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The emergence of persistent ill-health in the aftermath of SARS-CoV-2 infection
has presented significant challenges to patients, healthcare workers and
researchers. Termed long COVID, or post-acute sequelae of COVID-19 (PASC),
the symptoms of this condition are highly variable and spanmultiple body systems.
The underlying pathophysiology remains poorly understood, with no therapeutic
agents proven to be effective. This narrative review describes predominant clinical
features and phenotypes of long COVID alongside the data supporting potential
pathogenesis of these phenotypes including ongoing immune dysregulation, viral
persistence, endotheliopathy, gastrointestinal microbiome disturbance,
autoimmunity, and dysautonomia. Finally, we describe current potential
therapies under investigation, as well as future potential therapeutic options
based on the proposed pathogenesis research.

KEYWORDS

SARS-CoV-2, long COVID, post-acute sequelae of SARS-CoV-2 infection, PASC, post
COVID condition

Introduction

Identification of long COVID as clinical syndrome

The clinical spectrum of COVID-19, the disease caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection, has been extensively characterised
(Huang et al., 2020a; Xu et al., 2020). The majority of affected individuals experience a
mild or moderate disease phenotype, with fewer than 5% developing critical illness. In the
aftermath of the first wave of infection, there were increasing reports of persistent ill-health
beyond resolution of acute infection. These ongoing symptoms were protean, with fatigue,
cognitive dysfunction, and respiratory symptoms most commonly reported (Carfì et al., 2020;
Townsend et al., 2020). Up to one-fifth of those who have ever hadCOVID report symptoms of
long COVID (USA DoHaHS, 2022). Many experience disabling symptoms, with 44% of those
with long COVID in one survey unable to return to work (Cutler, 2022) Post-viral conditions
following other infections have been previously described. Indeed, the assessment of the long-
term consequences of the severe acute respiratory syndrome (SARS) epidemic (caused by the
novel coronavirus SARS-CoV) found that a subset (51%) of those affected in Toronto
experienced persistent fatigue, diffuse myalgias, weakness and depression 1 year after their
acute illness and could not return to work (Moldofsky and Patcai, 2011). In a similar follow-up
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study amongst 233 SARS survivors in Hong Kong, over 40% of
respondents reported ongoing fatigue 40 months after infection (Lam
et al., 2009). In those affected by the subsequent Middle-Eastern
Respiratory Syndrome Coronavirus (MERS-CoV) outbreak in Korea,
prolonged symptoms and fatigue were reported up to 18 months after
acute infection (Lee et al., 2019). However, no pathological
mechanism underlying these symptoms has been described.

Post-infectious fatigue syndromes have been reported following
a myriad of infections other than coronaviruses, including Epstein-
Barr Virus (EBV), Q-Fever and Ross River Virus (RRV) infections,
as well as rickettsiosis (Hickie et al., 2006). Similar to post-
coronavirus illnesses, no definite mechanism has been identified
for the development of these syndromes. An area of prior focus in
these conditions has been the autonomic system, with post-
infectious dysautonomia proposed as an underlying mechanism
to explain commonly reported post-infectious symptoms such as
abnormal heart rate and blood pressure responses to physiological
stressors, most notably postural orthostatic tachycardia syndrome
(POTS). Interestingly, prior studies in the area of chronic fatigue
syndrome/myalgic encephalomyelitis (CFS/ME) have also shown a
variety of changes in autonomic function, but a clear unifying
pathological basis to explain the emergence of dysautonomia post
infection is lacking (Newton et al., 2007).

A common stumbling block for mechanistic studies into post-
infectious fatigue and reduced exercise tolerance is an absence of
clear timing of onset from the purported triggering infection. The
COVID-19 pandemic has provided an opportunity to study physical
sequalae and their underlying mechanisms following acute viral
infection in a setting seldom found: a large number of individuals
with confirmed infection by a known virus at a known timepoint.
Another challenge lies in how to appropriately characterise long
COVID, given its heterogenous nature and the wide number of
symptoms reported. There are various terms and clinical definitions
from different guidance bodies used to classify the constellation of
symptoms and incident conditions that occur following acute
COVID-19, including ‘post COVID-19 syndrome’, ‘post COVID-
19 condition’ and ‘post-acute sequelae of COVID-19’ (PASC)
(Venkatesan, 2021; WHO, 2021; Centers for Disease Control and
Prevention, 2022). Long COVID is the term coined by those who are
experiencing this condition, and more recently the CDC have
incorporated this label as the working definition in its National
Research Action Plan. This working definition defines long COVID
as signs, symptoms or conditions that develop after SARS-CoV-
2 infection and are present four or weeks after the initial infection
(USA DoHaHS, 2022). However there is heterogeneity in definitions
used in studies, with some requiring symptoms to persist for eight or
12 weeks (Sudre et al., 2021; Subramanian et al., 2022). In this review
we outline the range of symptoms encompassed by this condition,
the leading hypotheses of the pathophysiologic basis for this
condition, research gaps and future directions.

Clinical spectrum of long COVID

Long COVID phenotypes

Symptoms of long COVID spanmultiple physiological domains,
with more than 100 different symptoms reported (Subramanian

et al., 2022), examples of which are shown in Figure 1. Given the
heterogeneity in post COVID sequelae and the breadth of symptoms
reported, a major challenge in studying long COVID is
characterising distinct phenotypes that can then assist with the
selection of appropriate cohorts of individuals and controls to
include in translational studies or therapeutic trials of specific
agents. This is particularly challenging in the large cohort of
individuals who, despite debilitating symptoms, have normal
routine clinical investigations (Sneller et al., 2022). Further
complicating the matter, older individuals who were hospitalised
during the acute phase of the COVID-19 illness are overrepresented
in many studies to date (Littlefield et al., 2022; Su et al., 2022),
making it difficult to untangle abnormalities expected to occur after
a severe systemic illness, which might disproportionately affect older
adults, from those directly related to SARS-CoV-2. Additionally,
with the exception of smell and taste disorders, the most commonly
reported long COVID symptoms are all relatively frequent in the
general population (Subramanian et al., 2022), and a relapsing and
remitting pattern of symptoms is common (Davis et al., 2021). A
number of studies have attempted to overcome the heterogeneity of
this condition by correlating individual immune abnormalities with
specific symptoms, but such multiple comparisons increases the risk
of chance findings and potentially erroneous conclusions.

Identifying distinct long COVID clinical phenotypes or
syndromes that may have unique underlying pathophysiologic
mechanisms (Figure 2) has been the focus of a number of
studies. Some have proposed a manual subgrouping of symptom
profiles or grading of symptom severity, while others have used
unsupervised statistical methods to identify data driven phenotypes
appropriate for this novel condition. While these studies differ in
terms of cohorts, data collection methods, symptoms included and
analytic approaches, four common themes across studies are
emerging.

The phenotype most commonly reported across studies using
unsupervised clustering is a cardiorespiratory phenotype (Kenny
et al., 2022a; Zhang et al., 2022a; Canas et al., 2022; Caspersen et al.,
2022; Danesh et al., 2022; Frontera et al., 2022; Sahanic et al., 2022;
Whitaker et al., 2022; Reese et al., 2023), with breathlessness
reported as a predominant symptom, while cough, chest pain
and palpitations are reported to a varying degree. Similarly, a
number of studies have identified a cluster with a high number
of symptoms, including pain and musculoskeletal symptoms such as
joint pain and myalgia (Kenny et al., 2022a; Zhang et al., 2022a;
Canas et al., 2022; Fernández-de-Las-Peñas et al., 2022; Frontera
et al., 2022; Sahanic et al., 2022; Ziauddeen et al., 2022; Reese et al.,
2023). A cluster with a lower number of overall symptoms and either
predominant anosmia or no characteristic symptoms has been
reported in four studies (Kenny et al., 2022a; Fernández-de-Las-
Peñas et al., 2022; Frontera et al., 2022; Whitaker et al., 2022), and
finally a neuropsychiatric cluster with symptoms such as brain fog,
depression and insomnia has also been reported in four individual
studies (Canas et al., 2022; Caspersen et al., 2022; Danesh et al., 2022;
Reese et al., 2023). In electronic health record based studies,
laboratory abnormalities tend to cluster together (Zhang et al.,
2022a; Reese et al., 2023). Whether these emerging phenotypes
are impacted by elements such as vaccination and infecting
variant is less well studied, but early evidence suggests infecting
variant may affect clinical phenotype, while vaccination seems to
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play a less important role (Kenny et al., 2022b; Canas et al., 2022).
Similarly, patients may transition across phenotypes over the course
of their long COVID illness (Davis et al., 2021). A summary of
studies using unsupervised clustering of long COVID phenotypes is
shown in 1. While this phenotyping approach to studying long
COVID is becoming increasingly common, there is also a large body
of work looking at organ-specific symptoms and their possible
underlying pathologic mechanisms. Table 1.

Organ specific sequelae of COVID-19

Common organ specific symptoms and sequelae of long COVID
are summarised in Table 2. Severe COVID-19 is characterised by
pneumonitis leading to acute respiratory distress syndrome (ARDS).
As in other aetiologies of ARDS, direct pulmonary injury can lead to
fibrosis or persistent inflammatory changes on lung imaging in the
post-acute period, and abnormal pulmonary function in terms of
restrictive patterns on spirometry or impaired diffusion capacity
(Gao et al., 2021; Vargas Centanaro et al., 2022). In a subset of
individuals, severity of pulmonary fibrosis post COVID-19 may
necessitate lung transplant (Roach et al., 2022). In addition to
fibrotic changes, COVID-19 may also result in damage to the

pulmonary vasculature even in the absence of parenchymal
abnormalities. These include pulmonary embolism-like perfusion
defects, or disseminated patchy perfusion defects, that may reflect a
widespread angiopathy (Remy-Jardin et al., 2021). Pulmonary
embolism or angiopathy can lead to chronic thromboembolic
pulmonary hypertension in some cases (Cueto-Robledo et al.,
2022). However, abnormal respiratory radiological or functional
findings are predominantly seen in survivors of severe acute
COVID-19, while pulmonary function tests and routine imaging
are often normal in those with a mild initial illness (Alba et al., 2021;
Guler et al., 2021). Despite these normal findings, dyspnoea remains
one of the most commonly reported long COVID symptoms across
the spectrum of disease severity, whether measured by self-report,
physician assessment, or increase in prescription of medications for
dyspnoea such as bronchodilators in those with previous confirmed
SARS-CoV-2 (Lund et al., 2021; Ziauddeen et al., 2022).

Cardiac complications of SARS-CoV-2 infection have been
noted since the beginning of the pandemic, with elevations of
biomarkers of cardiac injury noted in an initial case series from
Wuhan, China (Huang et al., 2020a). Since then a much broader
array of long term cardiac complications have been observed. A case
control study from the Veteran’s Affairs healthcare service in the
United States of America found increased risks of ischaemic heart

FIGURE 1
Multisystem symptoms associatedwith long COVID. Legend: Selection of symptoms reported by patients sufferingwith long COVID, demonstrating
the multi-system nature of the disease. Created with BioRender.com.
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disease, pericarditis, myocarditis, arrhythmias and heart failure in
the 30 days to 12 month period post COVID-19 compared to
matched controls (Xie et al., 2022). Additionally, chest pain,
palpitations and objective tachycardia are often reported (Estiri
et al., 2021), and in one study, individuals recovering from
COVID-19 were noted to have a relative tachycardia for a
median of 79 days post symptom onset (Radin et al., 2021).

Musculoskeletal manifestations of long COVID include myalgia,
joint pain and muscle weakness. Individuals admitted to the ICU
may develop weakness comparable to critical illness myopathy from
other causes, which has been associated with persistent impairments
out to 5 years (Herridge et al., 2011; Soares et al., 2022). Female sex
and corticosteroid use during acute illness have also been associated
with muscle weakness up to 1 year after infection (Huang et al.,
2021a). Muscle weakness has been described in those with a mild
initial illness (Stoffels et al., 2022), but whether this reflects more
than just deconditioning or muscle disuse has not been determined.
The underlying cause and pathogenesis of muscle weakness is poorly
understood, with viral myositis, ongoing inflammation, and
deconditioning all being proposed.

New gastrointestinal symptoms including diarrhoea,
constipation, vomiting, abdominal pain and heartburn have been
reported in individuals recovering from COVID-19 (Blackett et al.,
2022), and presence of these symptoms does not necessarily
correlate with having had these symptoms acutely (Weng et al.,
2021). Liver enzymes have been reported to be elevated in 25% of
people hospitalised with COVID-19 at 1 month follow-up post-
discharge, although these elevations are usually transient in the
absence of concomitant liver pathology (Liao et al., 2022).

There is an excess risk of both incident diabetes and
hyperglycemia in the 12 month period post COVID-19, with the

degree of risk correlating to the severity of acute illness (Xie and Al-
Aly, 2022). Elevated risks have been shown for both type 1 and type
2 diabetes, and a greater risk with COVID-19 than with other upper
respiratory tract infections (Zhang et al., 2022b).

A registry of dermatologic findings in COVID-19 found skin
rashes occurred for various durations, with morbiliform, urticarial
and papulosquamous eruptions relatively short lived, while pernio
was more frequently associated with a duration of >60 days
(McMahon et al., 2021). Other manifestations including pustular
dermatoses (Goyal et al., 2022) have been reported. Hair loss has
been reported in 22% of hospitalised individuals at follow-up,
regardless of acute oxygen requirement (Huang et al., 2021b).
Telogen effluvium, a diffuse non-scarring hair loss disorder
which typically lasts <6 months and is associated with stress,
hormonal changes or medications (Hughes and Saleh, 2022) are
the most common suspected aetiologies underlying hair loss, but
alopecia areata and other forms of alopecia have also been reported
(Chularojanamontri et al., 2022).

Neuropsychiatric complications in the months following SARS-
CoV-2 infection have been frequently reported. Anosmia, dysosmia
and taste disorders which are characteristic features of acute COVID-
19, may persist for months after the initial infection (Zayet et al., 2021;
Tan et al., 2022). Severity of initial infection ismost strongly associated
with increased risk of new neurological diagnoses, but higher
incidences of neurological sequelae are reported across all
categories of initial COVID-19 disease severity. Cerebrovascular
events, including intracranial haemorrhage and ischaemic stroke,
are increased in the post-infectious convalescence period, with the
most marked risk in those with encephalopathy at the time of initial
infection (Taquet et al., 2021). Cognitive dysfunction is a major long
COVID symptom, and objective cognitive impairment has been

FIGURE 2
Hypothesised sequelae of SARS-CoV-2 that lead to long COVID. Legend: A selection of the possible sequelae of SARS-CoV-2 that may lead to the
various post-acute pathologies that occur in a subset of individuals.
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found even in those without subjective impairment (Ceban et al.,
2022). Interestingly, longitudinal follow-up has shown an increased
incidence of both anxiety and depression at 12 months compared to
6 months from the initial diagnosis (Huang et al., 2021a).
Additionally, there is increased prescribing of anxiolytic and anti-
depressant agents, as well as analgesics, in the 6 months following a
diagnosis of COVID-19 (Al-Aly et al., 2021). Although the association
between initial disease severity and subsequent psychiatric diagnoses
is less clear than with neurological disorders, the underlying
pathogenesis remains unclear. Postulated mechanisms include
direct viral cytotoxicity in the central nervous system as well as
altered coagulation. It is likely that there are other contributors,
especially to the increase in reported psychiatric symptoms,
including consequences of living under pandemic restrictions,
income security, and the psychological and psychiatric impact of
ongoing, and in some cases debilitating physical ill-health.

Proposed mechanisms of long COVID

There are multiple proposed pathogenic mechanisms that may
contribute to the development of long COVID. These are
summarised in Figure 3 and explained in greater detail below.

Immune dysregulation

A small number of studies have examined changes in immune
profiles or function following other acute viral infections. Expansion
of activated CD8+ T cells have been reported in the setting of
parvovirus B19 infection, as well as in the aftermath of severe
influenza A H7N9 infection (Isa et al., 2005; Zhao et al., 2018).
There is also increasing evidence of quantitative and qualitative
changes in immune populations after SARS-CoV-2 infection. A
prolonged period of T cell activation is seen in individuals, both
hospitalised and non-hospitalised, after resolution of initial SARS-
CoV-2 infection, with increased expression of the T cell exhaustion
markers PD-L1 and TIGIT (Files et al., 2021). The persistent
expansion of activated T cells appears most marked in older
individuals (Townsend et al., 2022), which may in part be due to
age-related immunosenescence and/or poorer T cell cross-reactivity
between different coronaviruses in older individuals (Saletti et al.,
2020). There is a similar reduction in naïve B cell numbers in
convalescent samples from individuals with long-COVID-
19 compared to recovered individuals or healthy controls
(Phetsouphanh et al., 2022). Interestingly, blockade of PD-1 ex
vivo can reverse the exhausted T cell state and restored T cell
function, with increased responsiveness upon exposure to SARS-

TABLE 1 Studies using unsupervised statistical methods to identify long COVID phenotypes.

Author Study population Type of analysis Symptom clusters/Phenotypes

Canas et al. (2022) N = 9,323, 6,454 (69%) F, 16
(0.002%) hospitalised

Multivariate time-series Clustering based
on Principle Component Analysis method

Three clusters across all variants: 1) Cardiorespiratory 2)
Central neurological 3) Multiorgan symptoms

Caspersen et al. (2022) N = 774, 449 (58%) F Factor analysis Two factors: 1) Neurocognitive 2) Cardiopulmonary

Danesh et al. (2022) N = 411, 295 (66.9%) F, 124
(30%) hospitalised acutely

K medoids algorithm Two clusters: 1) Neuropsychiatric 2) Pulmonary

Fernández-de-Las-Peñas et al.
(2022)

N = 1,969, 915 (46%) F, 1,969
(100%) hospitalised acutely

K means clustering Three clusters 1) Few symptoms with little functional
impairment 2) Many symptoms, predominant shortness of
breath, more functional impairment 3) Many symptoms,
intermediate functional impairment

Frontera et al. (2022) N = 122, 40 (33%) F, 122 (100%)
hospitalised acutely

Hierarchical clustering Three clusters 1) Few symptoms 2) Many symptoms
including headache and joint pain 3) Primarily shortness of
breath

Kenny et al. (2022a) N = 233, 173 (74%) F, 75 (32%)
hospitalised acutely

Multiple correspondence and Hierarchical
clustering

Three clusters: 1) Many symptoms, predominantly pain/
musculoskeletal. 2) Cardiorespiratory 3) Less symptomatic

Reese et al. (2023) N = 2256, 1403 (62%) F, 440
(19%) hospitalised acutely

Specificity-weighted fuzzy phenotype
matching and k-means clustering

Six clusters: 1) Multisystem and laboratory, 2) Pulmonary 3)
Neuropsychiatric 4) Cardiovascular 5) Pain/fatigue 6)
Multisystem and pain

Sahanic et al. (2022) N = 2050, 1363 (66%) F, 0 (0%)
hospitalised acutely

Partitioning around medoids Three clusters: 1) Few symptoms, predominantly smell and
taste symptoms (“Hyposmia/anosmia positive”) 2) Mainly
fatigue (“Hyposmia/anosmia intermediate”) 3) Many
multiorgan symptoms (“Hyposmia/anosmia negative”)

Whitaker et al. (2022) N = 28,713, 18,109 (63%) F, 408
(1%) hospitalised acutely

Partitioning around medoids Two clusters 1) Few symptoms, fatigue most common 2)
Respiratory predominant

Zhang et al. (2022a) N = 34,605, 20,656 (60%) F,
14,112 (41%) hospitalised acutels

Topic modelling and hierarchical
clustering

Four clusters: 1; Cardiac and renal 2; Respiratory, sleep and
anxiety 3; Musculoskeletal and nervous system 4;
Gastrointestinal symptoms and rash

Ziauddeen et al. (2022) N = 2550, 1363 (66%) F, 0 (0%)
hospitalised acutely

Hierarchical clustering Two clusters: 1) Cardiopulmonary 2) Multisystem
symptoms (pain, neurocognitive, cardiopulmonary and
systemic symptoms)

Legend: N = number of participants, F = female.
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CoV-2 peptides (Loretelli et al., 2021). T cell exhaustion is
demonstrated 1 year after infection (Taeschler et al., 2022). The
mechanisms driving loss of T cell function post COVID-19, and how
or if they contribute to the development of long COVID remains
unclear. It may in part be due to the large number of viral-specific
T cells that are produced during acute infection, especially in those
with prolonged viral shedding (Moderbacher et al., 2020).

The immunological abnormalities seen following SARS-CoV-
2 are not limited to lymphoid populations. There is evidence of
increased innate cell activation, with myeloid cells displaying an
activated phenotype (HLADR+CD38+), as well as production of
type I and type III interferons. These abnormalities are most
pronounced in patients with long COVID (Phetsouphanh et al.,
2022). Persistent interferon abnormalities are perhaps not
surprising, given the key role played by dysfunctional interferon
responses in the development of severe acute COVID-19 (Bastard
et al., 2021; Smith et al., 2022). Additional cytokines including IL-6,
TNFα and IP-10 have also been shown to be elevated in long COVID
(Peluso et al., 2021). Individuals with neurological features of long
COVID, in particular brain fog, may have distinct circulating
cytokines, including markers of blood brain barrier (BBB)
disruption such as TGFβ and IL-8 when compared to those who
have recovered fully from SARS-CoV-2 infection (Campbell et al.,

2022). Specific inflammatory changes may be seen at the organ level.
For example, individuals with persistent pulmonary parenchymal
changes demonstrated both persistent upper airway type
1 interferon signalling and upregulated neutrophil associated
signalling (George et al., 2022). A delayed but exaggerated
interferon response in severe disease may promote neutrophil
chemotaxis to lung tissue and the formation of neutrophil
extracellular traps (NETs), which release proteases and cause
extracellular membrane degradation, leading to fibrogenesis
(George et al., 2022). A summary of the major immune changes
described in long COVID are shown in Table 3. The aetiology of
these immunological changes remains poorly understood, with
antigen persistence, response to host tissue damage, or host
factors in immune regulation all proposed as possible
contributing factors.

Antibody responses to pandemic coronaviruses (SARS-CoV,
SARS-CoV-2 and MERS) have been studied in detail. Most, but
not all, individuals mount a measurable serologic response following
infection with SARS-CoV-2 (Wajnberg et al., 2020), and while
increased disease severity leads to a more robust serologic
response (Huang et al., 2020b), even individuals with a mild
initial illness can retain protective immunity against reinfection
or development of severe disease from similar variants (Hall et al.,

TABLE 2 Organ-specific phenotypes.

Organ system Symptoms reported References

Cardiorespiratory Shortness of breath Ziauddeen et al. (2022)

Cough Lund et al. (2021)

Chest pain Xie et al. (2022)

Palpitations Estiri et al. (2021)

Musculoskeletal Joint pain Stoffels et al. (2022)

Myalgia Huang et al. (2021a)

Neuropsychiatric Brain fog Taquet et al. (2021)

Depression Ceban et al. (2022)

Insomnia Huang et al. (2021b)

Stroke

Ear, nose and throat Anosmia Renaud et al. (2021)

Wu et al. (2022)

Gastrointestinal Change in bowel habits Blackett et al. (2022)

Nausea Weng et al. (2021)

Dyspepsia Liao et al. (2022)

Abdominal pain

Dermatological Rashes McMahon et al. (2021)

Pustules Goyal et al. (2022)

Hair loss Chularojanamontri et al. (2022)

Multi-system Fatigue Townsend et al. (2020), Joli et al. (2022)

Reduced exercise tolerance Joli et al. (2022)

Legend: Examples of organ-specific and multi-system symptoms reported in long COVID.
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2021). Waning of serologic responses over time, as well as the
emergence of new variants has meant that reinfection is now
common, but development or recurrence of severe disease
remains rare. There is ample evidence that quantitative

neutralising antibody response correlates with protection against
both re-infection and development of severe disease (Khoury et al.,
2021) but a defined threshold of protection has yet to be determined.
Similarly, vaccination has been associated with a lower risk of

FIGURE 3
Proposed mechanisms of long COVID. Legend: Multiple possible precipitants, including persistent virus, reactivation of latent viruses, altered
microbiome, endothelial dysfunction, and autoimmunity, may lead to ongoing immune activation and subsequent systemic symptoms. Created with
BioRender.com.

TABLE 3 Immune cell and cytokine changes following SARS-CoV-2 infection.

Cell type Changes described Study population; median time since infection References

T lymphocytes Increase in activated T lymphocytes 111 patients, admitted and non-admitted; 101 days Townsend et al. (2021c)

Increase in markers of T cell exhaustion 59 patients; 6 months Wiech et al. (2022)

B cells Reduction in naïve B cell number 133 patients; 128 days Phetsouphanh et al. (2022)

Increased activated B cells 215 patients; 432 days Klein et al. (2022b)

Increased exhausted B cells 15 patients; 11 weeks Jing et al. (2021)

Dendritic cells Reduction in circulating DCs 71 patients; 7 months Pérez-Gómez et al. (2021)

Macrophages Increased pro-inflammatory phenotype 68 patients; 4 months Bohnacker et al. (2022)

Pro-inflammatory cytokines Elevated IL-6, TNFα and IP-10 121 patients; 124 days Peluso et al. (2021)

Elevated TGFβ and IL-8 32 patients; 146 days Campbell et al. (2022)
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development of long COVID, but there are conflicting results
regarding the magnitude of protection (Al-Aly et al., 2022;
Antonelli et al., 2022), and it is unknown if there is a threshold
of antibody that would provide protection against long COVID in
the event of a breakthrough infection. Additionally, there is some
evidence that vaccination in the convalescent setting may ameliorate
symptoms, although reports are conflicting (Notarte et al., 2022). It
is unknown why vaccination may prevent or improve long COVID
symptoms. One hypothesis is that vaccination attenuates acute
disease severity, and thus subsequent immune derangements and
organ damage. A limitation to this hypothesis is that long COVID
occurs frequently even in those with a mild initial illness (Maglietta
et al., 2022). A second theory is that long COVID is due to a
dysfunctional antibody response, which either fails to clear viral
remnants or leads to the induction of self-reactive antibodies or
proinflammatory antibodies. Vaccination prior to natural infection
may prime the immune system and avoid this dysfunctional
response. Findings in support of this proposed mechanism
include the identification of an immunoglobulin signature in
acute infection that predicts long COVID (Cervia et al., 2022),
and that the antibodies induced by vaccination have different
glycosylation patterns to those induced by infection (Chakraborty
et al., 2022).

Viral persistence and latent virus reactivation

Unlike DNA viruses, most RNA viruses cause acute infections
with a relatively short period of host infectivity and subsequent
recovery and host immunity. However, full or partial viral
persistence in tissues has been demonstrated after the infectious
period of a number of RNA viruses, including Polio, Chikungunya,
Ross River and Measles viruses, and is implicated in prolonged or
late complications of infection (Griffin, 2022). The clinical pattern of
relapsing and remitting symptoms seen in long COVID has led to
the hypothesis that viral persistence may also be contributing to the
development of this condition (Brodin et al., 2022). A potential
source of viral persistence is the gut, with SARS-CoV-2 nucleocapsid
protein detected in intestinal biopsies 4 months after initial
infection, even in mild cases (Gaebler et al., 2021). Similarly, viral
RNA can be detected in the faeces of patients post-SARS-CoV-
2 infection, even in the setting of negative nasopharyngeal PCR
(Natarajan et al., 2022). There have also been reports of detectable
viral spike protein in blood (Swank et al., 2022), circulating
monocytes (Patterson et al., 2022), lung tissue (Ceulemans et al.,
2021) and urine (Tejerina et al., 2022), weeks to months after initial
SARS-CoV-2 infection, though correlation with persistent
symptoms or development of long COVID phenotypes is
variable. Furthermore in a cohort of predominantly individuals
requiring hospitalisation, SARS-CoV-2 RNAemia in acute disease
was found to be associated with a higher odds of subsequent
subjective long COVID memory complaints, independent of
acute disease severity. While viral persistence may serve a
functional role in allowing for evolution of the humoral immune
response, increasing the breadth and potency of circulating anti
SARS-CoV-2 IgG (Gaebler et al., 2021), it may also lead to sustained
innate immune activation or demonstrate molecular mimicry with
host antigens leading to the induction of autoimmunity.

Reactivation of other latent viruses, such as EBV, has also been
implicated in long COVID. EBV RNAemia in acute illness is
associated with subsequent long COVID fatigue, cough and
memory complaints. While EBV RNAemia is generally absent in
long COVID (Peluso et al., 2022a), higher levels of anti EBV
antibodies that are associated with lytic infection have been
demonstrated in those with long COVID compared to those
without (Gold et al., 2021; Klein et al., 2022a).

Autoimmunity

Early development of neutralising antibody response after initial
infection is associated with survival in acute COVID-19, but abnormal
humoral responses have been implicated in the uncontrolled excessive
immune activation seen in severe acute COVID-19. Multisystem
Inflammatory Syndrome in Children (MIS-C), described in
paediatric cases of SARS-CoV-2, is mediated by B cell
autoantibody production secondary to T cell activation following
exposure to superantigen, and has also been described in cases of
severe acute COVID-19 in adults (Consiglio et al., 2020; Sancho-
Shimizu et al., 2021). Autoantibodies against a variety of targets have
been described in acute SARS-CoV-2 infection, including anti-nuclear
antibodies, antibodies associated with myositis, systemic sclerosis and
connective tissue diseases (Chang et al., 2021), and antibodies against
various immunomodulatory proteins (Wang et al., 2021), including
type I interferon autoantibodies (Bastard et al., 2020; Bastard et al.,
2021). In addition, afucosylated anti spike IgGmay promote excessive
inflammation through recruitment of macrophages, NK cells and
production of cytokines (Hoepel et al., 2021; Chakraborty et al., 2022).

Similarly, development of autoantibodies have been implicated in
long COVID, though there are conflicting reports in the published
literature. Autoantibodies directed towards awide variety of targets have
been reported in longCOVID, including antibodies against angiotensin,
ACE, and muscarinic receptors (Klein et al., 2022a; Sotzny et al., 2022;
Thurner et al., 2022). Associations between autoantibody detection and
specific symptoms in long COVID has not yet been demonstrated
(Klein et al., 2022a). In addition, autoantibodies such as neutralising
anti-interferon antibodies, generated in acute infection, may
theoretically promote the development of viral persistence and
therefore contribute to the development of long COVID. However,
detection of these antibodies in the acute phase has been associated with
persistent respiratory symptoms (Su et al., 2022), there is a low
prevalence of anti-interferon antibodies in the post-acute period
(Peluso et al., 2022b).

Microbiome and microbial translocation

Viral persistence within the intestinal tract may also impact the
gut microbiota and contribute to dysbiosis. The gut microbiome is
significantly altered in individuals with acute SARS-CoV-2 when
compared with uninfected matched controls. Changes include
depletion of species with immunomodulatory roles within the gut
such as Faecalibacterium prausnitzii and Eubacterium rectale (Yeoh
et al., 2021). Furthermore, the degree of dysbiosis was associated
with both initial COVID-19 disease severity and levels of circulating
inflammatory cytokines. Interestingly, gut microbial diversity
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remains depleted 6 months after SARS-CoV-2 infection, with those
with more severe initial infection having the most marked
differences (Chen et al., 2022). In a cohort of hospitalised
individuals, both microbiome composition at time of hospital
admission and lack of recovery of microbiome composition were
associated with the development of long COVID (Liu et al., 2022).
Furthermore, the dysbiosis observed in acute SARS-CoV-2 is
associated with increased intestinal permeability and subsequent
translocation of bacterial and fungal products into the circulation,
further contributing to systemic inflammation (Giron et al., 2021;
Bernard-Raichon et al., 2022). Similarly, the dysbiosis observed in
the convalescent setting may also contribute to increased intestinal
permeability. Zonulin, a physiologic driver of intestinal
permeability, and Beta-D-glucan, a marker of fungal
translocation, have both been shown to be elevated in individuals
with long COVID, and positively correlate with plasma
concentrations of IL-6, TNFa, IP10, and negatively correlate with
quality of life scores (Giron et al., 2022).

Dysautonomia

Autonomic dysfunction has been described following multiple
infections, but the underlying mechanisms remain elusive (Carod-
Artal, 2018). Orthostatic intolerance occurs when an individual cannot
maintain an upright position due to either sympathetic system over-
activation or cerebral hypoperfusion. The typical features of
dysautonomia occur as a result of catecholamine release and
include tachycardia, hypotension, fatigue, palpitations, and syncope
(Chen-Scarabelli and Scarabelli, 2004). There have been small studies
examining the role of autonomic dysfunction in individuals with these
long COVID symptoms. Tilt-table testing has demonstrated
orthostatic intolerance in a small number of those affected (Jamal
et al., 2022). However, post-COVID-19 fatigue has not been shown to
be associated with autonomic dysfunction (Townsend et al., 2021a).
Interestingly, findings of dysautonomia post-COVID-19 have been
shown to correlated poorly with symptoms, but are associated with
objective reduction in functional capacity on cardiopulmonary exercise
testing (CPET) (Ladlow et al., 2022).

While correlation with all symptoms is poor, dysautonomia may
be implicated in some individuals with a cardiorespiratory phenotype
of post COVID-19. In one study that performed invasive CPET in
individuals with persistent dyspnea more than 1 year post acute
COVID-19 and normal pulmonary and cardiac imaging, exercise
limitation was demonstrated to be due to impaired peripheral
systemic oxygen extraction, rather than deconditioning or
cardiopulmonary limitation (Singh et al., 2022). During exercise,
production of local vasodilatory substances as well as sympathetic
nervous system mediated vasoconstriction to non-exercising areas
improves systemic oxygen extraction (Singh et al., 2021). In chronic
fatigue syndrome, this process is impaired due to small fibre
neuropathy affecting microvascular tone and causing microvascular
shunting (Joseph et al., 2021). A similar mechanism of autonomic
dysfunction may be at play in long COVID, given the similarities
between these two conditions, but confirmatory studies are needed.

There are multiple possible aetiologies for post-COVID
autonomic dysfunction. The ACE-2 receptor, which is widely
expressed on endothelial cells lining blood vessels, is bound by

SARS-CoV-2 (Hamming et al., 2004). Lower cortisol in individuals
with long COVID compared to recovered controls suggests
dysfunction of the hypothalamic-pituitary-adrenal axis (Klein
et al., 2022a; Su et al., 2022). Persistent cardiac dysfunction and
inflammation, which has been demonstrated in cardiac MRI studies
(Puntmann et al., 2020), may also contribute.

Endotheliopathy

Acute severe SARS-CoV-2 infection is associated with a distinct
coagulopathy, characterised by markedly elevated D-dimers and
increased thrombotic complications (Fogarty et al., 2020; Sakr
et al., 2020). SARS-CoV-2 can also directly infect endothelial cells,
which may further contribute to coagulopathy (Varga et al., 2020).
Given the role played by coagulopathy in acute SARS-CoV-
2 infection, there has been extensive investigation of coagulation
parameters in the setting of long-COVID. Sustained disturbances
in coagulation pathways have been identified in post-COVID patients,
with up to a quarter of those assessed having an elevated D-dimer
4 months after initial infection (Townsend et al., 2021b) Additionally,
those hospitalised with acute COVID-19 have been shown to have
reduced fibrinolytic potential and demonstrate increased thrombin
generation at a similar timepoint (von Meijenfeldt et al., 2021).
Sustained endothelial cell activation has been shown up to
10 weeks after initial acute infection in both hospitalised and non-
hospitalised individuals, with increased factor VIII and soluble
thrombomodulin levels (Fogarty et al., 2022).

Von Willebrand Factor, a marker of endothelial cell activation,
also remains elevated in these individuals. It has been hypothesised
that these changes are due to persistent endothelial dysfunction, and
may result in ongoing, low-grade thrombus formation in the
microvasculature, contributing to the symptoms reported in those
with long COVID.

Disruption of the endothelium at the BBB has been proposed as a
possible pathological process driving neurocognitive symptoms of long
COVID. The BBB is a collection of endothelial cells, astrocytes,
microglial cells and neurons, and acts as a bridge between the blood
and the central nervous system (Langen et al., 2019). The neurological
consequences and cerebral microvascular injuries seen in acute SARS-
CoV-2 infection are well-described (Mao et al., 2020; Lee et al., 2021).
The SARS-CoV-2 spike protein has been shown to impair BBB function
(Buzhdygan et al., 2020). The prevalence of persistent cognitive
dysfunction following SARS-CoV-2 infection has been reported as
being above 50%, in contrast to results from prior pandemic
coronaviruses (Kwong et al., 2020; Taquet et al., 2021). The detection
of SARS-CoV-2 within the cerebrospinal fluid (CSF) of individuals with
COVID-19 further supports disruption of BBB integrity during acute
infection (Espíndola et al., 2021). Neuro-invasion of SARS-CoV-2 may
result in neuronal loss and subsequent neurological impairment, while
secondary inflammation may further contribute. Indeed, there is
increasing evidence of structural brain changes following SARS-CoV-
2 infection, associated with cognitive decline (Douaud et al., 2022) and
abnormalities reminiscent of post chemotherapy neuronal changes have
been observed in a mouse model of mild to moderate COVID-19
(Fernández-Castañeda et al., 2022). It is important to acknowledge that
these changes seen in endothelial cells and at the BBB have not been
shown to be directly pathogenic. The above studies, while demonstrating
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correlation between viral markers, symptoms, and markers of
endothelial dysfunction, do not demonstrate direct causation. This is
an area that warrants further mechanistic investigation, as it is of
therapeutic potential.

In addition to structural changes, alterations in cerebral bloodflow
are seen in the aftermath of infection, with changes persisting up to
10 months after infection (Tian et al., 2022). This may in part be due
to the systemic inflammatory response triggered by SARS-CoV-2,
which may increase BBB permeability (Alam et al., 2020). In patients
with neurological features of long COVID, in particular brain fog,
there are increasing circulating markers of BBB disruption such as
TGFβ and IL-8 when compared to individuals who have recovered
fully from SARS-CoV-2 infection (Campbell et al., 2022).

Therapeutics

The absence of clear pathogenic pathways to explain the myriad of
presentations of long COVID has contributed to slow progress in the
development of effective therapeutics. There remains no unifying
treatment for long COVID. Both pharmacological and non-
pharmacological therapies have been trialled for specific long COVID
symptoms. The most common non-pharmacological interventions
include physical and cognitive pacing for chronic fatigue and
cognitive dysfunction. These have shown to have some improvement
in functional outcomes (Bateman et al., 2021; O’Brien et al., 2022).

The potential persistence of viral reservoirs have led to suggestions
that antiviral therapies such nirmatrelvir-ritonavir and remdesivir may
be of benefit. Evidence from clinical trials including those being
conducted by the STIMULATE-ICP group and others (Clinicaltrials,
2022) is awaited to clarify the role of these treatments in long COVID.
The STIMULATE-ICP consortium in the United Kingdom are
undertaking a large, randomised, platform clinical trial in long
COVID, seeking to improve on the definition, the diagnosis and the
management of long COVID. The planned interventions focus on
community-based therapies as well as multi-organ MRI imaging,
with a view to expanding in pharmacological therapies. Proposed
therapeutics include anti-inflammatories such as colchicine, as well as
anti-histamines.

The evidence supporting post-COVID endotheliopathy and
coagulopathy, as well as the coagulopathy seen in acute infection,
has stimulated trials on prolonged anti-thrombotic therapy. Use of
the factor Xa inhibitor rivaroxaban in patients with high risk of
thrombotic complications, based on predictive scoring tools and
D-dimer levels, has been shown improve reduce the risk of venous
thromboembolism 1 month after discharge (Ramacciotti et al.,
2022). However, extended administration of these therapies
beyond 1 month, their use in individuals who were not
hospitalised with COVID-19, or impact on sequelae other than
venous thromboembolism has not been extensively studied.
Furthermore, the American Society of Haematology have issued a
conditional recommendation against the use of anticoagulant
prophylaxis post hospital discharge, although they acknowledge
that there is very low certainty in the evidence and that high-
quality, randomised controlled trials are needed (Cuker et al., 2022).
The STIMULATE-ICP group hope to address the need for high-
quality trial data by assessing response to rivaroxaban in this
population (Forshaw et al., 2022).

The suggestion of ongoing immune dysfunction has also been
the target of research into potential therapeutics for long COVID.
Aberrant type-I interferon responses can be modulated by the
histamine 2 receptor antagonist famotidine. This has shown
earlier resolution in serum type-I interferon levels in patients
with acute SARS-CoV-2 infection, and this was also associated
with shorter time to symptom resolution (Brennan et al., 2022).
However, to date there have been no RCTs examining the effect of
anti-histamines in long COVID.

There has also been recent reports of positive impact of targeted
therapeutics for management of persistent brain fog and cognitive
dysfunction in long COVID. In a small case series, a combination of
guanfacine, an α2 adrenoceptor agonist, and n-acetylcysteine, an anti-
oxidant, was assessed in twelve individuals, eight of which reported
symptomatic improvement (Fesharaki-Zadeh et al., 2023). Although
preliminary, this pilot data can provide the basis for design of
appropriately powered, placebo-controlled study to evaluate its
efficacy.

Given the lack of evidence-based treatments, prevention of long
COVID is a key to reducing the overall burden of this condition. Both
vaccination against SARS-CoV-2 and certainmodifiable lifestyle factors
are associated with lower risk of long COVID-19 (Wang et al., 2023),
and there is evidence that acute treatments including antivirals and
metformin may be of benefit (Carfì et al., 2020; Xu et al., 2020).

Future directions

The lack of understanding of the pathological basis for the range
of manifestations of long COVID continues to hamper the
development of effective therapies and remains a significant unmet
clinical need. As outlined here, a large number of symptoms and
underlying abnormalities have been reported, but consistent, robust
evidence of causal association is lacking in most cases. Studies to date
have been limited by a lack of consensus definition or classification of
long COVID, a focus on individual symptoms rather than defined
phenotypes, disproportionate inclusion of individuals with a history of
initial severe, acute COVID-19 illness, under-representation of
minority groups and paucity of longitudinal studies. Furthermore,
local changes at an organ level may be found in the absence of a
measurable systemic inflammatory response, and requires
examination of specimens such as CSF and respiratory samples
which have been less well studied. Improving care for this large
cohort will require a coordinated, structured and comprehensive
research programme encompassing epidemiologic, basic science,
translational and clinical studies. Immune perturbations within
affected organs, including the lungs, gastrointestinal tract and the
central nervous system, the effects of disease-independent factors such
as sociodemographic factors, socioeconomic status and lifetime stress
on chronic inflammation, immune response to acute infection, and
immune recovery in the aftermath of infection are all areas that
require further investigation.

Given the scale and economic burden of long COVID (Kingdom
OonsU, 2022), clinical trials should be performed in parallel with
mechanistic studies. A significant coordinated, international,
interdisciplinary approach will be required to improve our
understanding and management of this condition. While challenging,
this effort offers the opportunity to significantly advance our
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understanding of host, pathogen and environmental factors urgently
needed to understand post infectious conditions beyond long COVID.
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