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Multidrug-resistant Acinetobacter baumannii infections have become a major
public health concern globally. Inhibition of its essential MurF protein has been
proposed as a potential target for broad-spectrum drugs. This study aimed to
evaluate the potential of a novel ecological niche of 374 fungus-growing termite
associated Natural Products (NPs). The molecular docking and computational
pharmacokinetics screened four compounds, i.e., Termstrin B, Fridamycin A,
Maduralactomycin A, and Natalenamide C, as potential compounds that have
higher binding affinities and favourable protein-ligand interactions. The
compound Maduralactomycin A induced more stability based on its lowest
average RMSD value (2.31 Å) and low standard deviation (0.35) supported by
the consistent flexibility and β-factor during the protein’s time-dependent
motion. While hydrogen bond analysis indicated that Termstrin B has formed
the strongest intra-protein interaction, solvent accessibility was in good
agreement with Maduralactomycin A compactness. Maduralactomycin A has
the strongest binding energy among all the compounds (−348.48 kcal/mol)
followed by Termstrin B (−321.19 kcal/mol). Since these findings suggest
Maduralactomycin A and Termstrin B as promising candidates for inhibition of
MurF protein, the favourable binding energies of Maduralactomycin A make it a
more important compound to warrant further investigation. However,
experimental validation using animal models and clinical trials is recommended
before reaching any final conclusions.
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Introduction

Acinetobacter baumannii, a Gram-negative bacterium, is one of
the top six ESKAPE pathogens responsible for multidrug-resistant
(MDR) hospital-acquired infections (Cho et al., 2018; Ma et al.,
2020; Motbainor et al., 2020). Pneumonia, bacteremia, urinary tract
infections, meningitis, and wound infections are frequently caused
by A. baumannii, especially in burn patients (Correa et al., 2018).
Although the bacteria developed inherent resistance to a variety of
antibiotics, further acquired resistance has emerged during the past
three decades (Presta et al., 2017). A. baumannii resistance to
imipenem grew to 85% in certain locations, posing serious risks
to the public’s health. According to studies, hospital death rates are
high, ranging from 50% to 64%, and the majority of patients pass
away within 48 h of being admitted (A Rahman et al., 2017). MDR
A. baumannii epidemics are widespread, and cases have been
documented worldwide, including in Iraq, India, Spain, Germany,
Brazil, Turkey, the United States, Japan, Iran, and the UK
(Skariyachan et al., 2019). Reports suggested that A. baumannii is
the most severe pathogen which shows resistance against diverse
classes of antibiotics. Among the various pathways found inMDRA.
baumannii, the peptidoglycan biosynthetic pathway is the most
important for the survival of the bacteria (Moubareck and Halat,
2020).

Peptidoglycan (PG) an essential component of the bacterial cell
wall, is a target of choice for several antibacterial drugs (Gu et al.,
2004). Bacterial peptidoglycan is made up of biological
macromolecules that cover cell membranes and components of
the cell walls. This bacterial cell wall is responsible for shape and
firmness as well as protecting cells from bursts because of variations
in osmotic pressure. In general, peptidoglycan is the chief
constituent of the outer membrane of the majority of eubacteria
cell walls, including A. baumannii (Saxena et al., 2018). The Mur
family of enzymes catalyze intracellular ATP-driven reactions and
have similar reaction mechanisms and three-dimensional (3D)
architectures (Barreteau et al., 2008). The MurF enzyme is
responsible for the incorporation of a d-alanyl d-alanyl moiety
during peptidoglycan synthesis and has been identified as a
promising target for a variety of reasons (Smith, 2006; Barreteau
et al., 2008; Hrast et al., 2014). Primarily, MurF is essential for the
bacteria to survive, secondly, as MurF is highly conserved in both
Gram-positive and Gram-negative bacteria, there may be potential
to develop broad-spectrum therapeutic agents (El Zoeiby et al.,
2003). Thirdly, MurF function seems to be indispensable for
development of resistance against the lactam antibiotics (Sobral
et al., 2003). Lastly, disrupting the MurF function impairs bacteria’s
capacity for replication (El Zoeiby et al., 2003). Antibiotic-
inactivating enzymes decreased bacterial entrance into the
intended target site, and altered intended or cellular activities as
a result of mutation are the three main mechanisms of resistance in
A. baumannii (Lowe et al., 2018). The World Health Organization
has designated Carbapenem-resistant A. baumannii as a priority-I
pathogen, necessitating the development of new antimicrobial
agents (Ingti et al., 2020; Khurshid et al., 2020). Because of this,
there is a desperate search for new antimicrobial drugs that can
inhibit virulent targets and research the function of possible
medicines in the treatment of illnesses brought on by MDR A.
baumannii (Shahzad et al., 2020).

As a result, the lack of antimicrobial therapeutics that are
effective in treating MDR organisms is leading to the urgent
need for new options that may be more effective in treating
MDR phenotypes (Chen et al., 2020). Mur ligases seem to have
become the focus of antibacterial therapy research in recent years
(Schneider and Sahl, 2010; Bugg et al., 2011). Several classes of MurF
inhibitors have been proposed (Sobral et al., 2003; Baum et al., 2006;
Comess et al., 2006; Baum et al., 2007). Based on structure-based
virtual screening, a novel inhibitor against Streptococcus
pneumoniae MurF was revealed (Turk et al., 2009). A series of
computational biology techniques ranging from molecular
modelling and docking to binding free energy calculation and
molecular dynamics simulations which determine the binding
potential of various antibacterial towards AdeB, AcrB, and NorM
efflux proteins were reported (Verma et al., 2018). Studies have
suggested that several natural inhibitors can potentially bind and
inhibit various key enzymes or major receptors which resulted in the
inhibition of bacterial growth making them viable and attractive
targets for screening of potent antibacterial drugs (Santajit and
Indrawattana, 2016). Studies reported that alkaloids, flavones,
tannins, and phenolic compounds are known to be active against
various targets of Acinetobacter spp. (Liu et al., 2018). Recently few
computational studies identified Mur members (MurA and MurG)
as potential drug targets for MDRA. baumannii andM. tuberculosis,
respectively (Saxena et al., 2018; Skariyachan et al., 2019).

Because additional NPs with inhibitory activity against MurF of
MDR A. baumannii are yet to be explored to produce a new
potential drug against A. baumannii. Although microbial natural
products from soil origin have been widely explored, the metabolites
of those occupying some special ecological niches have not been fully
investigated. The ability of insects to live in unique niche habitats is
often facilitated by the association with their microbial symbionts
(Zhang et al., 2008; Brownlie and Johnson, 2009; Zhang et al., 2013).
Termites are the major eusocial insect and play an important role in
carbon and nitrogen cycles on earth (Ellwood and Foster, 2004). A
Fungus Growing termite is a special group, belonging to
Macrotermitinae, which form a close relationship with
Termitomyces in the nest, besides having symbiosis with diverse
gut microbes (Aanen et al., 2007; Rosengaus et al., 2010). Fungus-
growing termite usually has higher efficiency of lignocellulose
decomposition (Poulsen, 2015). Fungal-growing termite gut
harbours a diverse and varied microflora that is indispensable for
multifunctional niches, additionally, the tripartite symbiosis in
fungus-growing termites may foster some special microbes with
unique metabolic mechanisms, which may provide important
resources for discovering novel antimicrobial drugs (Otani et al.,
2019). Fungus growing termites could be termed as biopharma in
terms of a major source of antimicrobials, as it has a huge bio
potential because of the enormous amount of microflora inside its
gut yielding important chemical scaffolds urgently needed for novel
natural products and future drug development programs. Natural
compounds derived from the fungus-growing termite are of
particular interest to medicinal chemists owing to their
outstanding chemistry and varied biological characteristics.
Actinobacteria are good potential defensive symbionts in fungus-
growing termites because they are well-known antibiotic generators
and occur as defensive microbes in other insect–fungus symbioses
(Scott et al., 2008; Kroiss et al., 2010; Seipke et al., 2011). Termite
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nests had huge Actinobacteria diversity (Manjula et al., 2016) and
housed more than 20% of Actinobacteria that could inhibit the
growth of at least one tested organism (Sujada et al., 2014). It was
also reported that some Actinobacteria from the faecal nest of active
termites had antimicrobial activity (Chouvenc et al., 2013).

Considering the importance of MurF, we purposefully
constructed a small library of new ecological niche, fungus-
growing termite-associated NPs (n = 376) to identify lead
molecules that may act as inhibitors for the MurF (PBD ID:
4ZIY) protein of MDR A. baumannii. Subsequently, screened
Fungus-growing termite-derived NPs (n = 376) were subjected to
screening for their physicochemical characteristics,
pharmacokinetics, and drug-likeness. The leading 74 natural
products (with no Lipinski’s rule of five violation) were
docked against MurF protein, and the lead (based on top Gold
score) four compounds Maduralactomycin A, Natalenamide C,
Termstrin B (Anthraquinone derivative) and Fridamycin A were
evaluated using different post-molecular dynamics analyses as a
part of in silico modelling. Maduralactomycin A has the most
favourable binding energies which make it a more important
compound to warrant further investigation. Consequently, our
results showed that these top drug candidates can serve as
potential inhibitors of MurF protein based on their behaviour
that is explored as a function of time.

Materials and methods

Crystal structure retrieval

The crystal structure of MurF (PDB ID: 4ZIY) was retrieved
from the Protein Data Bank (PDB) and used as the template for
the virtual screening of fungal-associated termite-derived natural
products (NPs). The structures were downloaded in PDB format
and viewed using the PyMOL software (DeLano, 2002). The
structures were then prepared for docking by removing water
molecules, ions, and other ligands, and then minimized the
structure using the Schrodinger software with the OPLS4 force
field (Lu et al., 2021) and the steepest descent algorithm until the
gradient threshold of 0.01 kcal/mol/Å was reached.

Library design and optimization

A library of 376 NPs was downloaded from the PubChem
database (Kim et al., 2021) and screened for drug-like properties
using Swiss ADME (Daina et al., 2017). The 74 leading NPs were
then docked against the MurF protein using the CCDC GOLD suite
(Jones et al., 1997). The structures were optimized using the
Avogadro tool (Hanwell et al., 2012) and Chem3D (Chem3D,
1991). The Avogadro tool was used to perform energy
minimization of the structures using the MMFF94x force field
(Halgren, 1996) and the steepest descent algorithm until the
gradient threshold of 0.001 kcal/mol/Å was reached. Chem3D
was used to perform conformational searches on the structures
using the Molecular Mechanics Poisson-Boltzmann Surface Area
(MM-PBSA) method (Cousins, 2005) with a total of
1000 conformations generated for each structure.

Computational pharmacokinetics

A substantial bottleneck remains in the drug development
approaches, especially in the later stages of lead NPs discovery.
ADME profile analysis and explicit toxicity features of a drug-like
candidate can compensate for the technological gaps and difficulties
(Lee and Goo, 2004). Using Lipinski rule-based ADME criteria,
compounds are evaluated as potential to be used as an effective
therapeutic option (Lipinski et al., 1997). The SWISS-ADME tool
was used to determine a set of ADME-related attributes (Rashid
et al., 2021; Mohammed Ali et al., 2022) for each of the selected NPs.
The ADME properties of the 74 NPs were analyzed using the
SWISS-ADME tool (Daina et al., 2017) to evaluate their drug-
like suitability and toxicity risk. Lipinski’s rule of five (Lipinski
et al., 1997) was used to predict the partition coefficient (Log P),
H-bond donors and acceptors, topological polar surface area
(TPSA), number of rotatable bonds, molecular weight, and
number of atoms. The predictions were made using the default
parameters of the SWISS-ADME tool with a cut-off threshold of
3 for Log P and TPSA and a cut-off threshold of 5 for H-bond
donors and acceptors. While looking for the drug-likeness, toxicity
risk predictor is of utmost importance. Toxicology risk alerts are a
sign that the depicted structure might be detrimental in relation to
the given risk category. Risk alarms, however, are not intended to be
a perfectly accurate toxicity prediction (Rashid et al., 2021).

Molecular docking

The MurF protein was configured for docking using the Hermes
visualizer in the CCDC GOLD suite (Jones et al., 1997). The binding
site of the crystal ligand was used to identify the active site of the
protein. The GOLD scoring function (goldscorep450_csd) was used
to rank the docked NPs based on their binding affinity. The four
best-docked NPs were selected for further analysis. The docking
calculations were performed using the default parameters of the
CCDC GOLD suite with a grid box size of 30x30x30 Å and a grid
spacing of 0.375 Å.

Explicit solvent molecular dynamics
simulation

The Desmond program of Schrodinger software (version 2021-
2) (Bowers, 2006) was used for the explicit solvent molecular
dynamics simulation of the selected NPs. The OPLS4 force field
(Jorgensen et al., 1996) was used to model protein-ligand
interactions. A simulated triclinic periodic boundary box with an
extension of 10 Å in each direction was made to help solve the
structures of the A. baumannii MurF target protein. Explicit
solvation models (Monte-Carlo equilibrated SPC, the transferable
intermolecular potential 3 points) were used for each system.
(Jorgensen et al., 1983). Lennard Jones (LJ) interactions (with
cut-off value = 10) (Shaik et al., 2010) and the SHAKE algorithm
(Kräutler et al., 2001) were applied to standardize the mobility of all
Bonds (covalent and hydrogen bonds). The system was solvated
with additional counter ions (0.15 M of Na + Cl) to neutralize the
system. The protein-ligand complex was energy minimized using
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the steepest descent algorithm until the gradient threshold of
25 kcal/mol/Å was reached. The complex was subjected to
molecular dynamics simulation in NPT ensemble class at 300 K
and 1 bar pressure using default parameters of the Desmond
program. The simulation was run for a total of 200 nanoseconds,
with a time step of 2 fs, and data were collected every 20 ps.

Prime MMGBSA calculation

The Schrodinger software (version 2021-2) was used to perform
Prime MMGBSA calculations on the selected NPs. The OPLS4 force
field (Jorgensen et al., 1996) was used to model protein-ligand
interactions. The complexes were solvated in an explicit solvent
and energy was minimized. The binding free energy of the
complexes was calculated using the Prime MMGBSA method
(Jacobson et al., 2002) and used to rank the NPs based on their
binding affinity to the MurF protein. The calculations were
performed with the default parameters of the Schrodinger
software, including the use of the GB/SA implicit solvent model,
a dielectric constant of 1.0, and a scaling factor of 0.8 for van der
Waals interactions. A total of 100 frames were obtained from all the
trajectories at a uniform time period. The final energies were
calculated based on the average energies from these 100 frames.
The binding free energy of a ligand (L) to a protein (P) to form the
complex (PL) is obtained as the difference.

ΔG binding( ) � ΔG complex( ) − ΔG Protein( ) − ΔG Ligand( )
Where ΔG (complex), ΔG (Protein), and ΔG (Ligand) stand for the free
energies of a complex, a protein, and a ligand, respectively while ΔG
(binding) is the binding free energy.

Results

Structure preparation and screening of
fungus-growing termite derived NPs

The three-dimensional structure of the MurF protein of A.
baumannii was obtained from a protein databank using the PDB
ID 4ZIY. The structure was cleaned off irrelevant protein chains and
crystallization waters. The cleared structure was energy minimized
for 3000 steps using the steepest descent and conjugate gradient
algorithms (1500 each). The active site information was extracted
from the bound crystallographic MurF structure. A small library of
2D structures of 376 Fungus-growing termite-derived NPs was
developed, and the structures were converted to 3D using the
chem3d tool. The 3D structures were further optimized using the
Avogadro tool to find the minimum energy structure of each NP.
The MMFF94 force field (Halgren, 1996) was used for energy
minimization and the number of iterations was set to 500 and
the gradient convergence threshold was tuned to 0.05 kcal/mol/Å.
Van der Waals cutoff distance was set to 8 Å and the electrostatics
cutoff distance was set to 10 Å to get the more reliable geometry of
the compounds. For screening against the MurF protein of the A.
baumannii, CCDC Gold Suite was utilized. Since the active site
contains a metal ion, we utilized GoldScore as a scoring function
which takes into account chemscore, metal-ligand interactions and

along with the entropic cost of the ligand desolvation. The genetic
search algorithm (GA) with maximum GA operations of 100, the
maximum number of solutions set to 10 and 100 conformations per
ligand with Van der Waals, Electrostatic, Hydrogen bond, and
metal-binding scaling factor set to 1.0. The ligand flexibility was
set to rigid and receptor flexibility was set to the rigid backbone and
flexible sidechains. The Fungus-growing termite derived NPs library
was screened, and a gold score was obtained for all the compounds.
After searching for the drug-likeness and Goldscore collectively,
four compounds with an established history of extraction from
Fungus-growing termites were selected as lead candidates for further
study (Figure 1; Table 1).

Lipinski validation of the lead NPs

Lipinski Rules: Lipinski’s rule of five is a set of guidelines used to
predict the oral bioavailability of a drug candidate. The four rules
state that a compound should have no more than 5 hydrogen bond
donors (HBD), no more than 10 hydrogen bond acceptors (HBA), a
molecular weight of less than 500, and an octanol-water partition
coefficient (logP) of less than 5. Termstrin B has 2 HBD, 9 HBA, a
molecular weight of 412.35, and a logP of 2.44, which means it has
0 violations of Lipinski’s rules. Fridamycin A has 5 HBD, 10 HBA, a
molecular weight of 485.46, and a logP of 1.6, which means it has
0 violations of Lipinski’s rules. Maduralactomycin A has 1 HBD,
7 HBA, a molecular weight of 352.29, and a logP of 2.21, which
means it has 0 violations of Lipinski’s rules. Natalenamide C has
3 HBD, 5 HBA, a molecular weight of 422.45, and a logP of 1.98,
which means it has 0 violations of Lipinski’s rules (Table 2).

Drug likeness of the top compounds

The compound Termstrin B has a TPSA (topological polar
surface area) of 164.09. According to the Ali Log S, the solubility
of this compound is 1.02E-04 mg/mL and 2.46E-07 mol/L, which is
classified as “poorly soluble”. According to the Silicos-IT LogSw, the
solubility of this compound is 7.05E-02 mg/mL and 1.71E-04 mol/L,
which is classified as “soluble”. The compound has low GI
absorption, log Kp of −6.34, no Lipinski violations, a
bioavailability score of 0.11, no Brenk alerts, and synthetic
accessibility of 3.92. The compound Fridamycin A has a TPSA of
184.65. According to the Ali Log S, the solubility of this compound is
3.95E-03 mg/mL and 8.14E-06 mol/L, which is classified as
“moderately soluble”. According to the Silicos-IT LogSw, the
solubility of this compound is 1.85E-01 mg/mL and 3.82E-
04 mol/L, which is classified as “soluble”. The compound has low
GI absorption, log Kp of −8.13, no Lipinski violations, a
bioavailability score of 0.11, no Brenk alerts, and synthetic
accessibility of 5.11. The compound Maduralactomycin A has a
TPSA of 118.95. According to the Ali Log S, the solubility of this
compound is 2.60E-03 mg/mL and 7.39E-06 mol/L, which is
classified as “moderately soluble”. According to the Silicos-IT
LogSw, the solubility of this compound is 2.92E-02 mg/mL and
8.28E-05 mol/L, which is classified as “moderately soluble”. The
compound has high GI absorption, log Kp of −6.34, no Lipinski
violations, a bioavailability score of 0.56, no Brenk alerts, and
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synthetic accessibility of 4.18. This last compound Natalenamide C
has a TPSA of 127.43. According to the Ali Log S, the solubility of
this compound is 3.53E-01 mg/mL and 8.35E-04 mol/L, which is
classified as “soluble”. According to the Silicos-IT LogSw, the
solubility of this compound is 1.05E-04 mg/mL and 2.48E-
07 mol/L, which is classified as “poorly soluble”. The compound
has low GI absorption, log Kp of −8.29, no Lipinski violations, a
bioavailability score of 0.56, no Brenk alerts, and synthetic
accessibility of 3.98. It is important to note that these
computationally predicted properties are not always accurate and
experimental validation is needed before reaching a conclusion.

Molecular docking analysis

The shortlisted compounds exhibited favourable gold scores
against the MurF protein of A. baumannii. Compound Termstrin B
posted the highest gold score of 76.99 followed by Fridamycin A at

76.6. The Maduralactomycin A and Natalenamide C posed a gold
score of 68.69 and 68.13 (Table 3).

These higher gold scores were supported by the hydrogen bond
interactions and hydrophobic interactions with the complexes
mainly stabilized by the magnesium (Mg) ion. All the
compounds established hydrogen interaction with Thr120 and
Asn335 while the Mg ion established hydrogen bonds with
Thr120, Glu166, and at least two interactions with the ligand in
the binding pocket for all four complexes. This shows that all four
compounds docked into the same active site in all four cases.
Additionally, Termstrin B posed hydrogen bonds with Ser117,
Thr121, Asn144 (2), Asn284, Asn287, and Tyr334 and
Fridamycin A was stabilized by hydrogen interactions with
Ser117, Asn142, Asn144, His283, Arg318, Asp332 (2), Lys429.
While Maduralactomycin A exhibited hydrogen interactions with
Lys119, Thr121 (4), Asn144, and Tyr334 with three hydrogen bonds
with Thr120. The compound Natalenamide C posed hydrogen
interactions with Arg318 and Ser340 (Figure 2).

FIGURE 1
Two-dimensional structures of the top four Fungus-growing termite-derived NPs against MurF protein of A. baumannii shortlisted after molecular
docking and computational Pharmacokinetics. (A) Maduralactomycin A, (B) Termstrin, (C) Fridamycin A, (D) Natalenamide C.

TABLE 1 The table enumerates the shortlisted NPs derived from Fungus-growing termites (novel ecological niche).

S.No Ligand Compound class Termite source Bacterial source Ref.

1 Termstrin B Anthraquinone derivative O. formosanus Streptomyces tanashiensis Zhang et al. (2020)

2 Fridamycin A PKS Macrotermes natalensis Actinomadura sp. RB99 Yoon et al. (2019)

3 Maduralactomycin A PKS Macrotermes natalensis Actinomadura sp. RB29 Guo et al. (2020)

4 Natalenamide C NRPS Macrotermes natalensis Actinomadura sp. RB99 Lee et al. (2018a)

Remarks: PKS; polyketide synthases, NRPS; Non-Ribosomal Peptide Synthetase.
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Maduralactomycin A is the most stable NP
against the MurF of A. baumannii

The RMSD data for four compounds, i.e., Termstrin B,
Fridamycin A, Maduralactomycin A, and Natalenamide C, bound

to the MurF protein of A. baumannii was obtained after 200 ns
molecular dynamics simulations. The analysis of the data shows that
Maduralactomycin A has the lowest average RMSD value of 2.31 Å,
while Termstrin B has the highest average RMSD value of 3.35 Å ().
This suggests that Maduralactomycin A may have a more stable

TABLE 2 The table shows the various drug-like properties of the top four compounds including Lipinski’s rule of five, solubility, GI absorption, blood-brain
permeation bioavailability score, brink alerts and synthetic accessibility, etc. For lead compounds.

ADME and toxicity profiling of shortlisted fungus-growing termite derived NPs

Maduralactomycin A Fridamycin A Termstrin B Natalenamide C

PubMed CID 156582985 75614470 156580654 146684096

Physiochemical Property

Formula C18H11ClO7 C25H26O10 C21H18O9 C23H25N3O5

Molecular Weight 374.73 486.47 414.36 423.46

Num. H-bond donors 3 6 4 4

Num. H-bond acceptors 7 10 9 5

Num. Rotatable bonds 1 5 6 7

TPSA 113.29 181.82 158.43 124.6

Molar Refractivity 90.29 121.26 102.68 124.37

ADME Daina et al. (2017)

BBB permeate No No No No

GI absorption High Low Low High

Pgp substrate No Yes Yes Yes

Brenk #alerts 0 0 0 0

Silicos-IT class Moderately soluble Soluble Soluble Poorly Soluble

Ali Class Moderately soluble Moderately soluble Poorly soluble Soluble

CYP1A2 inhibitor Yes No No No

CYP2C19 inhibitor No No No No

CYP2C9 inhibitor Yes No Yes No

CYP2D6 inhibitor Yes No No No

CYP3A4 inhibitor Yes No No No

log Kp (cm/s) −6.29 −8.13 −6.36 −8.3

Lipinski violations 0 0 0 0

Ghose violations 0 1 0 0

Veber violations 0 1 1 0

Egan violations 0 1 1 0

Muegge violations 0 1 1 0

Bioavailability Score 0.56 0.11 0.11 0.56

Synthetic Accessibility 4.18 5.15 3.99 4.02

Molinspiration Bioactivity Score Molinspiration Log. (2017)

GPCR ligand −0.38 0.01 0.14 0.33

Ion channel modulator −0.52 −0.01 0.08 0.13

Kinase inhibitor −0.47 −0.06 −0.01 −0.01

Nuclear receptor ligand 0.06 −0.11 0.55 0.16

Protease inhibitor −0.53 −0.2 0.26 0.47

ProtoxII Prediction of toxicity Banerjee et al. (2018)

Predicted Toxicity Class Yellow Yellow Yellow Yellow

Hepatotoxicity Inactive 61% Inactive 72% Inactive 67% Inactive 68%

Carcinogenicity Medium Risk Inactive 64% Inactive 75% Inactive 74%

Mutagenicity Inactive 56% Inactive 60% Inactive 55% Inactive 82%

Cytotoxicity Inactive 68% Inactive 79% Inactive 81% Inactive 78%

Estrogen Receptor Alpha (ER Inactive 59% Inactive 76% Inactive 53% Inactive 87%

Phosphoprotein (Tumor Suppressor) p53 Medium Risk Medium Risk Inactive 71% Inactive 87%

Gold Score against MurF PBD ID: 4ZIY 68.69 76.6 65.25 68.13

Remarks: Molinspiration Bioactivity Score > 0—active; −5.0–0.0—moderately active; < −5.0—inactive.

Frontiers in Molecular Biosciences frontiersin.org06

Shoaib et al. 10.3389/fmolb.2023.1183073

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1183073


TABLE 3 The table lists the molecular docking scores, hydrogen interactions of the candidate drug and protein as well as the hydrogen interactions of the Mg ion
within the active site.

S.No Ligand Gold Score (MurF;
4ZIY)

Hydrogen Interactions MG interactions

1 Termstrin B 76.99 Ser117, Thr120, Thr121, Asn144 (2), Asn284, Asn287, Tyr334,
Asn335

Thr120, Glu166, Termstrin B (3)

2 Fridamycin A 76.6 Ser117, Thr120, Asn142, Asn144, His283, Arg318, Asp332 (2),
Asn335, Lys429

Thr120, Glu166 (2), Fridamycin A (2)

3 Maduralactomycin A 68.69 Lys119, Thr120 (3), Thr121 (4), Asn144, Tyr334, Asn335 Thr120, Glu166, Maduralactomycin
A (2)

4 Natalenamide C 68.13 Thr120, Arg318, Asn335, Ser340 Thr120, Glu166 (2), Natalenamide
C (2)

FIGURE 2
The highest scoring molecular docking poses of (A) Termstrin B (B) Fridamycin A (C) Maduralactomycin A, and (D) Natalenamide C bound to the
active site of the MurF protein of A. baumannii. The hydrogen bonds between compounds and the protein residues/Mg ion are depicted as a red dotted
line while hydrogen interactions among Mg ion and the protein residues are depicted via a yellow dotted line.

FIGURE 3
Root means square deviation analysis of the MurF protein of A. baumannii after 200 ns of molecular dynamics simulations. Where (A) represents the
line RMSD graph for Cα atoms of MurF protein while (B) represents the RMSD values of each compoundwith respect to its initial position within the active
site. The line graph is enriched with colour-coded legends for each complex.
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interaction with the MurF protein compared to the other
compounds. The maximum RMSD values for each compound
also indicate that the RMSD values for each compound increased
throughout the simulation, and the highest RMSD values were
observed at different time points, Termstrin B has the highest
RMSD at 91ns and Natalenamide C has the highest RMSD at
177th ns. The standard deviation values indicate that the RMSD
values for each compound are relatively consistent, with
Maduralactomycin A having the lowest standard deviation of
0.35, while Termstrin B and Natalenamide C have the highest
standard deviation of 0.58 and 0.70 respectively. It is worth
noting that the difference between the average RMSD of
Maduralactomycin A and Termstrin B is quite high, which
suggests that Maduralactomycin A has a more stable interaction
with the MurF protein than the other compounds (Figure 3).
Additionally, the standard deviation of Maduralactomycin A is
significantly lower than the other compounds, indicating that the
structural stability of Maduralactomycin A is more consistent over
the simulation. Furthermore, when analyzing the RMSD values
concerning the initial position of the compounds in the active
site of the MurF protein, Maduralactomycin A again stands out
with the lowest average RMSD value of 0.29 Å, the lowest maximum
RMSD value of 0.76 Å, and the lowest standard deviation of 0.10,
further reinforcing its structural stability in the active site of the
MurF protein. On the other hand, Fridamycin A has the highest
average RMSD value of 1.50 Å, the highest maximum RMSD value
of 1.75 Å, and the second-highest standard deviation of 0.11,
indicating that it may have a less stable interaction with the
active site of the MurF protein. Overall, the results of this RMSD
analysis indicate that Maduralactomycin A is the most stable
compound against the MurF of A. baumannii.

Flexibility and β-factor analysis

The RMSF analysis of the four compounds MurF protein
(when bound to Termstrin B, Fridamycin A, Maduralactomycin
A, and Natalenamide C) of A. baumannii was obtained after 200 ns
molecular dynamics simulations. The analysis of the data shows
that the residues Glu6, Pro7, and Trp8 are the most rigid residues

across all four compounds, with RMSF values ranging between
1.39 Å to 1.75 Å. This suggests that these residues play a critical
role in maintaining the structural stability of the complex.
Moreover, other regions with high degrees of flexibility include
residues 310-325, 358-370, and 418-426, with specific residues
such as Gly313, Leu314, Gly316, and Gln317 in the first region,
Asn359, Ser361, Leu364, and Ser365 in the second region, and
Pro419, Leu420, Gln421, and Ser423 in the third region showing
particularly high RMSF values. In the middle, the four residues
with the highest RMSF values are Glu194, Asp195, Ser196, and
Arg197. These residues may have a significant impact on the
binding stability of the ligands. Additionally, the analysis also
reveals three other regions of high flexibility: residues 310-320,
358-365, and 418 to 421. In the region of 310-325, the top four
most flexible residues are Tyr314, Lys317, Arg318, and Asp319. In
the region of 358-370, the top four most flexible residues are
Tyr359, Val360, Glu362, and His364. Lastly, in the region of
418–426, the top four most flexible residues are Glu418,
Asp419, Ser420, and Arg421 (Figure 4). These regions may also
play a significant role in the binding and interaction of the
compounds with the MurF protein. Overall, the RMSF analysis
highlights the importance of the active site and surrounding
regions in the binding and interaction of the compounds with
the MurF protein. The Maduralactomycin A compound has the
best overall performance in terms of RMSF values.

When comparing the β-factor data to the RMSF data, it is clear
that the regions of high flexibility identified by RMSF analysis are
also reflected in the β-factor data. For example, the RMSF analysis
identified the active site residues Glu194, Asp195, Ser196, and
Arg197 as having the highest RMSF values, and the β-factor data
also shows that these residues have high β-factor values. Similarly,
the RMSF analysis identified residues 310-320, 358-365, and 418-
422 as regions of high flexibility, and the β-factor data also shows
that these regions have high β -factor values. Additionally, the RMSF
analysis identified the residues Glu6, Pro7, and Trp8 as the most
rigid residues, and the β-factor data also shows that these residues
have low β-factor values. Overall, the comparison of the RMSF and
β-factor data supports the conclusion that the active site and
surrounding regions play a significant role in the binding and
interaction of the compounds with the MurF protein.

FIGURE 4
Root means square fluctuation and β-factor analysis of the MurF protein of A. baumannii after 200 ns of molecular dynamics simulations. Where (A)
represents the line RMSF graph for residues of MurF protein while (B) represents the βfactor values of each residue while bound to the candidate
compounds within the active site. The line graph is also enriched with colour-coded legends for each complex.
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Gyration and exposed surface area analysis

The radius of gyration (Rg) values provides an insight into the
size and shape of the compounds in complex with the MurF protein
from A. baumannii. The average Rg values for MurF bound
Termstrin B, Fridamycin A, Maduralactomycin A and
Natalenamide C were 25.31 Å, 25.47 Å, 25.04 Å and 25.13 Å,
respectively which are relatively similar, indicating that the
induced compactness by the size and shape and activity of these
compounds are similar. The standard deviation (SD) of the Rg
values is 0.31 Å, 0.27 Å, 0.26 Å, and 0.37 Å for Termstrin B,
Fridamycin A, Maduralactomycin A and Natalenamide C,
respectively, which are relatively small, indicating that there is
not much variation in the Rg values within each complex. The
maximum Rg value for Termstrin B was 26.24 Å, 26.38 Å for
Fridamycin A, 26.07 Å for Maduralactomycin A and 26.18 Å for
Natalenamide C while the minimum Rg values were 24.33 Å,
24.48 Å, 24.34 Å and 24.12 Å, respectively. In comparison, the Rg
values for Maduralactomycin A are slightly lower than the other
compounds which may suggest that Maduralactomycin A has
induced a more compact protein structure complex as compared
to the other compounds.

The results of the SASA analysis provide information on the
exposed surface area of the compounds in complex with the protein.
The Average SASA induced by Termstrin B was 20747.86 Å2,
20821.24 Å2 for Fridamycin A, 20907.37 Å2 for
Maduralactomycin A, and 20902.57 Å2 for Natalenamide C.
These values indicate that the compounds have a relatively
similar exposed surface area within the binding pocket of the
protein. However, the variability of the exposed surface area is
higher for Termstrin B (376.46) and Maduralactomycin A
(378.73) as compared to Fridamycin A (310.44) and
Natalenamide C (327.43). This suggests that the exposed surface
area of these compounds may be more variable within the binding
pocket of the protein as compared to the other compounds. The
maximum SASA values are 21888.80 Å2 for Termstrin B, 21734.86
Å2 for Fridamycin A, 21918.81 Å2 for Maduralactomycin A, and
21873.80 Å2 for Natalenamide C while the minimum SASA values
are 19432.83 Å2, 19528.59 Å2, 19499.54, and 19525.54 Å2,
respectively, which indicate that these compounds have a
relatively similar range of exposed surface area (Figure 5). In
conclusion, the SASA analysis suggests that all the compounds
have similar surface exposure in complex with the MurF protein.
However, it is worth noting that Maduralactomycin A has the
highest maximum SASA value and Termstrin B has the lowest
minimum SASA value, indicating that these compounds may have
slightly different binding modes or conformations in the protein’s
binding pocket.

Intra-protein hydrogen bond and secondary
structure analysis

The data provided for the hydrogen bonds analysis pertains
to the number of inter-protein hydrogen bonds formed when the
compounds are bound to protein. The average number of
hydrogen bonds formed varies among the compounds, with
Termstrin B induced the highest at 404.67 followed by

Maduralactomycin A and Natalenamide C, both with an
average of 393.67. Fridamycin A forms the least number of
hydrogen bonds, with an average of 392.32. The SD of
Fridamycin A having is the highest at 9.44 while Termstrin B
has the lowest at 5.36. Termstrin B has the highest maximum
number of hydrogen bonds (424) while Fridamycin A has the
lowest (363). It is worth noting that the standard deviation of
Fridamycin A is relatively high, indicating that there is greater
variability in the number of inter-protein hydrogen bonds
formed for this compound compared to the others. The
number of inter-protein hydrogen bonds formed can be
indicative of the strength and stability induced by interacting
compounds within the protein complex.

The analysis of secondary structural elements (SSEs) in the
protein complex of interest provides insight into the local
conformational changes that occur upon binding of the
ligands. The SSEs are classified into two major categories:
helices and strands. Figure 6 provides the percentage of
helices and strands in each of the four complexes, as well as
the total percentage of SSEs. It can be observed that there is a
small difference between the four complexes in terms of the
percentage of helices, which ranges from 29.36% to 30.77%.
Similarly, the percentage of strands also varies slightly, with a
range of 14.83%–15.59%. The total percentage of SSEs is also
relatively consistent, with a range of 44.52%–45.9%. This suggests
that the binding of the ligands does not lead to significant changes
in the overall secondary structure of the protein. However, it
should be noted that even small changes in SSEs may result in
large changes in protein activity and binding. Overall, the SSE
analysis provides a detailed picture of the structural changes that
occur upon binding the ligands to the protein.

MurF protein contacts with lead compounds

The interactions between the MurF protein and the lead
compounds were tracked for all four systems throughout the
simulation time. It was observed that all the compounds were
stabilized by the Mg ion within the active site of the MurF protein.
Termstrin B retained three hydrogen bonds for 100% of the simulation
time with the Mg ion while the hydrogen bonds between Thr120 and
Glu166 and the Mg ion were also retained for the whole simulation
time. Other interactions like the salt bridge betweenO− of the Termstrin
B and Lys119 were retained for 90% of the simulation time. Other
notable retained interactions were between Termstrin B and
Thr121 and Asn287 which were retained for 79% and 66% of the
simulation time. The third major contributor for Termstrin B was a
water bridge that was formed between the ligand and the
Lys119 residue. On the other hand, for Fridamycin A, the Mg ion
retained two interactions with the ligand for 100% of the simulation
time while alternatively, the Mg ion retained two hydrogen bonds with
Glu166 and Thr120 for 100% of the simulation period and 2nd bond
with Glu166 for 51% of the time period. The secondmajor contribution
was made by Asp332 which retained two interactions for 61% and 26%
respectively. Apart from that all other contributions were below 50%
(Figure 7).

Maduralactomycin A exhibited the three hydrogen bonds
with Mg ion for 100% of the simulation period while Mg ion also
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retained two hydrogen bonds with Thr120, Gly141, and
Glu166 for the whole simulation period. This shows the tight
packing of Maduralactomycin A in the binding pocket of the
MurF protein compared to the other compounds. Additionally, a
major contribution was also made by Lys119, Thr120, Thr121,
and Arg318 as Lys119 retained two π-cation interactions for 71%
and 37%, Thr120 retained two hydrogen interactions for 95%
and 86%, Thr121 retained three hydrogen interactions for 94%,
51%, and 38% while Arg318 retained a single salt bridge for 71%
of the simulation period. An additional contribution was also
made by Tyr334 as a π-π stacking interaction. Natalenamide C
also exhibited strong binding patterns within the binding pocket
by retaining three hydrogen bonds for the whole simulation time
with Mg ion and Mg ion also retained two hydrogen bonds with
Glu166 and one hydrogen bond each with Thr120 and
Gly141 residues for the simulation period. An additional
contribution was made by Lys119, Thr120, Asn335, and
Ser340 as Lys119 made a salt bridge and water bridge for 81%
and 47%, Thr120 retained a hydrogen bond for 91%,
Asn335 exhibited two hydrogen bonds each for 54% and 40%

while Ser340 exhibited a hydrogen bond with Natalenamide C
for 59% of the simulation time (Figure 8). An additional small
contribution was also made by a π-π stacking with
His283 residue. These results show that Madulactomycin A
and Natalenamide C exhibited the strongest binding against
the MurF protein of A. baumannii.

Binding energy (MMGBSA) analysis

The results of the MMGBSA analysis show that the compound
Maduralactomycin A has the strongest binding energy among the
five compounds, with a total energy of −348.48 kcal/mol. This is
followed by Termstrin B at −321.19 kcal/mol, Natalenamide C
at −299.65 kcal/mol, and Fridamycin A at −297.20 kcal/mol. This
indicates that these compounds have relatively high binding
affinities for the protein. The largest contributors to the binding
energy are the van der Waals interactions and the solvation energy
by the implicit solvent, with −260.18 kcal/mol and 195.57 kcal/
mol, respectively. Electrostatic interactions also play a significant

FIGURE 5
The line graph shows (A) the Radius of gyration (in Å), and (B) Solvent accessible surface area (in Å2) plots as a function of time for the simulation
period of 200 ns per system. The line graph has been enriched with colour-coded legends for each graph.

FIGURE 6
The plots show the results of (A) intra-protein hydrogen bond occupancy, and (B) Secondary structure elements (in percentages) analysis during the
simulation time of 200 ns per system. The line graph has been enriched with colour-coded legends for each graph.
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role in the binding energy, with −163.63 kcal/mol. For
Maduralactomycin A, Natalenamide C and Fridamycin A are
van der Waals interactions (−272.31 kcal/mol, −234.53 kcal/mol,
and −241.08 kcal/mol) and solvation by implicit solvent
(219.20 kcal/mol, 199.28 kcal/mol, and 167.48 kcal/mol). While
the contributions from covalent, hydrogen bonding, lipophilic,
and packing interactions are relatively small, they all play a role in
the overall binding energy. The ligand strain energy is also
provided, which is a measure of the energy required to deform
the ligand into the binding pocket of the protein. The highest
ligand strain energy is observed for Maduralactomycin A, at
144.9 kcal/mol (Figure 9). This suggests that this compound
may have a more complex binding mode than the other
compounds. Overall, the MMGBSA analysis provides a
comprehensive understanding of the different types of
interactions that contribute to the binding energy of the
compounds to the protein. The relative energy values obtained
from the simulation can help to rank the compounds according to
their binding affinities for the protein and understand the
underlying molecular interactions."

Discussion

The increasing prevalence of MDR A. baumannii infections has
become a major public health concern globally (Motbainor et al.,
2020). A. baumannii is a Gram-negative bacterium that is one of the

six most common causes of MDR hospital-acquired infections and
is responsible for several severe infections such as pneumonia,
bacteremia, and urinary tract infections (A Rahman et al., 2017;
Lowe et al., 2018). The bacterium has intrinsic resistance to a broad
range of antibiotics, and acquired resistance mechanisms, such as
enzymes inactivating antibiotics, have emerged. The high resistance
rate of A. baumannii to Ceftazidime (94.11%), (Cefepime 88.23%)
imipenem (77.77%) (Abed et al., 2023) and high mortality rates
(50%-64%) have made it a priority-I pathogen according to the
World Health Organization, which placed critical category for the
urgent need of new antibiotics (Kieny, 2017).

In recent years, the Mur family of enzymes has become a focus
of antibacterial therapy research. The MurF enzyme is essential for
the survival of bacteria and is extensively conserved in both Gram-
positive and Gram-negative bacteria, making it a potential target
for broad-spectrum drugs (Smith, 2006). Inhibitors of MurF have
been proposed, including pseudo-tripeptides and sulfonamide
inhibitors, thiazolyl aminopyrimidine compounds, 8-
hydroxyquinolines, and 4-phenylpiperidine derivatives (Baum
et al., 2006; Baum et al., 2007; Baum et al., 2009). Since new
therapeutic development is challenging, time-consuming, and
costly. Bioinformatics studies have been phenomenal in
genome-wide studies (GWAS) to identify mutations (Khattak
et al., 2021; Ahmad et al., 2022a), its annotation (Ahmad et al.,
2022b; Shah et al., 2022) and impact (Ijaz et al., 2021; Ali et al.,
2022a), identification of novel and potent drugs (Ajmal et al., 2022;
Ali et al., 2023; Rehman et al., 2023), its targets (Jan et al., 2021)

FIGURE 7
The interaction patterns and the fraction of MurF protein in complex with (A) Termstrin B and (B) Fridamycin A through the simulation period. The
Histogram plot shows the fraction interaction of each residue, and the colour codes show the type of interaction, i.e., the green colour represents
hydrogen bonds, the grey colour represents hydrophobic interactions, the purple colour represents ionic interactions, and the blue colour represents the
water bridges.
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and candidate transformations (Zahid et al., 2023). In silico
methods are significant to define the position of a gene, predict
its transcripts, interaction with neighbors (Ali et al., 2022b), and

determine the function and structure of a protein generated from
that gene within the cell (Scott et al., 2008). In silico study also
supports us to differentiate the neutral and deleterious SNPs

FIGURE 8
The interaction patterns and fractions of MurF protein in complex with (A) Maduralactomycin A and (B) Natalenamide C through the simulation
period. The Histogram plot shows the fraction interaction of each residue, and the colour codes show the type of interaction, i.e., the green colour
represents hydrogen bonds, the grey colour represents hydrophobic interactions, the purple colour represents ionic interactions, and the blue colour
represents the water bridges.

FIGURE 9
The Molecular mechanics, Generalized Born, and surface area solvation energies for Termstrin B (black), Fridamycin A (red), and Maduralactomycin
A (indigo) and Natalenamide C (yellow) in complex with MurF (4ZIY) of A. baumannii.
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through various algorithm and accessible information in the
databases (Yue and Moult, 2006) and their role in the drug
discovery. Increasing multidrug resistance against P. aeruginosa
highlighted the need for effective treatments to combat this
pathogen. The application of in-silico-based modelling
techniques compensates for the inherent limitations of natural
products and offers a unique opportunity to re-establish natural
products as a major source for drug discovery (Lahlou, 2013;
Sehgal et al., 2013; Sehgal et al., 2016). Studies using
computational biology techniques, such as molecular modelling
and docking, have shown the potential of various antibacterial
agents to bind and inhibit key enzymes or receptors in bacteria
(Sehgal et al., 2013; Sehgal et al., 2018).

Insect-associated bacteria have been recognized as a very
promising natural source for discovering novel bioactive
secondary metabolites (Beemelmanns et al., 2016;
WycheTryptorubin et al., 2017). The high rediscovery rate of
known natural products has diminished the enthusiasm to
explore new natural products from historically important natural
sources such as medicinal plants. Fungus-growing termite gut-
derived natural inhibitors, such as alkaloids, PKS, and NRPS,
have also been shown to potentially bind and inhibit microbial
growth, making them attractive targets for screening potential
antibacterial drugs (BeemelmannsMacrotermycins et al., 2017;
Lee et al., 2018b; Liu et al., 2018; Yin et al., 2019; Zhang et al.,
2020; Long et al., 2022; Zhou et al., 2022). The identification of new
and effective antimicrobial agents against MDR A. baumannii is
crucial for overcoming the public health threat posed by this
bacterium. Using molecular docking and molecular dynamic
simulation approaches this study demonstrated that four
compounds, Termstrin B, Fridamycin A, Maduralactomycin A,
and Natalenamide C, have the potential to be inhibitors of the
MurF protein of A. baumannii. The Lipinski validation of the
compounds indicates that all four compounds have no violations
of Lipinski’s rules of five, meaning they are predicted to have good
oral bioavailability. Table 1 summarizes the molecular properties of
the four compounds, and Table 2 provides information on their
predicted drug-like properties, including solubility, gastrointestinal
absorption, bioavailability score, and synthetic accessibility.

Based on the results of the RMSD, RMSF, and β-factor analysis,
Maduralactomycin A is found to be the most stable compound
against the MurF of A. baumannii. The RMSD data shows that
Maduralactomycin A has the lowest average RMSD value and the
lowest standard deviation, suggesting a more stable interaction with
the MurF protein compared to the other compounds. The RMSF
analysis reveals that the residues Glu6, Pro7, and Trp8 are the most
rigid, while the β-factor data also supports the regions of high
flexibility identified by RMSF analysis. These regions may play a
significant role in the binding and interaction of the compounds
with the MurF protein. Furthermore, Maduralactomycin A was
found to have the best overall performance in terms of RMSF values.
These findings indicate that Maduralactomycin A has a more stable
and consistent interaction with the MurF protein, making it a
promising candidate for further drug development against A.
baumannii. The hydrogen bond analysis provides information on
the number of hydrogen bonds formed between the compounds and
the MurF protein. The average number of hydrogen bonds formed
varies among the compounds, with Termstrin B having the highest

at 404.67, followed by Maduralactomycin A and Natalenamide C,
both with an average of 393.67. Fridamycin A forms the least
number of hydrogen bonds, with an average of 392.32. The
standard deviation of the number of hydrogen bonds is also
provided, with Fridamycin A having the highest at 9.44 and
Termstrin B having the lowest at 5.36. The highest maximum
number of inter-protein hydrogen bonds is observed for
Termstrin B at 424 and the highest minimum number is
observed for Natalenamide C at 365. These results suggest that
the number of hydrogen bonds formed can provide insight into the
strength of the interaction between the compound and the MurF
protein. Termstrin B appears to form the strongest interaction with
the protein, while Fridamycin A has the greatest variability in the
number of hydrogen bonds formed, as indicated by its high standard
deviation. These results can be used to further understand the
molecular interactions and binding modes of the compounds
with the MurF protein.

It is important to note that while the compounds show promise
as inhibitors of the MurF protein, it is crucial to validate these
results experimentally before reaching any conclusions. Some of
the predicted properties, such as solubility and bioavailability
score, can differ between the two logarithmic scales used in the
analysis, highlighting the need for further experimental validation.
Despite these limitations, the results of this study provide valuable
information for the development of new inhibitors for A.
baumannii and suggest that these four compounds especially
Maduralactomycin A, and Natalenamide C warrant further
investigation for their potential as treatments against this
pathogen.

Conclusion

The study aimed to evaluate the potential of 374 fungal-
associated termite tripartite-derived natural products as inhibitors
of the essential bacterial enzyme MurF of MDR A. baumannii. After
molecular docking and computational pharmacokinetics screening,
four compounds, Termstrin B, Fridamycin A, Maduralactomycin A,
and Natalenamide C, were found to have higher binding affinities
towards the MurF protein. The results showed that
Maduralactomycin A was the most stable compound against
MurF with the lowest average RMSD value and low standard
deviation from RMSD analysis. Additionally, Maduralactomycin
A was found to have the strongest binding energy among all the
compounds and the most favourable dynamics. Termstrin B was
also found to have a strong interaction with the protein and the
highest average number of hydrogen bonds. These findings suggest
that Maduralactomycin A and Termstrin B are potential candidates
for further drug development against A. baumannii. However,
experimental validation through animal models and clinical trials
is recommended before reaching any final conclusions.
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