UCEC patients included in the TCGA dataset.

2.5 Immunity analysis of the risk signature

Several immune infiltration score measurement methods,
including XCELL (Aran et al., 2017; Aran, 2020), TIMER (Chen
et al., 2018; Li et al., 2020), QUANTISEQ (Finotello et al., 2019;
Plattner et al., 2020), MCPCOUNT (Dienstmann et al., 2019), EPIC
(Racle et al., 2017), CIBERSORT (Chen et al., 2018; Zhang et al.,
2022b) and CIBERSORT-ABS (Tamminga et al., 2020) were
employed to assess immune infiltration levels. The association
between risk scores and immune cells was analyzed using
Spearman correlation analysis. The CIBERSORT algorithm was
used to differentiate immune infiltration status between high-risk
and low-risk groups. Additionally, single sample GSEA (ssGSEA)
was employed to calculate immune function enrichment scores in
UCEC patients. The Estimate algorithm was utilized to evaluate the
composition of the tumor microenvironment (TME) for each UCEC
sample, including the immune score, stromal score, and estimate cell
infiltration (Yoshihara et al., 2013). To compare expression levels of
20 immune checkpoints with therapeutic potential between high-
risk and low-risk groups, we referred to the work of Auslander et al.
(2018).

We obtained two gene sets relevant to cancer-immune cycle and
immunotherapy response from previously published studies
(Mariathasan et al., 2018; Xu et al., 2018). The enrichment scores
of these gene sets were calculated using Gene Set Variation Analysis
(GSVA) to investigate their association with high-risk and low-risk
groups (Hänzelmann et al., 2013). Correlation analysis between risk
scores and these gene sets was performed using the R package
‘ggcor’. To predict the response to immune checkpoint inhibitors
(ICIs), we utilized the Tumour Immune Dysfunction and Exclusion
(TIDE) algorithm (Jiang et al., 2018). Validation of the risk model to

predict immunotherapy effect was performed using the
IMvigor210 cohort, for which full expression data and clinical
information were obtained from (http://research-pub.Gene.com/
imvigor210corebiologies/) (Mariathasan et al., 2018).

2.6 Somatic mutation analysis

Maftools is an R package that enables the analysis, visualization,
and exploration of somatic mutation data in cancer research
(Mayakonda et al., 2018). It has the ability to import mutation
annotation files (MAFs) from various sources, including TCGA, and
perform a variety of analyses such as mutation spectrum analysis,
oncoplot visualization, and survival analysis based on mutational
status. Moreover, it provides functions for extracting information on
gene mutations, such as the frequency, type, and functional impact
of mutations. In this study, we computed the tumor mutation
burden (TMB) score for each UCEC patient and examined its
correlation with the risk score. TMB score was determined by
multiplying the quotient of total mutations and total covered
bases by 106 (INVALID CITATIONa). We utilized the R
package to perform Kaplan-Meier analysis to assess the
prognostic value of TMB in UCEC patients. Additionally, we
compared the distribution of microsatellite-stable (MSS),
microsatellite instability-low (MSI-L), and microsatellite
instability-high (MSI-H) tumor patients between the high-risk
and low-risk groups.

2.7 Drug sensitivity

To investigate the therapeutic response of UCEC patients
stratified into high-risk and low-risk groups based on their half-
maximal inhibitory concentration (IC50) values retrieved from the
Genomics of Cancer Drug Sensitivity (GDSC) database (https://
www.cancerrxgene.org/), we employed the pRRophetic R package
(Geeleher et al., 2014).

2.8 Cell culture

The human endometrial cancer cell lines Ishikawa, AN3CA and
human endocervical epithelial cell line End1 were cultured in
Dulbecco’s modified Eagle’s medium (DMEM; HyClone)
supplemented with 10% fetal bovine serum (FBS; Hyclone),
100 U/L penicillin and 100 mg/L streptomycin (Thermo Fisher)
at 37°C in 5% CO2.

2.9 qRT-PCR and IHC

The total RNA was extracted using the RNA Eazy Fast Tissue/
Cell Kit (TIANGEN Biotech Co., Beijing) following the
manufacturer’s instructions. The cDNA was synthesized using
the FastKing RT Kit (TIANGEN Biotech Co., Beijing) according
to the provided protocol. Real-time PCR was carried out using the
SuperReal PreMix Plus (TIANGEN Biotech Co., Beijing) reagent
and the StepOnePlus Real-Time PCR System. The PCR reaction was

Frontiers in Molecular Biosciences frontiersin.org03

Chi et al. 10.3389/fmolb.2023.1200335

http://research-pub.gene.com/imvigor210corebiologies/
http://research-pub.gene.com/imvigor210corebiologies/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1200335


performed as follows: pre-denaturation at 95°C for 15 min, followed
by 40 cycles of denaturation at 95°C for 10 s, annealing at 72°C for
20 s, and extension at 60°C for 20 s. The primer sequences used in
the PCR reaction are listed in Table 1. Immunohistochemical
analysis of sections from the HPA database (https://www.
proteinatlas.org/).

2.10 Statistical analysis

The statistical analyses were performed using R software version
4.1.3. To compare the overall survival (OS) between the high- and
low-risk groups, we utilized the Kaplan-Meier (KM) survival curves
and log-rank test. The FFGs signature was constructed using the
LASSO-Cox regression model, and its predictive performance was
evaluated using time-dependent receiver operating characteristic

(ROC) analysis. To assess the correlation between the risk score
and immune cell infiltration, Spearman correlation analysis was
employed. The proportion of tumor-infiltrating immune cells,
immune checkpoints, and immune function between the two
groups was compared using the Wilcox test. The qRT-PCR
analyses were performed using GraphPad Prism Software
(version 8.3.0). The results are presented as means ± standard
deviation (SD) from three independent experiments, and
statistical analysis was carried out using analysis of variance
(ANOVA). The significance level was set at p-values <0.05 and
false discovery rate (FDR) < 0.05.

3 Result

3.1 Identification of candidate FFGs

The study design is depicted in Figure 1, which outlines the steps
taken to identify a biomarker capable of predicting UCEC prognosis
using a risk score model based on FAM family genes. We first
analyzed the expression profiles of 363 FAM family genes in UCEC
tumor tissues (n = 552) and paracancerous tissues (n = 35) using the
“DESeq2” R package, resulting in 98 differentially expressed FAM
family genes (DE-FFGs), of which 57 were upregulated and 41 were
downregulated (|log2FC|>1, adjusted p-value <0.05) (Figure 2A;
Supplementary Table S1). We then conducted a univariate Cox
analysis using the “survival” R package and extracted 47 FFGs that
were significantly associated with UCEC prognosis (p < 0.05)
(Supplementary Table S2). By intersecting the 98 DE-FFGs with
the 47 prognosis-related FFGs, we identified 15 differential
expression FFGs, namely, FAM83D, FAM184A, FAM83A,
FAM13C, FAM167A, FAM107A, FAM110B, FAM90A1,

TABLE 1 Primers used in qRT-PCR analysis.

Gene Sequences (5′-3′)

H-GAPDH-F CAATGACCCCTTCATTGACC

H-GAPDH-R GACAAGCTTCCCGTTCTCAG

H-FAM13C-F CTTGCCTTGCAATGCCATGT

H-FAM13C-R CTGGATCTTCGTCACACTCTGT

H-FAM110B-F GAAGGAATAAGGCGCCCGAC

H-FAM110B-R CAGCAGGAAATTGCTCCCACA

H-FAM72A-F TGGGGTCTGACATCAACGA

H-FAM72A-R AGTGAAGTCCACTGCGTTCTC

FIGURE 1
The diagram provides an overview of the primary design of the current investigation.
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FAM174B, FAM131C, FAM72B, FAM111B, FAM72A, FAM66C,
and FAM3D-AS1 (Figure 2B), which were significantly associated
with overall survival (OS) in UCEC patients according to the
univariate Cox analysis (Figure 2C).

3.2 Construction of FFGs prognosis
signature with its predictive value

We conducted lasso regression analysis on 15 potential FFGs
and identified 7 FFGs, including FAM184A, FAM83A, FAM13C,
FAM167A, FAM110B, FAM90A1, and FAM72A (Figures 2D, E).
Subsequently, a Cox proportional risk regression model was used to

further narrow down the FFGs to 3, namely, FAM13C, FAM110B,
and FAM72A, which had corresponding regression coefficients
of −0.6303, 0.3004, and 0.8293 (Figure 2F). Next, we constructed
a linear prediction model based on the 3 FFGs that were weighted by
their regression coefficients through multivariate Cox analysis. We
calculated the risk score for each patient using the formula: risk
score = (−0.6303 × FAM13C expression level) + (0.3004 x FAM110B
expression level) + (0.8293 x FAM72A expression level) for the
entire cohort. Using the median cut-off point, we divided the
patients into high-risk and low-risk groups, and observed that as
the risk score increased, so did the mortality rate (Figure 2G). We
employed PCA to visualize the risk distribution, and significant
differences and a clear separation between high-risk and low-risk

FIGURE 2
Identification of candidate FFGs and construction of prognostic signature. (A) Volcano map of 363 differentially expressed FAM family genes. (B)
Venn diagram of the intersection of DE-FFGs and prognosis-related FFGs. (C) Prognosis of 15 FFGs in the entire cohort of UCEC was analyzed by
univariate Cox regressionmodel. (D) Ten-time cross-validation for tuning parameter selection in the LASSOmodel. (E) LASSO coefficient profiles. (F)Cox
proportional risk regression model identified FAM13C, FAM110B and FAM72A as survival predictor signature. (G) Heatmap of risk factor in the test
cohort. (H) PCA plot in the entire cohort. (I) K-M survival curve of endometrial cancer patients in the entire group. (J) Time-dependent ROC curves
analysis. (K) Multi-index ROC analysis in the entire cohort. (L) Decision curve analysis.
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patients were observed (Figure 2H). Furthermore, Kaplan-Meier
survival analysis showed that high-risk patients had a worse
prognosis than low-risk patients (p < 0.001) (Figure 2I). We used
time-dependent ROC curves to evaluate the model’s accuracy, and
the AUC values for risk score 1, 3, and 5-year OS prediction were
0.713, 0.703, and 0.728, respectively, indicating high specificity and
sensitivity (Figure 2J). The risk score for the three FFGs (AUC =
0.714) was a better predictor of UCEC prognosis than age and grade
compared to common clinicopathological features (Figure 2K). This
finding was consistent with our model having the highest C-index,

indicating its superior clinical application based on the 3 FFGs
(Figure 2L).

3.3 Validation of the FFGs prognostic model

To evaluate the prognostic accuracy of our model, we randomly
divided the cohort of Uterine Corpus Endometrial Carcinoma
(UCEC) patients into a training set (n = 272) and a testing set
(n = 271). In the training set, we observed an increase in UCEC

FIGURE 3
Validation of the prognosis signature for FFGs. (A) Heat map of risk factors in the train cohort. (B) K-M survival curve of UCEC patients in the train
cohort. (C) PCA plot in the train cohort. (D) Time-dependent ROC curve of UCEC patients in the train cohort. (E) Multi-index ROC analysis in the train
cohort. (F) Heatmap of risk factor in the test cohort. (G) K-M survival curve of UCEC patients in the test cohort. (H) PCA plot in the test cohort. (I) Time-
dependent ROC curve of UCEC patients in the test cohort. (J) Multi-index ROC analysis in the test cohort.
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patient survival with increasing risk severity, as shown in Figure 3A.
We validated our model by performing Kaplan-Meier analysis,
which showed that high-risk patients had a worse prognosis than
low-risk patients (p < 0.001), as illustrated in Figure 3B. Principal
Component Analysis (PCA) revealed significant differences between
low- and high-risk patients, which allowed for clear separation, as
shown in Figure 3C. Furthermore, the area under the curve (AUC)
of the time-dependent ROC curves for the training set demonstrated
the model’s predictive power. Specifically, the 1-year AUC was
0.723, the 3-year AUC was 0.763, and the 5-year AUC was 0.774,
as shown in Figure 3D.Our model also outperformed traditional
clinicopathological features such as age and grade, as shown in
Figure 3E, with an AUC of 0.723 for the three FFGs. In the testing
set, we obtained similar results to the training set, where higher
patient mortality was observed with increasing risk score
(Figure 3F). Kaplan-Meier survival analysis showed that high-risk
patients had worse prognoses than low-risk patients (p = 0.001), as
shown in Figure 3G. PCA confirmed that low- and high-risk patients
were significantly different and clearly separated (Figure 3H).
Moreover, the time-dependent ROC curves for the testing set

showed an AUC of 0.689 at 1 year, 0.642 at 3 years, and 0.686 at
5 years (Figure 3I). Our model again outperformed traditional
clinicopathological features, with an AUC of 0.689 for the three
FFGs, as shown in Figure 3J. In conclusion, our prognostic model
demonstrated excellent performance, as evidenced by its ability to
accurately predict the prognosis of UCEC patients based on three
FFGs, outperforming traditional clinicopathological features.

3.4 Establishment of nomograms in
combination with clinical characteristics

We further evaluated the potential clinical application of our
prognostic risk model by conducting univariate and multivariate
Cox analyses. These analyses aimed to determine whether the
prognosis signature based on the three FFGs could serve as an
independent prognostic factor for UCEC. Our univariate analysis
revealed that age, grading, and risk score were significantly
associated with UCEC patient prognosis (p < 0.001) (Figure 4A).
Subsequently, we performed a multivariate analysis to adjust for age

FIGURE 4
Independent prognostic analysis of risk scores and clinical parameters. Univariate (A) and multivariate (B) COX regression analysis of the signature
and different clinical feature. (C) Heatmap for the 3 FFGs-based signature with clinicopathological manifestations. (D) Nomogram for predicting 1-year,
3-year, and 5-year OS of patients with UCEC. The calibration curve of the constructed nomogram of 1- year (E), 3- year (F), and 5-year (G) survival.
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and grading, and found that the risk score remained an independent
and reliable predictor of risk for the cohort (p = 0.031) (Figure 4B).
To better understand the relationship between the three FAM genes
identified in our prognostic risk model and the age, grade, and risk
score of all UCEC samples from the TCGA, we generated a heat map
(Figure 4C). To enhance the clinical utility and applicability of our
constructed risk model, we developed a nomogram based on age,
grade, FAM13C, FAM110B, FAM72A expression, and risk score.
This nomogram predicted 1-year, 3-year, and 5-year survival
probabilities for UCEC. Our model demonstrated that the risk
score had the greatest impact on predicting overall survival,
suggesting that the risk model based on the three genes,
FAM13C, FAM110B, and FAM72A, was more effective in
prognosticating UCEC (Figure 4D). Furthermore, calibration
curves indicated that the predicted values were in satisfactory
agreement with the observed values in terms of 1-year, 3-year,
and 5-year OS probabilities (Figures 4E–G). In summary, our
findings suggest that the constructed prognostic risk model based
on the three FAM genes, FAM13C, FAM110B, and FAM72A, has
potential clinical utility in predicting prognosis for UCEC patients.
Our nomogram may serve as a valuable tool for clinicians to make
informed decisions regarding patient management and treatment

planning. Notably, our model demonstrates higher predictive
accuracy compared to the conventional age and tumor grading
system.

3.5 The FFGs signature performed better
than others in prognostic prediction

To evaluate the predictive accuracy of our FFGs signature in
UCEC, we compared it with five previously reported prognostic
signatures, namely, the 4-gene signature by Huang et al. (2021), the
4-gene signature by Yu et al. (INVALID CITATIONb), the 2-gene
signature by Liu et al. (2021a), the 3-gene signature by Liu et al.
(2021b), and the 3-gene signature by Wang et al. (2020b). TTo
enable a fair comparison, we used the same risk score calculation
method for all UCEC samples in the TCGA database and
transformed the scores based on the methods used in the five
existing signatures. While all five signatures successfully
distinguished UCEC patients into high- and low-risk groups with
significantly different prognoses, our FFGs signature (Chi et al.)
exhibited superior performance in time-dependent ROC curve
analysis, as evidenced by higher AUC values for 1-year, 3-year,

FIGURE 5
Comparison of the FFGs risk model with other models (A) KM curves and ROCs for FFGs signature. (B–F) KM curves and ROCs for risk models
constructed by others. (G) C-indexes for six risk models.
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and 5-year survival (Figures 5A–F). Furthermore, our FFGs
signature showed the highest C-index of 0.695 (Figure 5G),
implying its superior predictive accuracy. Taken together, our
findings indicate that our FFGs signature has high predictive
accuracy in forecasting UCEC patient outcomes.

3.6 Differential expression and prognostic
analysis of three FFGs in UCEC

We also evaluated the diagnostic potential of FAM13C,
FAM110B, and FAM72A in distinguishing UCEC tissues from
non-tumor tissues using ROC curves. All three genes
demonstrated high AUC values, suggesting their potential as
ideal biomarkers for this purpose (Supplementary Figure S1A).
We further analyzed the relationship between the expression
levels of these genes and clinicopathological characteristics of
UCEC patients. Our findings revealed that FAM13C and
FAM110B expression were significantly associated with age (p <
0.05), while FAM72A expression was not (Supplementary Figure
S1B). Moreover, FAM13C expression decreased with increasing
histological grading (p < 0.001), whereas FAM110B expression
was significantly higher in G3 than in G1 and G2 (p < 0.001).
FAM72A expression increased with increasing histological grading
(p < 0.001) (Supplementary Figure S1C).

We performed survival analyses on the TCGA-UCEC dataset to
investigate whether FAM13C, FAM110B, and FAM72A can serve as
biomarkers in conjunction with other survival indicators. Our
results indicated that low expression levels of FAM13C were
significantly associated with poorer disease-specific survival (DSS)
(p = 0.037) (Supplementary Figure S1D) and were strongly
correlated with progression-free interval (PFI) (p = 0.033)
(Supplementary Figure S1E). Conversely, high expression levels
of FAM110B were closely linked to poorer DSS (p < 0.001)
(Supplementary Figure S1F) and PFI (p = 0.001) (Supplementary
Figure S1G). Similarly, high expression levels of FAM72A were
strongly associated with poorer DSS (p < 0.001) (Supplementary
Figure S1H) and PFI (p < 0.001) (Supplementary Figure S1I). These
findings suggest that FAM13C, FAM110B, and FAM72A could serve
as useful biomarkers in conjunction with other survival indicators
for predicting clinical outcomes in UCEC patients.

3.7 FFGs risk score predicts TME and
immune cell infiltration

We conducted a comprehensive investigation to explore the
relationship between risk scores and the abundance of infiltrating
immune cells in the context of endometrial cancer. To achieve this,
we utilized a range of computational algorithms, including XCELL,
TIMER, QUANTISEQ, MCPCOUNTER, CIBERSORT,
CIBERSORT-ABS, and EPIC. Our findings demonstrate a
significant inverse correlation between risk scores and Treg cells
in XCELL, QUANTISEQ, CIBERSORT, and Cibersort-ABS,
suggesting that the low-risk group may be associated with strong
immunosuppression (Figure 6A). Further analysis of the
distribution and correlation of 22 TICs in the TCGA-UCEC
cohort using the CIBERSORT algorithm showed that most

immune cells were negatively correlated with both high-risk and
low-risk groups, except for macrophageM0, CD8+ T cells, and CD4+

T cells memory resting (Figure 6B). Notably, we observed higher
levels of Plasma cells, Tregs, Dendritic cells resting, and Neutrophils
in the low-risk group, while T cells follicular helper, macrophage
M1, macrophage M2, and Dendritic cells activated were lower
(Figure 6C). These findings suggest that specific immune cell
types may be impacted by the three FFGs-related patterns,
potentially influencing the response to immunotherapy.

We also analyzed the ssGSEA scores for immune cells and
immune functions and discovered that nine immune functions,
such as HLA and CCR, were more associated with the low-risk
group, while only Type I IFN Response was more associated with the
high-risk group (Figure 6D). In addition, we utilized the ESTIMATE
algorithm to determine the TME composition of the UCEC samples
and found that the immune score, Stromalscore, and ESTIMATE
score were higher in the low-risk group compared to the high-risk
group, indicating a higher overall immune level and
immunogenicity of the tumor microenvironment in the low-risk
group (Figures 6E–G). Finally, we examined the expression of
immune checkpoints and identified four immune checkpoint
genes significantly upregulated in the low-risk group (BTLA,
CD200, CEACAM1, and CTLA-4), while four immune
checkpoint genes were significantly upregulated in the high-risk
group (PVR, LAG-3, ADORA2A, and CD80) (Figure 6H). Our
results suggest that the risk score may provide valuable guidance for
clinicians regarding the use of immune checkpoint-targeted drugs in
endometrial cancer patients.

3.8 FFGs risk score predicts treatment
response assessment

Assessment of the tumor immune cycle is critical for
understanding the role of immune modulators, such as the
chemokine system (Chen and Mellman, 2013; Xu et al., 2018).
In the low-risk group, upregulation of activity was observed for
most steps in the cycle, including cancer cell antigen expression
(step 2), initiation and activation (step 3), and transport of
immune cells to the tumor (step 4) (CD4+ T-cell recruitment,
CD8+ T-cell recruitment, T cell recruitment, dendritic cell
recruitment, basophil recruitment, Th22 cell recruitment,
macrophage recruitment, Th2 cell recruitment, Treg cell
recruitment, monocyte recruitment, neutrophil recruitment,
and Th17 recruitment). In contrast, cancer cell antigen release
(step 1) activity was decreased, and T cell recognition of cancer
cells (step 6) was increased (Figures 7A, B). Correlation analysis
between different risk scores and the predicted ICB response
signatures revealed that the majority of patients in the low-risk
group were negatively correlated with the enrichment scores of
ICB-related positive signatures. However, the low-risk group was
only positively correlated with Cytokine-cytokine receptor
interaction and had no significant relationship with RNA
degradation, Systemic lupus erythematosus, and Proteasome
(Figures 7C, D).

Using the Tumor Immune Dysfunction and Exclusion
(TIDE) algorithm to predict the likelihood of the
immunotherapy risk model, TIDE was significantly higher in
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the low-risk group than in the high-risk group (P < 1e-08)
(Figure 7E), indicating that patients in the low-risk group are
less likely to benefit from ICI (immune checkpoint inhibitor)
therapy due to the higher likelihood of immune evasion. FFG
expression was also significantly higher in patients who
responded to treatment (CR or PR) compared to those who
showed stable or progressive disease (p = 0.012) (Figure 7F).

Furthermore, the low-risk group exhibited a higher IC50 for
five immunotherapeutic agents applied to UCEC treatment,
including A.443654 (p < 2.22e-16), A.770041 (p = 3.1e-10),
ABT.263 (p = 1.8e-07), AP.24534 (p = 0.00061), and
AZD.0530 (p = 4.8e-07). In contrast, we also identified three
other chemical or targeted drugs [AG.014699 (p = 0.0029),
AICAR (P = 3e-05), AKT. inhibitor.VIII (p = 0.0032)] that
exhibited a lower IC50 in the low-risk group (Figures 7G–N).
Based on these findings, risk score analysis may aid in further
investigation of immunotherapy response in UCEC patients and
may enhance the precision of drug therapy.

3.9 Comparison of somatic mutation
between low-risk and high-risk groups

We conducted an analysis of somatic mutations in UCEC patients
to distinguish between high-risk and low-risk groups. The most
commonly mutated genes in high-risk patients were TP53 (57%),
PIK3CA (43%), and PTEN (40%), while PTEN (84%), PIK3CA
(53%), and ARID1A (53%) were the most frequently mutated genes
in low-risk patients (Figures 8A, B). Patients with a higher tumor
mutation burden (TMB)may benefit from immunotherapy due to their
increased neoantigen load (Snyder et al., 2014). We computed TMB for
both risk groups and observed a significantly higher TMB in the low-
risk group than in the high-risk group (p= 0.02), indicating that patients
in the low-risk group may be more responsive to immunotherapy
(Figure 8C). Furthermore, we found that the risk score was negatively
correlated with TMB (Figure 8D). We assessed TMB’s prognostic
potential for UCEC patients and observed that patients with low
TMB values had worse survival rates than those with high TMB

FIGURE 6
TME and immune cell infiltration in the two risk score groups. (A) Immune cell bubble plots of the risk groups. (B)Heat map showing the correlation
between the 22 TICs. Correlation tests were performed with Pearson’s coefficient. (C) The ratio of immune cells between high-risk and low-risk groups.
(D) Immune function and immune cell ssGSEA scores between high-risk and low-risk groups. (E) Immune score, (F) stromal score, (G) ESTIMATE score,
(H) immune checkpoint between high-risk and low-risk groups *p < 0.05; **p < 0.01; ***p < 0.001.
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values (p = 0.00014) (Figure 8E) (Samstein et al., 2019). When
combining TMB with risk scores, we found that low-risk patients
with high TMB had the best prognosis, whereas high-risk patients with
low TMB had the worst prognosis (p < 0.0001) (Figure 8F). MSI is
another predictive biomarker for cancer immunotherapy. We assessed
the immune prediction of MSI for high-risk and low-risk groups of
patients and observed that MSI-H had the lowest risk score, indicating
that low-risk patients with MSI-H had lower immune risk and better
immune prediction (p = 0.011) (Figures 8G, H). Additionally, we
examined the relationship between FFG-Score and CSC indices
(RNAss) to evaluate potential correlations between FFG-Score and
CSCs.We found a positive correlation between FFG-Score and the CSC
index (R = 0.38, p = 2.2e-15), indicating that a higher FFG-Score was
associated with more pronounced stem cell properties and less cellular
differentiation (Figure 8I).

3.10 Validation of the built model by RT-
qPCR and IHC

We performed experiments to investigate the expression of 3-
FFGs in participating endometrial cancer cells and normal
endocervical cells. Our results showed that the expression levels
of FAM13C, FAM72A and FAM11B were all significantly
upregulated in endometrial cancer cells compared to normal
endocervical cells (Figures 9A–C). In addition, the results of
immunohistochemical analysis showed that FAM13C and
FAM110B had higher protein expression in endometrial cancer
tissues, while FAM72A showed no difference (Figures 9D–F). From
the above results, we speculate that the expression status of these
FGGs may be complexly associated with the development of
endometrium.

FIGURE 7
FFGs risk score predicts treatment response assessment. (A) Heat map of differences in the individual steps of the cancer-immune cycle between
high and low risk groups. (B) Correlation of different risk scores with steps of the cancer-immune cycle. (C) Correlation of different risk scores with
enrichment scores of immunotherapy prediction pathways. (D) Correlation between different risk scores and clinical response to immunotherapy. (E)
Box-line graphs of TIDE scores in the high-risk versus low-risk groups in the TCGA UCEC cohort. (F) Correlation between risk scores and clinical
response to cancer immunotherapy. Differences in IC50 of immunotherapy drugs by risk score (G) A.443654, (H) A.770041, (I) ABT.263, (J) AG.014699,
(K) AICAR, (L) AKT. inhibitor, (M) AP.24534, (N) AZD.0530. PD, disease progression; SD, disease Stable; PR, partial response; CR, complete response. TIDE,
Tumor Immune Dysfunction and Exclusion. *p < 0.05, **p < 0.01, ***p < 0.001.
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4 Discussion

Endometrial carcinoma (UCEC) is a prevalent gynecologic
malignancy that is associated with unfavorable prognosis and low
survival rates (Brooks et al., 2019; Raffone et al., 2019). However,
conventional categorization of UCEC has limitations in capturing
the tumor’s diverse characteristics (Liu et al., 2021b). Single-gene-
based prognosis prediction for UCEC is challenging, given the
numerous factors that can affect gene expression. Instead, a
combined model consisting of multiple relevant genes can
provide greater precision in predicting prognosis and is crucial
for personalized treatment (Hu et al., 2021a). Despite growing
evidence of the FAM family genes’ significant impact on the
tumor microenvironment, no comprehensive analysis of the
FFGs in UCEC exists. To address this gap, we analyzed mRNA
expression data from the TCGA-UCEC dataset to identify
significant prognostic genes and develop a multi-biomarker
prognostic model based on the FAM family genes. Our study
findings indicate that FFGs-based signatures could be utilized for
risk stratification, prognosis prediction, and evaluation of

immunotherapy efficacy in UCEC, providing valuable resources
for personalized treatment.

In this study, we developed a prognostic model for FFGs based on
the TCGA-UCEC dataset. We employed lasso regression and COX risk
regression analyses to select three genes (FAM13C, FAM110B, and
FAM72A) for our model from a pool of 363 FFGs. The resulting FFGs
signature was found to be an independent prognostic factor for UCEC
and effectively stratified UCEC patients into two prognostic subgroups.
Moreover, our analysis demonstrated the strong predictive performance
of the FFGs signature, as confirmed by ROC and calibration curve
analyses. To increase the clinical applicability of our model, we
constructed a nomogram that integrated clinical factors and risk
scores. Our FFGs-based model, which includes fewer genes than
other UCEC prediction models, exhibited superior predictive
performance and may serve as a valuable tool for evaluating
prognosis in UCEC patients.

The FAM13C gene encodes a protein whose function and cellular
localization have not been fully characterized. However, its structural
domain suggests its potential involvement in intracellular signaling
pathways relevant to cancer (Cohen et al., 2004). Burdelski et al. have

FIGURE 8
Landscape of mutation profiles in UCEC samples. (A,B) The hub-mutated markers in both groups. (C) The TMB between high-risk and low-risk
patients. (D) Correlation between the TMB and risk score. (E) Kaplan-Meier analysis showing the relationship between the level of TMB and clinical
outcome (p = 0.00014). (F) Effects of distinct TMB in different Risks on the survival probability (p < 0.001). (G) The proportion of different MSI in the high-
risk and low-risk score groups. (H) The relationship between theMS and risk score. (I) The correlation relationship between FFGs expression andCSC
index.
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shown that overexpression of FAM13C is a strong and independent
prognostic factor in prostate cancer (Burdelski et al., 2017). FAM110B, a
member of the FAM110 gene family, is primarily located in
centrosomes and is involved in microtubule nucleation and
organization in tissues. It can influence the progression of the
G1 phase of the cell cycle when overexpressed and has been found
to limit proliferation and invasion of non-small cell lung cancer by
inhibiting Wnt/β-linked protein signaling (Hauge et al., 2007; Xie et al.,
2020). In prostate cancer cells, FAM110B knockdown reduces cell
viability and induces apoptosis, suggesting its potential as a therapeutic
target. Furthermore, FAM110B has been implicated in the regulation of
tumor cell surface antigen presentation, which may impact immune
evasion by tumor cells (Vainio et al., 2012; Colak et al., 2013). Notably,

the therapeutic potential of targeting FAM110B has been demonstrated
not only in pancreatic and colon cancers, but also in several other cancer
types, including non-small cell lung cancer and prostate cancer (Xi and
Zhang, 2018; Wang et al., 2020a). FAM72A, also known as Ugene, is a
recently discovered neuronal protein that has been implicated in
tumorigenesis in multiple tissues (Pramanik et al., 2015). It
accelerates the G1/S phase transition in the cell cycle and promotes
cancer cell survival (Wang et al., 2011; Heese, 2013). FAM72A may
affect the balance of mutagenic DNA repair and increase the likelihood
of cells acquiring mutations, potentially contributing to tumor
development (Guo et al., 2008; Renganathan et al., 2021).
Additionally, FAM72A has been identified as a new prognostic
factor for patients with hepatocellular carcinoma (Zhang et al., 2021;

FIGURE 9
Results of RT-qPCR and IHC experiments on 3-FFGs. RT-qPCR result of (A) FAM13C, (B) FAM72A, (C) FAM110B. IHC result of (D) FAM13C, (E)
FAM72A, (F) FAM110B.*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Gao et al., 2022). Although the role of FAM family genes, such as
FAM13C, FAM110B, and FAM72A, in UCEC remains unclear, their
relevance to prognosis and the tumor immune microenvironment in
UCEC patients warrants further investigation. FAM72A is a newly
discovered gene, and its research in the field of oncology is still in its
infancy. However, FAM72A expression has been found to be
significantly upregulated in UCEC and correlated with the
occurrence, development and prognosis of UCEC. Therefore, future
studies can further investigate the mechanism of FAM72A in UCEC,
explore the feasibility of FAM72A as a prognostic marker and explore
the potential value of FAM72A as a therapeutic target, and provide a
theoretical basis for the development of new therapeutic approaches
targeting FAM72A.

The tumor microenvironment (TME) is a complex system
comprising various cells, growth factors, and signaling molecules
that regulate tumor progression and immune escape (Sahoo et al.,
2018; McCoach and Bivona, 2019). Here, we aimed to investigate the
relationship between the FAM gene family and the TME in uterine
corpus endometrial carcinoma (UCEC). We conducted a systematic
analysis of the risk and high-risk groups in terms of immune infiltration
and found that patients in the low-risk group had higher levels of
plasma cells and CD8+ T cells, indicating a better immune response
against tumor cells (Kondratiev et al., 2004). T-cell co-stimulation is a
hierarchical process that is crucial for the formation of an effective
immune response, while Tregs are a subpopulation of CD4+ T cells that
play a critical role in tumor immune escape and angiogenesis
(Facciabene et al., 2012; Tanaka and Sakaguchi, 2017; Chao and
Savage, 2018). T-cell co-stimulation is a hierarchical process that is
crucial for the formation of an effective immune response, while Tregs
are a subpopulation of CD4+ T cells that play a critical role in tumor
immune escape and angiogenesis (Hu et al., 2021b).

In addition, we observed the upregulation of suppressive immune
checkpoint molecules, including CTLA-4, BTLA, CD200, and
CEACAM1, in the low-risk group. Previous studies have reported
that high levels of CTLA-4 expression are associated with a better
prognosis in UCEC patients (Spranger et al., 2013; Liu et al., 2020).
Blockade of BTLA immune checkpoint molecules has been shown to
improve lymphocyte function and enhance the efficacy of anti-PD-
1 monoclonal antibody therapy in UCEC (Panda et al., 2020; Demerlé
et al., 2021). CD200 blockade limits pancreatic tumor growth and
enhances the efficacy of PD-1 blockade in preclinical animal models
(Choueiry et al., 2020). CEACAM1 has also been identified as a
potential target for immunotherapy of tumors due to its ability to
suppress the immune activity of TIL (Turcu et al., 2016). Thus, these
immune checkpoint inhibitors may be promising targets for
combination therapy with anti-PD-1 monoclonal antibodies in low-
risk UCEC patients to enhance the immunotherapeutic effect.

The tumor microenvironment (TME) plays a crucial role in
tumor progression and response to treatment, and immune cell
infiltration and immune checkpoint inhibitors have been recognized
as key factors in the antitumor immune response. Recently, tumor
mutational burden (TMB) has also emerged as a crucial factor in
immunotherapy. TMB is calculated as the number of somatic gene
coding errors, base substitutions, gene insertions or deletions
detected per million bases in the tumor genome, excluding
germline mutations. These somatic mutations can result in the
production of new or altered proteins/peptides, which can be
recognized as foreign by the immune system, leading to an anti-

tumor immune response (INVALID CITATIONb). Studies have
demonstrated that in PD-L1 end-selected or PD-L1-positive
populations, the response to PD-1/PD-L1 inhibitor therapy is
positively associated with higher TMB (Lawrence et al., 2013;
Rizvi et al., 2015). TMB has predictive value for immunotherapy
in various tumors and has been shown to be a better predictor of
efficacy than PD-L1 expression (Carbone et al., 2017; Wang et al.,
2019). However, assessing TMB in routine clinical practice is
challenging due to high sequencing costs and long turnaround
times. In this study, we found that FFGs are closely correlated
with TMB, indirectly reflecting TME status and providing valuable
information for immunotherapy outcomes. We observed a
significant negative correlation between FFGs and TMB, and
low-risk patients had significantly higher TMB than high-risk
patients, indicating that the low-risk group is more likely to
benefit from immunotherapy. Combining TMB with risk scores
can effectively predict the prognosis of UCEC patients, providing a
possible clinical practice reference for guiding immunotherapy
in UCEC.

Although our study provides important insights for prognostic
assessment and treatment selection in UCEC patients, it has several
limitations that must be acknowledged. Firstly, due to its retrospective
nature, our findings require validation in prospective studies. Secondly,
the precise molecular mechanisms underlying the prognostic impact of
FAM family genes in UCEC patients remains to be fully elucidated and
should be further explored through ex vivo experiments. Thirdly, we
attempted to identify external validation cohorts for our findings, but
we were unable to identify appropriate datasets. Therefore, it is crucial
to establish an independent cohort of patients to confirm our results.
Lastly, the TCGA-UCEC cohort is predominantly composed of white
and black patients, with only a small number of Asians represented.
Future studies should aim to includemore diverse populations to ensure
the generalizability of our findings.

5 Conclusion

In summary, the study has developed a prognostic model
using FAM family genes that can accurately predict the prognosis
of UCEC patients. Moreover, the FFGs signature could provide
valuable information on the immune status of patients and identify
potential immunotherapy options for UCEC treatment. The
development of this prognostic model and FFGs signature could
lead to personalized treatment approaches for UCEC patients,
ultimately improving their outcomes.
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SUPPLEMENTARY FIGURE S1
Differential prognostic analysis of the three FFGs in UCEC. (A) ROC
curves showing the efficiency of FAM13C, FAM110B and FAM72A
expression levels in differentiating UCEC tissues from non-tumor tissues.
Association of FAM13C, FAM110B and FAM72A gene expression with
clinical characteristics including (B) age and (C) histological grade.
Kaplan-Meier survival analysis of different FAM13C, FAM110B and
FAM72A expression status in UCEC from TCGA dataset, including
(D) FAM13C disease-specific survival, (E) FAM110B disease-specific
survival, (F) FAM72A disease-specific survival, (G) FAM13C progression-
free interval, (H) FAM110B progression-free interval and (I) FAM72A
progression-free interval. *p < 0.05; **p < 0.01; ***p < 0.001.

SUPPLEMENTARY TABLE S1
Expression level profiles of FAM family genes.

SUPPLEMENTARY TABLE S2
Prognostic levels of FAM family genes.

References

Aran, D. (2020). Cell-type enrichment analysis of bulk transcriptomes using xCell.
Methods Mol. Biol. Clift. N.J.) 2120, 263–276. doi:10.1007/978-1-0716-0327-7_19

Aran, D., Hu, Z., and Butte, A. J. (2017). xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol. 18, 220. doi:10.1186/s13059-017-1349-1

Auslander, N., Zhang, G., Lee, J. S., Frederick, D. T., Miao, B., Moll, T., et al. (2018).
Robust prediction of response to immune checkpoint blockade therapy in metastatic
melanoma. Nat. Med. 24, 1545–1549. doi:10.1038/s41591-018-0157-9

Ayesha, M., Majid, A., Zhao, D., Greenaway, F. T., Yan, N., Liu, Q., et al. (2022). MiR-
4521 plays a tumor repressive role in growth and metastasis of hepatocarcinoma cells by
suppressing phosphorylation of FAK/AKT pathway via targeting FAM129A. J. Adv. Res.
36, 147–161. doi:10.1016/j.jare.2021.05.003

Bartel, C. A., and Jackson, M.W. (2017). HER2-positive breast cancer cells expressing
elevated FAM83A are sensitive to FAM83A loss. PloS one 12, e0176778. doi:10.1371/
journal.pone.0176778

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A. (2018).
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA a cancer J. Clin. 68, 394–424. doi:10.3322/caac.21492

Brooks, R. A., Fleming, G. F., Lastra, R. R., Lee, N. K., Moroney, J. W., Son, C. H., et al.
(2019). Current recommendations and recent progress in endometrial cancer. CA a
cancer J. Clin. 69, 258–279. doi:10.3322/caac.21561

Burdelski, C., Borcherding, L., Kluth, M., Hube-Magg, C., Melling, N., Simon, R., et al.
(2017). Family with sequence similarity 13C (FAM13C) overexpression is an
independent prognostic marker in prostate cancer. Oncotarget 8, 31494–31508.
doi:10.18632/oncotarget.16357

Carbone, D. P., Reck, M., Paz-Ares, L., Creelan, B., Horn, L., Steins, M., et al. (2017).
First-line nivolumab in stage IV or recurrent non-small-cell lung cancer.N. Engl. J. Med.
376, 2415–2426. doi:10.1056/NEJMoa1613493

Cava, C., Pisati, M., Frasca, M., and Castiglioni, I. (2021). Identification of breast
cancer subtype-specific biomarkers by integrating copy number alterations and gene
expression profiles. Med. Kaunas. 57, 261. doi:10.3390/medicina57030261

Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., and Alizadeh, A. A. (2018).
Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. Clift.
N.J.) 1711, 243–259. doi:10.1007/978-1-4939-7493-1_12

Chen, D. S., and Mellman, I. (2013). Oncology meets immunology: The cancer-
immunity cycle. Immunity 39, 1–10. doi:10.1016/j.immuni.2013.07.012

Chen, S., Huang, J., Liu, Z., Liang, Q., Zhang, N., and Jin, Y. (2017). FAM83A is
amplified and promotes cancer stem cell-like traits and chemoresistance in pancreatic
cancer. Oncogenesis 6, e300. doi:10.1038/oncsis.2017.3

Chi, H., Yang, J., Peng, G., Zhang, J., Song, G., Xie, X., et al. (2023). Circadian
rhythm-related genes index: A predictor for HNSCC prognosis, immunotherapy
efficacy, and chemosensitivity. Front. Immunol. 14, 1091218. doi:10.3389/fimmu.
2023.1091218

Chi, H., Zhao, S., Yang, J., Gao, X., Peng, G., Zhang, J., et al. (2023). T-cell exhaustion
signatures characterize the immune landscape and predict HCC prognosis via
integrating single-cell RNA-seq and bulk RNA-sequencing. Front. Immunol. 14,
1137025. doi:10.3389/fimmu.2023.1137025

Choueiry, F., Torok, M., Shakya, R., Agrawal, K., Deems, A., Benner, B., et al.
(2020). CD200 promotes immunosuppression in the pancreatic tumor
microenvironment. J. Immunother. cancer 8, e000189. doi:10.1136/jitc-2019-000189

Cohen, M., Reichenstein, M., Everts-van der Wind, A., Heon-Lee, J., Shani, M.,
Lewin, H. A., et al. (2004). Cloning and characterization of fam13a1-a gene
near a milk protein QTL on BTA6: Evidence for population-wide linkage
disequilibrium in Israeli holsteins. Genomics 84, 374–383. doi:10.1016/j.ygeno.
2004.03.005

Colak, D., Nofal, A., Albakheet, A., Nirmal, M., Jeprel, H., Eldali, A., et al. (2013). Age-
specific gene expression signatures for breast tumors and cross-species conserved
potential cancer progression markers in young women. PloS one 8, e63204. doi:10.
1371/journal.pone.0063204

Demerlé, C., Gorvel, L., and Olive, D. (2021). BTLA-HVEM couple in health and
diseases: Insights for immunotherapy in lung cancer. Front. Oncol. 11, 682007. doi:10.
3389/fonc.2021.682007

Dienstmann, R., Villacampa, G., Sveen, A., Mason, M. J., Niedzwiecki, D., Nesbakken,
A., et al. (2019). Relative contribution of clinicopathological variables, genomic markers,
transcriptomic subtyping and microenvironment features for outcome prediction in
stage II/III colorectal cancer. Ann. Oncol. official J. Eur. Soc. Med. Oncol. 30, 1622–1629.
doi:10.1093/annonc/mdz287

Frontiers in Molecular Biosciences frontiersin.org15

Chi et al. 10.3389/fmolb.2023.1200335

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1200335/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1200335/full#supplementary-material
https://doi.org/10.1007/978-1-0716-0327-7_19
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1038/s41591-018-0157-9
https://doi.org/10.1016/j.jare.2021.05.003
https://doi.org/10.1371/journal.pone.0176778
https://doi.org/10.1371/journal.pone.0176778
https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21561
https://doi.org/10.18632/oncotarget.16357
https://doi.org/10.1056/NEJMoa1613493
https://doi.org/10.3390/medicina57030261
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1038/oncsis.2017.3
https://doi.org/10.3389/fimmu.2023.1091218
https://doi.org/10.3389/fimmu.2023.1091218
https://doi.org/10.3389/fimmu.2023.1137025
https://doi.org/10.1136/jitc-2019-000189
https://doi.org/10.1016/j.ygeno.2004.03.005
https://doi.org/10.1016/j.ygeno.2004.03.005
https://doi.org/10.1371/journal.pone.0063204
https://doi.org/10.1371/journal.pone.0063204
https://doi.org/10.3389/fonc.2021.682007
https://doi.org/10.3389/fonc.2021.682007
https://doi.org/10.1093/annonc/mdz287
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1200335


Facciabene, A., Motz, G. T., and Coukos, G. (2012). T-Regulatory cells: Key players in
tumor immune escape and angiogenesis. Cancer Res. 72, 2162–2171. doi:10.1158/0008-
5472.CAN-11-3687

Finotello, F., Mayer, C., Plattner, C., Laschober, G., Rieder, D., Hackl, H., et al. (2019).
Molecular and pharmacological modulators of the tumor immune contexture revealed
by deconvolution of RNA-seq data. Genome Med. 11, 34. doi:10.1186/s13073-019-
0638-6

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22. doi:10.
18637/jss.v033.i01

Gao, Y., Liu, J., Zhao, D., and Diao, G. (2022). A novel prognostic model for
identifying the risk of hepatocellular carcinoma based on angiogenesis factors.
Front. Genet. 13, 857215. doi:10.3389/fgene.2022.857215

Geeleher, P., Cox, N. J., and Huang, R. S. (2014). Clinical drug response can be
predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines.
Genome Biol. 15, R47. doi:10.1186/gb-2014-15-3-r47

Guo, C., Zhang, X., Fink, S. P., Platzer, P., Wilson, K., Willson, J. K., et al. (2008).
Ugene, a newly identified protein that is commonly overexpressed in cancer and binds
uracil DNA glycosylase. Cancer Res. 68, 6118–6126. doi:10.1158/0008-5472.CAN-08-
1259

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). Gsva: Gene set variation analysis
for microarray and RNA-seq data. BMC Bioinforma. 14, 7. doi:10.1186/1471-2105-14-7

Hauge, H., Patzke, S., and Aasheim, H. C. (2007). Characterization of the
FAM110 gene family. Genomics 90, 14–27. doi:10.1016/j.ygeno.2007.03.002

Heese, K. (2013). The protein p17 signaling pathways in cancer. Tumour Biol. J. Int.
Soc. Oncodevelopmental Biol. Med. 34, 4081–4087. doi:10.1007/s13277-013-0999-1

Herrero, A. B., Quwaider, D., Corchete, L. A., Mateos, M. V., García-Sanz, R., and
Gutiérrez, N. C. (2020). FAM46C controls antibody production by the polyadenylation
of immunoglobulin mRNAs and inhibits cell migration in multiple myeloma. J. Cell.
Mol. Med. 24, 4171–4182. doi:10.1111/jcmm.15078

Hu, J., Yu, A., Othmane, B., Qiu, D., Li, H., Li, C., et al. (2021). Siglec15 shapes a non-
inflamed tumor microenvironment and predicts the molecular subtype in bladder
cancer. Theranostics 11, 3089–3108. doi:10.7150/thno.53649

Hu, Y., Zheng, M., Zhang, D., Gou, R., Liu, O., Wang, S., et al. (2021). Identification of
the prognostic value of a 2-gene signature of the WNT gene family in UCEC using
bioinformatics and real-world data. Cancer Cell Int. 21, 516. doi:10.1186/s12935-021-
02215-0

Huang, S., Pang, L., and Wei, C. (2021). Identification of a four-gene signature with
prognostic significance in endometrial cancer using weighted-gene correlation network
analysis. Front. Genet. 12, 678780. doi:10.3389/fgene.2021.678780

Huang, X., Chi, H., Gou, S., Guo, X., Li, L., Peng, G., et al. (2023). An aggrephagy-
related LncRNA signature for the prognosis of pancreatic adenocarcinoma. Genes
(Basel) 14, 124. doi:10.3390/genes14010124

Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24,
1550–1558. doi:10.1038/s41591-018-0136-1

Jin, W., Yang, Q., Chi, H., Wei, K., Zhang, P., Zhao, G., et al. (2022). Ensemble deep
learning enhanced with self-attention for predicting immunotherapeutic responses to
cancers. Front. Immunol. 13, 1025330. doi:10.3389/fimmu.2022.1025330

Chao, J. L., and Savage, P. A., Unlocking the complexities of tumor-associated
regulatory T cells. J. Immunol. 200 (2018) 415–421. doi:10.4049/jimmunol.1701188

Kondratiev, S., Sabo, E., Yakirevich, E., Lavie, O., and Resnick, M. B. (2004).
Intratumoral CD8+ T lymphocytes as a prognostic factor of survival in endometrial
carcinoma. Clin. cancer Res. official J. Am. Assoc. Cancer Res. 10, 4450–4456. doi:10.
1158/1078-0432.CCR-0732-3

Lai, C., Wu, Z., Li, Z., Yu, H., Li, K., Tang, Z., et al. (2021). A robust signature of
immune-related long non-coding RNA to predict the prognosis of bladder cancer.
Cancer Med. 10, 6534–6545. doi:10.1002/cam4.4167

Lawrence, M. S., Stojanov, P., Polak, P., Kryukov, G. V., Cibulskis, K., Sivachenko, A.,
et al. (2013). Mutational heterogeneity in cancer and the search for new cancer-
associated genes. Nature 499, 214–218. doi:10.1038/nature12213

Li, T., Fu, J., Zeng, Z., Cohen, D., Li, J., Chen, Q., et al. (2020). TIMER2.0 for analysis
of tumor-infiltrating immune cells. Nucleic acids Res. 48, W509–w514. doi:10.1093/nar/
gkaa407

Li, Z., Li, N., Sun, X., and Wang, J. (2019). FAM98A promotes cancer progression in
endometrial carcinoma. Mol. Cell. Biochem. 459, 131–139. doi:10.1007/s11010-019-
03556-1

Liu, J., Ji, C., Wang, Y., Zhang, C., and Zhu, H. (2021). Identification of methylation-
driven genes prognosis signature and immune microenvironment in uterus corpus
endometrial cancer. Cancer Cell Int. 21, 365. doi:10.1186/s12935-021-02038-z

Liu, J. N., Kong, X. S., Huang, T., Wang, R., Li, W., and Chen, Q. F. (2020). Clinical
implications of aberrant PD-1 and CTLA4 expression for cancer immunity and
prognosis: A pan-cancer study. Front. Immunol. 11, 2048. doi:10.3389/fimmu.2020.
02048

Liu, J., Wang, Y., Mei, J., Nie, S., and Zhang, Y. (2021). Identification of a novel
immune landscape signature for predicting prognosis and response of endometrial
carcinoma to immunotherapy and chemotherapy. Front. Cell Dev. Biol. 9, 671736.
doi:10.3389/fcell.2021.671736

Liu, J., Zhang, P., Yang, F., Jiang, K., Sun, S., Xia, Z., et al. (2023). Integrating single-
cell analysis and machine learning to create glycosylation-based gene signature for
prognostic prediction of uveal melanoma. Front. Endocrinol. (Lausanne) 14, 1163046.
doi:10.3389/fendo.2023.1163046

Mariathasan, S., Turley, S. J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y., et al.
(2018). TGFβ attenuates tumour response to PD-L1 blockade by contributing to
exclusion of T cells. Nature 554, 544–548. doi:10.1038/nature25501

Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018). Maftools:
Efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 28,
1747–1756. doi:10.1101/gr.239244.118

McCoach, C. E., and Bivona, T. G. (2019). Engineering multidimensional
evolutionary forces to combat cancer. Cancer Discov. 9, 587–604. doi:10.1158/2159-
8290.CD-18-1196

Pan, F., Wang, K., Zheng, M., Ren, Y., Hao, W., and Yan, J. (2022). A TRP family
based signature for prognosis prediction in head and neck squamous cell carcinoma.
J. Oncol. 2022, 8757656. doi:10.1155/2022/8757656

Panda, A., Rosenfeld, J. A., Singer, E. A., Bhanot, G., and Ganesan, S. (2020). Genomic
and immunologic correlates of LAG-3 expression in cancer. Oncoimmunology 9,
1756116. doi:10.1080/2162402X.2020.1756116

Pei, S., Zhang, P., Chen, H., Zhao, S., Dai, Y., Yang, L., et al. (2023). Integrating single-
cell RNA-seq and bulk RNA-seq to construct prognostic signatures to explore the role of
glutamine metabolism in breast cancer. Front. Endocrinol. (Lausanne) 14, 1135297.
doi:10.3389/fendo.2023.1135297

Pei, S., Zhang, P., Yang, L., Kang, Y., Chen, H., Zhao, S., et al. (2023). Exploring the
role of sphingolipid-related genes in clinical outcomes of breast cancer. Front. Immunol.
14, 1116839. doi:10.3389/fimmu.2023.1116839

Plattner, C., Finotello, F., and Rieder, D. (2020). Deconvoluting tumor-infiltrating
immune cells from RNA-seq data using quanTIseq. Methods Enzym. 636, 261–285.
doi:10.1016/bs.mie.2019.05.056

Pramanik, S., Kutzner, A., and Heese, K. (2015). Lead discovery and in silico 3D
structure modeling of tumorigenic FAM72A (p17). Tumour Biol. J. Int. Soc.
Oncodevelopmental Biol. Med. 36, 239–249. doi:10.1007/s13277-014-2620-7

Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D. E., and Gfeller, D. (2017).
Simultaneous enumeration of cancer and immune cell types from bulk tumor gene
expression data. eLife 6, e26476. doi:10.7554/eLife.26476

Raffone, A., Travaglino, A., Mascolo, M., Carbone, L., Guida, M., Insabato, L., et al.
(2019). TCGA molecular groups of endometrial cancer: Pooled data about prognosis.
Gynecol. Oncol. 155, 374–383. doi:10.1016/j.ygyno.2019.08.019

Rahane, C. S., Kutzner, A., and Heese, K. (2019). A cancer tissue-specific
FAM72 expression profile defines a novel glioblastoma multiform (GBM) gene-
mutation signature. J. neuro-oncology 141, 57–70. doi:10.1007/s11060-018-03029-3

Renganathan, S., Pramanik, S., Ekambaram, R., Kutzner, A., Kim, P. S., and Heese,
K. (2021). Identification of a chemotherapeutic lead molecule for the potential
disruption of the FAM72A-UNG2 interaction to interfere with genome stability,
centromere formation, and genome editing. Cancers 13, 5870. doi:10.3390/
cancers13225870

Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J., et al.
(2015). Cancer immunology. Mutational landscape determines sensitivity to PD-1
blockade in non-small cell lung cancer. Sci. (New York, N.Y.) 348, 124–128. doi:10.1126/
science.aaa1348

Sahoo, S. S., Zhang, X. D., Hondermarck, H., and Tanwar, P. S. (2018). The emerging
role of the microenvironment in endometrial cancer. Cancers 10, 408. doi:10.3390/
cancers10110408

Samstein, R. M., Lee, C. H., Shoushtari, A. N., Hellmann, M. D., Shen, R., Janjigian, Y.
Y., et al. (2019). Tumor mutational load predicts survival after immunotherapy across
multiple cancer types. Nat. Genet. 51, 202–206. doi:10.1038/s41588-018-0312-8

Shen, Y., Chi, H., Xu, K., Li, Y., Yin, X., Chen, S., et al. (2022). A novel classification
model for lower-grade glioma patients based on pyroptosis-related genes. Brain Sci. 12,
700. doi:10.3390/brainsci12060700

Snyder, A., Makarov, V., Merghoub, T., Yuan, J., Zaretsky, J. M., Desrichard, A., et al.
(2014). Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl.
J. Med. 371, 2189–2199. doi:10.1056/NEJMoa1406498

Soslow, R. A., Tornos, C., Park, K. J., Malpica, A., Matias-Guiu, X., Oliva, E., et al.
(2019). Endometrial carcinoma diagnosis: Use of FIGO grading and genomic
subcategories in clinical practice: Recommendations of the international society of
gynecological pathologists. Int. J. Gynecol. pathology official J. Int. Soc. Gynecol.
Pathologists 38 (1), S64-S74–s74. doi:10.1097/PGP.0000000000000518

Spranger, S., Spaapen, R. M., Zha, Y., Williams, J., Meng, Y., Ha, T. T., et al. (2013).
Up-regulation of PD-L1, Ido, and T(regs) in the melanoma tumor microenvironment is
driven by CD8(+) T cells. Sci. Transl. Med. 5, 200ra116. doi:10.1126/scitranslmed.
3006504

Frontiers in Molecular Biosciences frontiersin.org16

Chi et al. 10.3389/fmolb.2023.1200335

https://doi.org/10.1158/0008-5472.CAN-11-3687
https://doi.org/10.1158/0008-5472.CAN-11-3687
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.3389/fgene.2022.857215
https://doi.org/10.1186/gb-2014-15-3-r47
https://doi.org/10.1158/0008-5472.CAN-08-1259
https://doi.org/10.1158/0008-5472.CAN-08-1259
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.ygeno.2007.03.002
https://doi.org/10.1007/s13277-013-0999-1
https://doi.org/10.1111/jcmm.15078
https://doi.org/10.7150/thno.53649
https://doi.org/10.1186/s12935-021-02215-0
https://doi.org/10.1186/s12935-021-02215-0
https://doi.org/10.3389/fgene.2021.678780
https://doi.org/10.3390/genes14010124
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.3389/fimmu.2022.1025330
https://doi.org/10.4049/jimmunol.1701188
https://doi.org/10.1158/1078-0432.CCR-0732-3
https://doi.org/10.1158/1078-0432.CCR-0732-3
https://doi.org/10.1002/cam4.4167
https://doi.org/10.1038/nature12213
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1007/s11010-019-03556-1
https://doi.org/10.1007/s11010-019-03556-1
https://doi.org/10.1186/s12935-021-02038-z
https://doi.org/10.3389/fimmu.2020.02048
https://doi.org/10.3389/fimmu.2020.02048
https://doi.org/10.3389/fcell.2021.671736
https://doi.org/10.3389/fendo.2023.1163046
https://doi.org/10.1038/nature25501
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1158/2159-8290.CD-18-1196
https://doi.org/10.1158/2159-8290.CD-18-1196
https://doi.org/10.1155/2022/8757656
https://doi.org/10.1080/2162402X.2020.1756116
https://doi.org/10.3389/fendo.2023.1135297
https://doi.org/10.3389/fimmu.2023.1116839
https://doi.org/10.1016/bs.mie.2019.05.056
https://doi.org/10.1007/s13277-014-2620-7
https://doi.org/10.7554/eLife.26476
https://doi.org/10.1016/j.ygyno.2019.08.019
https://doi.org/10.1007/s11060-018-03029-3
https://doi.org/10.3390/cancers13225870
https://doi.org/10.3390/cancers13225870
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.3390/cancers10110408
https://doi.org/10.3390/cancers10110408
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.3390/brainsci12060700
https://doi.org/10.1056/NEJMoa1406498
https://doi.org/10.1097/PGP.0000000000000518
https://doi.org/10.1126/scitranslmed.3006504
https://doi.org/10.1126/scitranslmed.3006504
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1200335


Tamminga, M., Hiltermann, T. J. N., Schuuring, E., Timens, W., Fehrmann, R. S., and
Groen, H. J. (2020). Immune microenvironment composition in non-small cell lung cancer
and its association with survival. Clin. Transl. Immunol. 9, e1142. doi:10.1002/cti2.1142

Tanaka, A., and Sakaguchi, S. (2017). Regulatory T cells in cancer immunotherapy.
Cell Res. 27, 109–118. doi:10.1038/cr.2016.151

Turcu, G., Nedelcu, R. I., Ion, D. A., Brînzea, A., Cioplea, M. D., Jilaveanu, L. B., et al.
(2016). CEACAM1: Expression and role in melanocyte transformation. Dis. markers
2016, 9406319. doi:10.1155/2016/9406319

Vainio, P., Wolf, M., Edgren, H., He, T., Kohonen, P., Mpindi, J. P., et al. (2012).
Integrative genomic, transcriptomic, and RNAi analysis indicates a potential oncogenic
role for FAM110B in castration-resistant prostate cancer. Prostate 72, 789–802. doi:10.
1002/pros.21487

Wang, F., Wei, X. L., Wang, F. H., Xu, N., Shen, L., Dai, G. H., et al. (2019). Safety,
efficacy and tumor mutational burden as a biomarker of overall survival benefit in
chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in phase Ib/
II clinical trial NCT02915432. Ann. Oncol. official J. Eur. Soc. Med. Oncol. 30,
1479–1486. doi:10.1093/annonc/mdz197

Wang, L. T., Lin, C. S., Chai, C. Y., Liu, K. Y., Chen, J. Y., and Hsu, S. H. (2011).
Functional interaction of Ugene and EBV infection mediates tumorigenic effects.
Oncogene 30, 2921–2932. doi:10.1038/onc.2011.16

Wang, Q. W., Lin, W. W., and Zhu, Y. J. (2022). Comprehensive analysis of a TNF
family based-signature in diffuse gliomas with regard to prognosis and immune
significance. Cell Commun. Signal. CCS 20, 6. doi:10.1186/s12964-021-00814-y

Wang, X., Duanmu, J., Fu, X., Li, T., and Jiang, Q. (2020). Analyzing and validating
the prognostic value and mechanism of colon cancer immune microenvironment.
J. Transl. Med. 18, 324. doi:10.1186/s12967-020-02491-w

Wang, Y., Ren, F., Song, Z., Wang, X., and Ma, X. (2020). Multiomics profile and
prognostic gene signature of m6A regulators in uterine corpus endometrial carcinoma.
J. Cancer 11, 6390–6401. doi:10.7150/jca.46386

Wu, Z., Wang, Y., Yan, M., Liang, Q., Li, B., Hou, G., et al. (2022). Comprehensive
analysis of the endoplasmic reticulum stress-related long non-coding RNA in bladder
cancer. Front. Oncol. 12, 951631. doi:10.3389/fonc.2022.951631

Wu, Z., Zeng, J., Wu, M., Liang, Q., Li, B., Hou, G., et al. (2023). Identification and
validation of the pyroptosis-related long noncoding rna signature to predict the
prognosis of patients with bladder cancer. Med. Baltim. 102, e33075. doi:10.1097/
MD.0000000000033075

Xi, T., and Zhang, G. (2018). Integrated analysis of tumor differentiation genes in
pancreatic adenocarcinoma. PloS one 13, e0193427. doi:10.1371/journal.pone.0193427

Xie, M., Cai, L., Li, J., Zhao, J., Guo, Y., Hou, Z., et al. (2020). FAM110B inhibits non-
small cell lung cancer cell proliferation and invasion through inactivating wnt/β-catenin
signaling. OncoTargets Ther. 13, 4373–4384. doi:10.2147/OTT.S247491

Xu, L., Deng, C., Pang, B., Zhang, X., Liu, W., Liao, G., et al. (2018). Tip: A web server
for resolving tumor immunophenotype profiling. Cancer Res. 78, 6575–6580. doi:10.
1158/0008-5472.CAN-18-0689

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-Garcia,
W., et al. (2013). Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat. Commun. 4, 2612. doi:10.1038/ncomms3612

Yu, J., Hou, M., and Pei, T. (2020). FAM83A is a prognosis signature and potential
oncogene of lung adenocarcinoma. DNA Cell Biol. 39, 890–899. doi:10.1089/dna.2019.
4970

Zhang, C., Zhang, G., Sun, N., Zhang, Z., Zhang, Z., Luo, Y., et al. (2020).
Comprehensive molecular analyses of a TNF family-based signature with regard to
prognosis, immune features, and biomarkers for immunotherapy in lung
adenocarcinoma. EBioMedicine 59, 102959. doi:10.1016/j.ebiom.2020.102959

Zhang, H., Li, R., Cao, Y., Gu, Y., Lin, C., Liu, X., et al. (2022). Poor clinical outcomes
and immunoevasive contexture in intratumoral IL-10-producing macrophages
enriched gastric cancer patients. Ann. Surg. 275, e626–e635. doi:10.1097/SLA.
0000000000004037

Zhang, J., Sun, M., Hao, M., Diao, K., Wang, J., Li, S., et al. (2019). FAM53A affects
breast cancer cell proliferation, migration, and invasion in a p53-dependent manner.
Front. Oncol. 9, 1244. doi:10.3389/fonc.2019.01244

Zhang, P., Pei, S., Gong, Z., Feng, Y., Zhang, X., Yang, F., et al. (2023). By integrating
single-cell RNA-seq and bulk RNA-seq in sphingolipid metabolism, CACYBP was
identified as a potential therapeutic target in lung adenocarcinoma. Front. Immunol. 14,
1115272. doi:10.3389/fimmu.2023.1115272

Zhang, P., Pei, S., Gong, Z., Ren, Q., Xie, J., Liu, H., et al. (2023). The integrated single-
cell analysis developed a lactate metabolism-driven signature to improve outcomes and
immunotherapy in lung adenocarcinoma. Front. Endocrinol. (Lausanne) 14, 1154410.
doi:10.3389/fendo.2023.1154410

Zhang, P., Pei, S., Liu, J., Zhang, X., Feng, Y., Gong, Z., et al. (2022). Cuproptosis-
related lncRNA signatures: Predicting prognosis and evaluating the tumor immune
microenvironment in lung adenocarcinoma. Front. Oncol. 12, 1088931. doi:10.3389/
fonc.2022.1088931

Zhang, T., Nie, Y., Gu, J., Cai, K., Chen, X., Li, H., et al. (2021). Identification of
mitochondrial-related prognostic biomarkers associated with primary bile acid
biosynthesis and tumor microenvironment of hepatocellular carcinoma. Front.
Oncol. 11, 587479. doi:10.3389/fonc.2021.587479

Zhao, S., Chi, H., Yang, Q., Chen, S., Wu, C., Lai, G., et al. (2023). Identification
and validation of neurotrophic factor-related gene signatures in glioblastoma
and Parkinson’s disease. Front. Immunol. 14, 1090040. doi:10.3389/fimmu.2023.
1090040

Zhao, S., Zhang, X., Gao, F., Chi, H., Zhang, J., Xia, Z., et al. (2023). Identification of
copper metabolism-related subtypes and establishment of the prognostic model in
ovarian cancer. Front. Endocrinol. (Lausanne) 14, 1145797. doi:10.3389/fendo.2023.
1145797

Zhou, C., Li, C., Yan, F., and Zheng, Y. (2020). Identification of an immune gene
signature for predicting the prognosis of patients with uterine corpus endometrial
carcinoma. Cancer Cell Int. 20, 541. doi:10.1186/s12935-020-01560-w

Frontiers in Molecular Biosciences frontiersin.org17

Chi et al. 10.3389/fmolb.2023.1200335

https://doi.org/10.1002/cti2.1142
https://doi.org/10.1038/cr.2016.151
https://doi.org/10.1155/2016/9406319
https://doi.org/10.1002/pros.21487
https://doi.org/10.1002/pros.21487
https://doi.org/10.1093/annonc/mdz197
https://doi.org/10.1038/onc.2011.16
https://doi.org/10.1186/s12964-021-00814-y
https://doi.org/10.1186/s12967-020-02491-w
https://doi.org/10.7150/jca.46386
https://doi.org/10.3389/fonc.2022.951631
https://doi.org/10.1097/MD.0000000000033075
https://doi.org/10.1097/MD.0000000000033075
https://doi.org/10.1371/journal.pone.0193427
https://doi.org/10.2147/OTT.S247491
https://doi.org/10.1158/0008-5472.CAN-18-0689
https://doi.org/10.1158/0008-5472.CAN-18-0689
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1089/dna.2019.4970
https://doi.org/10.1089/dna.2019.4970
https://doi.org/10.1016/j.ebiom.2020.102959
https://doi.org/10.1097/SLA.0000000000004037
https://doi.org/10.1097/SLA.0000000000004037
https://doi.org/10.3389/fonc.2019.01244
https://doi.org/10.3389/fimmu.2023.1115272
https://doi.org/10.3389/fendo.2023.1154410
https://doi.org/10.3389/fonc.2022.1088931
https://doi.org/10.3389/fonc.2022.1088931
https://doi.org/10.3389/fonc.2021.587479
https://doi.org/10.3389/fimmu.2023.1090040
https://doi.org/10.3389/fimmu.2023.1090040
https://doi.org/10.3389/fendo.2023.1145797
https://doi.org/10.3389/fendo.2023.1145797
https://doi.org/10.1186/s12935-020-01560-w
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1200335

	FAM family gene prediction model reveals heterogeneity, stemness and immune microenvironment of UCEC
	1 Introduction
	2 Materials and methods
	2.1 Data sources
	2.2 Model construction
	2.3 Model formulae
	2.4 Independent prognostic analysis and nomogram construction
	2.5 Immunity analysis of the risk signature
	2.6 Somatic mutation analysis
	2.7 Drug sensitivity
	2.8 Cell culture
	2.9 qRT-PCR and IHC
	2.10 Statistical analysis

	3 Result
	3.1 Identification of candidate FFGs
	3.2 Construction of FFGs prognosis signature with its predictive value
	3.3 Validation of the FFGs prognostic model
	3.4 Establishment of nomograms in combination with clinical characteristics
	3.5 The FFGs signature performed better than others in prognostic prediction
	3.6 Differential expression and prognostic analysis of three FFGs in UCEC
	3.7 FFGs risk score predicts TME and immune cell infiltration
	3.8 FFGs risk score predicts treatment response assessment
	3.9 Comparison of somatic mutation between low-risk and high-risk groups
	3.10 Validation of the built model by RT-qPCR and IHC

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


