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Infectious diseases continue to be a major cause of morbidity and mortality
worldwide. Diseases cause perturbation of the host’s immune system
provoking a response that involves genes, proteins and metabolites. While
genes are regulated by epigenetic or other host factors, proteins can undergo
post-translational modification to enable/modify function. As a result, it is difficult
to correlate the disease phenotype based solely on genetic and proteomic
information only. Metabolites, however, can provide direct information on the
biochemical activity during diseased state. Therefore, metabolites may,
potentially, represent a phenotypic signature of a diseased state. Measuring
and assessing metabolites in large scale falls under the omics technology
known as “metabolomics”. Comprehensive and/or specific metabolic profiling
in biological fluids can be used as biomarkers of disease diagnosis. In addition,
metabolomics together with genomics can be used to differentiate patients with
differential treatment response and development of host targeted therapy instead
of pathogen targeted therapy where pathogens are more prone to mutation and
lead to antimicrobial resistance. Thus, metabolomics can be used for patient
stratification, personalized drug formulation and disease control and
management. Currently, several therapeutics and in vitro diagnostics kits have
been approved by US Food and Drug Administration (FDA) for personalized
treatment and diagnosis of infectious diseases. However, the actual number of
therapeutics or diagnostics kits required for tailored treatment is limited as
metabolomics and personalized medicine require the involvement of
personnel from multidisciplinary fields ranging from technological
development, bioscience, bioinformatics, biostatistics, clinicians, and
biotechnology companies. Given the significance of metabolomics, in this
review, we discussed different aspects of metabolomics particularly potentials
of metabolomics as diagnostic biomarkers and use of small molecules for host
targeted treatment for infectious diseases, and their scopes and challenges in
personalized medicine.
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1 Introduction

Infectious diseases continue to be the major cause of morbidity and mortality. Disability-
related to infectious or communicable diseases have increased over the past several years
(WHO) (Boutayeb, 2010; Institute for Health Metrics and Evaluation, 2020; Mundial de
Saúde, 2022). The main therapeutic approach for the treatment of infectious diseases are
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antimicrobial drugs, followed by vaccines as the preventive measures
for infectious diseases. However, antimicrobial drug resistance,
increased side effects of drug toxicity, and the incidence of
vaccine non-responders are increasing (Zimmermann and Curtis,
2019; Szymański et al., 2020; Rahman et al., 2022). To overcome
these problems, an in-depth understanding of the hosts’ immune
systems and new drug formulations or drug repurposing is essential.
While conventional treatment strategy is based on “one-drug fits
all”, a tailored treatment strategy for each individual patient can
reduce the risks of antimicrobial drug resistance and drug toxicity,
mis-use of drug administration, facilitate decisions on drug
prescriptions and on the timing of vaccine administration
(Cotugno et al., 2019). To facilitate desired changes in the
treatment strategy, it is necessary to understand the immune
response of the patient in relation to diseased state.

The human immune system consists of two arms as part of the
defense mechanism against infection. These are innate immunity
and adaptive immunity (Saborano et al., 2019; Purohit et al., 2022).
Innate immunity, also known as natural immunity, protects the host
from disease-causing organisms by a process known as
phagocytosis. Immune cells that are involved in phagocytosis are
commonly known as phagocytes and cells that take part in
phagocytosis belong to dendritic cells, neutrophils, monocytes or
macrophages. In addition to these, basophils, neutrophils, natural
killer cells (NK) cells, monocytes, and macrophages also take part in
innate immune responses and also activates cells of the adaptive
immune system. The adaptive arm of the immune system consists of
leukocytes where the majority are T lymphocytes and B
lymphocytes. These cells function in the presence of antigen-
presenting cells (APCs) and other immune mediators (Saborano
et al., 2019; Hartl et al., 2021; Purohit et al., 2022). All cells of the
immune system are under the stringent control of the regulatory
system. These include genetic, proteomic, and metabolic levels of
regulation. Under non-infected conditions, immune cells remain at
the dormant condition. Once a pathogen infects the host, these cells
become active and respond to the infection through a cascade of
signaling molecules that belong to genes, or proteins or metabolites.
Immune response also takes place in presence of drugs or vaccines.
As a result, the level of metabolites differ in different immune cells or
even in non-immune cells (Saborano et al., 2019; Purohit et al.,
2022). Metabolites can be detected in different biological fluids such
as blood, sweat, urine, plasma, tissues and cells (Saborano et al.,
2019; Purohit et al., 2022). In addition to responding to disease
states, metabolites also take part in drug metabolism, elimination or
inactivation of endogenously or exogenously generated toxic
compounds and thereby maintains the homeostasis of cells.
Therefore, metabolite profiling can provide an instantaneous
readout of the host’s phenotype under different conditions. The
study of metabolite profile and metabolic flux is known as
metabolomics (Saborano et al., 2019; Purohit et al., 2022).

Metabolomic analyses focus on the quantitative analyses of large
numbers of metabolites in biological fluids, mentioned above
(Nagana Gowda and Raftery, 2013; Muthubharathi et al., 2021).
Metabolites generally have a molecular weight less than 1,000 Da
and belong to different chemical groups. Metabolites can be
carbohydrates, amino acids or, lipid molecules with overlapping
roles in the metabolic pathways of human cells (Purohit et al., 2022).
The main metabolic pathways of human cells consists of the

glycolytic pathway, pentose phosphate pathway, tricarboxylic acid
cycle (TCA), amino acid pathway, beta-oxidation pathway and drug
metabolism pathway (Purohit et al., 2022). Due to the complex
chemical properties and presence of multiple metabolites in the
single sample, technological platforms that exists for the analysis and
detection of metabolites ranges from single metabolite detection to
multiple metabolite detection platforms and may require cross-
validation platforms (Hartl et al., 2021; Castelli et al., 2022).
Recently, there has been extensive development on technological
platforms, analytical tools and statistical methods to detect
metabolites so that metabolomics can be used to understand
disease pathogenesis, identify biomarkers that are highly specific
to disease, apply metabolites for therapeutic purpose and drug
discovery (Adamski and Suhre, 2013; Cronk, 2013).
Metabolomics is also used to understand the incidences of
treatment non-responders, drug-resistance, drug-relapse and
toxicity, vaccine waning and vaccine non-responders. The
purpose of research in this area is to help clinicians make
decision on patient specific treatment strategy, namely,
personalized medicine (Cronk, 2013). Personalized medicine
takes into consideration an individual’s genetic profile in
response to disease and treatment. This helps to increase and
enhance our understanding of pathological conditions more
precisely. As indicated by Leroy Hood (Flores et al., 2013), one
of the pioneers of this approach, personalized medicine offers deeper
understanding of the disease, uses blood as a non-invasive sample
for diagnosing and disease identification, segregates complex
infections into subtypes of diseases, offers new ways to deal with
drug targets, and generates metrics for analyzing health status. In
this way, personalized medicine intends to be preventive, predictive,
personalized, and participatory and corresponds to the concept of
“P4 medicine” (Flores et al., 2013; Beger et al., 2020). Predictive
biomarkers (PB) can be used to identify individuals based on how a
particular intervention or exposure has affected them, taking
environmental and epigenetic factors into account. PB can also
be used to predict the likelihood of an upcoming clinical occurrence.
Personalization focuses on a patient’s identity determined by their
genetic makeup (Flores et al., 2013). Although blood is the major
biological fluid used to categorize different biomarkers, other
biofluids can also be used to detect metabolites that can be used
as biomarkers of disease state (Adamski and Suhre, 2013).

In general, a biomarker is an analyte that can be quantified as a
standard indicator of biological processes, pathogenic processes, or
response to therapeutic intervention. According to the Food and
Drug Administration (FDA), a biomarker must be replicable to the
disease state for clinical interpretation. Biomarkers are of several
types. These include prognostic biomarker, diagnostic biomarker,
monitoring biomarker, predictive biomarker, safety biomarker,
pharmacodynamic response biomarker, susceptibility/risk
biomarker, and provisional biomarker (Beger et al., 2020).
Different biomarkers are used for disease and treatment
stratification. In recent years, research on different biomarkers
has increased. However, there is little research that integrates
diagnostic biomarker information, metabolomics and
personalized medicine. This is due to the challenge of combining
information from technological platforms, “omics” platforms, which
yields larger data sets “big data” and necessitates involvement of
experts from different areas including biology, biotechnology,
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bioinformatics, biostatistics, clinicians, clinical researchers,
industries and even regulatory bodies (Beger et al., 2020). Since
research leading to biomarker discovery play important role for
disease diagnosis, and tailoring of precise medication, omics
approaches, particularly metabolomics, offer an intriguing
approach for profiling a large panel of molecules in patient
samples (Schmidt et al., 2021; Castelli et al., 2022). Additionally,
metabolite profiling from biological fluids can be considered as a
component of personalized medicine as it enables for the
identification of different biomarkers that can be directly linked
to a person’s immune response to diseases or drug responses
(Purohit et al., 2022). However, the decision to implement a new
drug formulation and treatment plan based on biomarker analysis is
very expensive and necessitates adequate funding from the health
sector. These are variable in different countries and are based on
gross domestic product (GDP) (World Health Organisation, 2021).
Again, launching of new drugs require approval at different stages
such as preclinical testing, clinical tests and post market validation.
Despite the challenges, in 2020, 286 personalized medicines were
approved by the US Food and Drug administration (FDA) and are
on the market. This number accounted for 39 % of the total FDA-
approved new drugs and companion diagnostics for both infectious
and non-infectious diseases in the year 2020 (Personalized Medicine
Coalition, 2020). These drugs and companion diagnostics take into
account of the host’s genetic information rather than the organism’s
genetic information. This is because host cells are less likely to be
mutated compared to the organism’s genetic material. However,
small molecules have better potential to be used as biomarkers for
disease diagnosis, disease staging, drug toxicity, drug repurposing
and drug discovery. Despite the fact that metabolomics reflect the
closest phenotype of disease and drug response, no metabolomic
tests are included in personalized medicine for diagnostics and
targeted drug development for personalized medicine. Most of
the diagnostics for infectious diseases are based on molecular
technology to detect the pathogen and antimicrobial drugs are
mostly inhibitors of enzymes that functions in the synthesis of
cell material or nucleic acids of bacteria, viruses, fungi or parasites
(Gurevich and Gurevich, 2015). Since small-molecules are closely
linked to the host’s phenotype and reflects any dysregulation of
metabolic network in response to either the external stimuli or
internal diseased state or both (Qiu et al., 2023), in this review, we
discussed the potential of small molecules for disease diagnosis and
application for targeted therapy, which are ultimate goals for
personalized treatment.

2 Technological platforms to measure
metabolites

Chemical properties of different metabolites of the human
metabolic pathway are diverse. Two strategies are used to
measure metabolites: targeted approaches and un-targeted
approaches. Targeted approaches are used to measure the
metabolites that are endogenously synthesized. Metabolites like
amino acids, fatty acids, lipids, carbohydrates and bile acids
belong to this group. Untargeted approaches, on the other hand,
is used to measure metabolites, composition of which is diverse.
Untargeted (or unbiased) approaches can provide global metabolite

profiles. Untargeted analysis provides information on metabolites
that are influenced by the host genome, associated microbiome, and
environmental factors. As a result, this approach provides
information on metabolites associated with drug dose effects and
patient characterization integrating knowledge of genetic variation,
metabolism and environmental interventions (Smirnov et al., 2016;
Khamis et al., 2019). Since chemical properties of biomarkers are
diverse, metabolite detection is largely dependent on analytical
chemistry or biochemistry (Ashrafian et al., 2021). However,
detection and analysis of metabolites have advanced greatly
combining analytical chemistry, biochemistry, biophysics,
radiology, nanotechnology, artificial intelligence, bioinformatics
and electrophysiology (Ashrafian et al., 2021). It is beyond the
scope of this review to discuss all of these technological
platforms. Therefore, we will focus on the technologies that are
used to detect metabolic changes in mammalian cells upon
microbial infection.

Based on the intrinsic operating principle, metabolite detection
technologies are categorized into biochemical assays, cell-based
assays and biophysical methods. The biochemical assays use cell-
free in vitro techniques to detect the biochemical reactions that occur
in a subset of cellular processes. Cell-based assays, on the other hand,
use live cells as model to assess the biochemical changes that occur in
healthy or diseased cells (Cronk, 2013). Table 1 shows some
examples of biochemical and cell-based assays.

Biophysical methods investigate the structure, properties and
dynamics or function of biomolecules at the atomic or molecular
level (Cronk, 2013). We discussed this method in the next section.

3 Metabolomic workflow for
personalized medicine

Personalized medicine is an emerging field of treatment strategy,
where metabolomics is regarded as a novel approach methodology
(NAM). Thus, technological platforms that can be used to detect all
metabolites present in the sample require a well-organized workflow
to reduce technical artefacts and implement data for the
identification of patient and disease specific biomarkers in clinics.
Incorporation of metabolomics for personalized medicine workflow
involves three basic steps. These are 1) pre-analytical steps, 2)
analyte detection and 3) validation and clinical translation
(Figure 1) (Nordström and Lewensohn, 2010; Trivedi and
Goodacre, 2020).

3.1 Preanalytical step

This step involves well-organized experimental design on
selection of sample type, quenching solution, technological
platforms for metabolite extraction and separation, and selection
on the type of analytical software to be used for metabolite detection.
Factors that needs to be considered with importance at this steps are
type of containers for sample collection and storage, sample
handling, transport and extraction (Di Minno et al., 2021).
Recently, biobanking has become an integral part of personalized
medicine. Biobanks are operated under ISO 13485 (Müller et al.,
2020; Dagher, 2022). and these are context based., i.e., biological
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TABLE 1 Selective technological methods for metabolite detection other than NMR and MS.

Type of
assay

Technology Detection method Description References

Biochemical
assay

Ligand binding assays Radioactive assay using Isotopes
such as 3H or125I are typically used

Enzymatic assays, protein-protein interactions, receptor-
ligand interactions

Arkin et al., 2004; Cronk
(2013), Ahl et al. (2020)

Fluorescence
Technologies

Fluorescence intensity Enzymatic assay using a fluorogenic assay

Enzymatic analyses using fluorescence quench assays

Fluorescence resonance energy
transfer (FRET)

Enzymatic assay

Time resolved fluorescence (TRF) Measurements of the second messengers cAMP and inositol
triphosphate (InsP3), immunoassays, analysis of kinase
enzyme activity, monitor protease enzyme activity, cytokine
measurement

Fluorescence correlation
methods (FCM)

Single molecule detection

Cell-based
assays

Fluorometric assays Fluorometric assays-uses a range of
fluorescence dyes

Detect alterations in intracellular concentration of cAMP

Fluorescence
technologies

Fluorescence resonance energy
transfer (FRET)

Enzymatic assay

Flow cytometry Analysis of the presence of cell surface proteins and/or
metabolites

Label free detection
platforms

Phenotype Microarray-multiplexed Detection of cellular energy level in the presence of various
substrates and monitoring kinetics of substrate utilization of
particular metabolic pathway

FIGURE 1
Metabolomic workflow for personalized medicine.
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samples can be collected from healthy donors or these can be
individuals affected by disease. Samples are either collected
manually or by automated liquid handlers. The latter reduces
batch to batch variations (MacDonald, 2020). Research labs that
are involved in epidemiological studies can use standardized
protocols for sample collection, storage and donor’s information
on whole-genome, genotype, geographic location, dietary
preference, proteome and medical images. These information are
leveraged from national registries and also incorporated in
electronic health records (EHRs) (Hewitt, 2011; Kirwan et al.,
2018). Biobanking for both communicable and non-
communicable diseases is available. For infectious diseases or
communicable diseases, biobanking for tuberculosis, Zika virus,
dengue, and, the most recent novel coronavirus, severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) are available
(Sgaier et al., 2007; Ramanathan et al., 2020). Biobanks for infectious
diseases facilitates rapid development and deployment of
diagnostics, for example, point of care testing (POCT)
(Ramanathan et al., 2020).

3.2 Analytical methodology

This encompasses biophysical methods that enable atomic-
or molecular-scale investigation into the structure,
characteristics, dynamics, or function of biomolecules. X-ray
crystallography-based assays, chromatography, nuclear
magnetic resonance spectroscopy (NMR), mass spectrometry
(MS), and surface plasmon resonance SPR) are examples of
common biophysical based methods. Of these, MS and NMR
are utilized in both research labs and medical facilities (Frédérich
et al., 2016; Di Minno et al., 2021).

NMR was initially developed to identify protein nuclei
molecules. Nuclei within the same molecule can absorb energy
at different frequencies. The chemical milieu of the nuclei has a
direct impact on these chemical transformations. The emission
and absorption of electromagnetic radiation can be observed if
nuclei are placed in a strong external magnetic field that
generates vibrations. Molecular vibration modes can be
recorded as radio frequency (RF) just below visible red light.
This RF is transformed into spectra in NMR (Frédérich et al.,
2016; Di Minno et al., 2021). NMR is the most advantageous
technique for metabolomics research due to its high
reproducibility, simple sample preparation, and the ability to
measure a broad range of small molecule metabolites. In
diagnostic labs, NMR is used because sample collection is
relatively non-invasive, simple, reproducible, low cost per
sample preparation, and easy to handle large datasets. There
are also bench-top NMR platforms available for clinical
diagnostics laboratories. NMR IVDr is used in pre-clinical
screening research laboratories to monitor the effect of
infectious disease such as SARS-COV-2 infection on multiple
organ systems (Sample et al., 2023). There are different types of
NMR-based quantitative metabolomics platforms available.
These include identification and quantification of metabolites
via localized in vivo NMR, lipid and lipoprotein identification,
and small molecule identification. NMR spectrometry is one-
dimensional (1D) and two-dimensional (2D). 2D NMR are

effective for reducing spectral complexity and identifying
metabolites in complex samples. Although major advantage of
NMR technology is that data are reproducible, drawbacks of the
technology is low sensitivity compared to MS (Di Minno et al.,
2021) (Frédérich et al., 2016).

The use of MS as a biomedical diagnostic technology has
increased over the past several years. The principle of mass
spectrometry is that a charged particle is passed through a
magnetic field and diverts it along a circular path with a radius
proportionate to the mass to charge ratio, m/e (Frédérich et al., 2016;
Di Minno et al., 2021). Specific types of mass analyzers are used in
metabolomics. MS methods coupled with previous separation
modalities such as gas chromatography (GC), liquid
chromatography (LC), and capillary electrophoresis (CE), provide
information on the chemical properties of the metabolites, and
thereby, are useful for metabolomics studies. At present, direct
flow infusion mass spectrometry (DIMS) and capillary
electrophoresis mass spectrometry (CE-MS) are used in clinics.
The advantages of MS over NMR technology are its high
selectivity and sensitivity. Metabolites at the femto level
concentration can be measured using MS. However, major
drawbacks are the long time required for the analysis of the
sample and batch to batch variation (Frédérich et al., 2016; Di
Minno et al., 2021).

Of the NMR and MS platforms, NMR is commonly used for
untargeted approach. Untargeted approach (global profiling) is
an important tool for personalized medicine (Castelli et al.,
2022).

While NMR and MS platforms are used to identify or
measure metabolites, these platforms are also used to analyze
samples and determine the metabolic flux, which is a measure of
the rate at which metabolic reactions occur. Traditional
metabolite quantification does not provide intracellular
metabolic rates or associated pathway activity. Metabolic
fluxes (fluxomics) provide more precise data on the metabolic
activities of specific pathways. The fluxome is constrained by the
cell’s metabolic profile and corresponding stoichiometry. Each
metabolic reaction’s rate is also influenced by a number of
upstream factors, including gene expression and regulation,
enzyme concentration, enzyme phosphorylation status, and
metabolite concentrations related to the reaction. Therefore,
metabolic flux measurements provide a complete and dynamic
depiction of the metabolic state of the cell by capturing the net
interplay of the transcriptome, proteome, regulome, and
metabolome. Metabolic fluxes are of two different categories.
Extracellular flux and intracellular flux. The extracellular flux
crosses the cell membrane and shows the impacts of the medium,
such as glucose uptake, or cell growth and biomass. By
monitoring the changes in extracellular metabolite
concentrations or biomass over time, extracellular fluxes can
be measured directly. Intracellular flux, which does not cross the
cell membrane, cannot be measured directly. Their impact can be
observed by measuring the frequency of integration of an
isotopically labelled substrate such as 13C-glucose into a
biological system of organisms, cells or animals. Due to the
metabolic reactions, the labelled carbon sources are converted
into intermediate metabolites and secreted products. The
metabolite’s overall isotopic composition patterns are
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influenced by the reaction fluxes and carbon atom
rearrangements. In addition to 13C tracers, 15N and 2H labelled
isotopes are also used in fluxomic studies. Flux is calculated based
on the experimental external fluxes, mass distribution vectors
(MDV) and a metabolic map that highlights all relevant
reactions. Software such as, eiFlux, INCA, METRAN,
OpenMedius and 13C2FLUX are used to support the
metabolic model, flux estimation, and confidence interval
calculation (Moiz et al., 2022). Metabolomic flux analysis has
been deployed to investigate the effect of the drug Bedaquiline
(BDQ) in antibiotic resistant strain of Mycobacterium
tuberculosis (Mtb). MFA has also been used to study the
metabolic changes in host cell during viral infection (Moiz
et al., 2022).

3.3 Validation and clinical translation

Validation of metabolite based biomarkers aims for
reproducibility across several cohorts and requires
standardization. The concentration of metabolites and type of
metabolites varies depending on the sample type. Therefore,
metabolites to be used for clinical interpretation or used as
biomarker require approval from regulatory bodies to interact
this with the disease stage or treatment response. Biobanking of
patient samples and longitudinal observation provide reliable
data on a robust biomarker. However, the number of controlled
studies specially examining infectious diseases and biobanking
are very few (Ramanathan et al., 2020). Furthermore,
metabolomics alone cannot be used to choose robust
biomarkers unless other omics technologies are integrated
(Rhee, 2020). Only a small number of research have combined
genotyping and metabolomics data for genome-wide association
(mGWAS) studies testing different ethnic group and
demographic regions (Adamski and Suhre, 2013; Trivedi and
Goodacre, 2020). Future studies require inclusion of more studies

for validation of disease cohort and discovery cohort for
personalized medicine (Yet et al., 2016).

4 Metabolic biomarkers and
therapeutics for infectious diseases

According to World health Organization (WHO),
infectious diseases cause disability even after post-infection sequel
(https://www.who.int/data/gho/data/themes/mortality-and-global-
health-estimates). Table 2 shows disability-adjusted life years
(DALYs) from several infectious diseases. In this section we
discuss some of the infectious diseases shown in Table 2 with
higher prevalence and DALYs, how these pathogens modulate
the host’s metabolic pathways and potential of metabolites to be
used as biomarkers of disease diagnosis and drugs and diagnostics
available approved by FDA for personalized treatment of infectious
diseases and antimicrobial drugs targeting the host metabolic
pathways.

4.1Metabolomics of host cells in response to
infection

4.1.1 Virus infection and host metabolism
4.1.1.1 HIV/AIDS

The human immunodeficiency virus (HIV) causes symptoms
resembling the flu (influenza) and if left untreated, can lead to
acquired immunodeficiency syndrome (AIDS). The virus damages
the immune system in such a way that the patient becomes more
vulnerable to opportunistic infections, mostly by tuberculosis
(Personalized Medicine Coalition, 2021). Table 2 shows the
incidence, prevalence, YLLS, YLDs and DALYs. The majority of
the disease burden is carried in the sub-Saharan Africa super-region
accounting for 64.9% of new HIV infections and 74% of all deaths
caused by the virus worldwide. Despite the absence of a treatment,

TABLE 2 Global prevalence, incidence, death, DALYs, YLDs and YLLs of selected communicable diseases in 2019. The numbers are calculated per million and shows
age-standardized rates to reflect the global burden of disease (GBD).

Disease category Type of disease Prevalence (in
millions)

Incidence (in
millions)

Deaths (in
millions)

YLLs YLDs DALYs

Communicable
diseases (CD)

Total (CD) 4,540 26,400 10·2 564 104 669

Human immunodeficiency
virus (HIV)

36·8 1·99 0·864 43·6 4·01 47·6

Acute hepatitis C 0·636 5·51 0·00548 0·244 0·00891 0·253

Acute hepatitis B 9.23 80 0.0325 1.46 0.159 1.61

Upper respiratory infections
(Influenza A and others)

237 17,200 0.00946 0.499 5.89 6.39

Dengue 3·39 56·9 0·0361 1·83 0·552 2·38

Tuberculosis 1830 8·50 1·18 42·7 4·32 47·0

Malaria 181 231 0·643 43·8 2·61 46·4

Leprosy 0·528 0·0527 − − 0·0288 0·0288
Note: YLLs, years of life lost; YLDs, years lived with disability; DALYs, disability-adjusted life years.

[Data source: https://www.healthdata.org/results/gbd_summaries/2019/ World Health Organization (WHO)].
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HIV patients can experience chronic infection while on
antiretroviral therapy (ART). Due to the enormous
improvements in HIV detection and treatment, this is now
possible to implement (Tounta et al., 2021).

Human immunodeficiency virus type 1 (HIV-1) and type 2
(HIV-2) both contribute to the development of AIDS. Although
HIV-2 exhibits lower virulence and transmission than HIV-1, and
only 30% of HIV-2 infections progress to AIDS, HIV-2 is
nevertheless responsible for the majority of cases of AIDS
worldwide. Before symptoms appear and the disease worsens,
there is an asymptomatic stage that might continue years after
the acute and original infection. As the virus adheres to and infects
the cells to multiply within them, infection causes a progressive
decline in CD4+ T-cells even during the asymptomatic phase.
Compared to HIV-1, HIV-2 is less contagious and has a slower
rate of CD4+ T-cell depletion (Tounta et al., 2021).

In HIV research, metabolomics has proven to be a useful
technique for both diagnosis and vaccine development. Studies
investigated indicators in biofluids like plasma that correlate with
the level of protection provided by potential vaccinations. Initial
research determined that comparing the metabolic patterns of
patients’ serum renders it possible to distinguish between HIV+

and HIV−. The distinction between HIV+ patients who had received
antiretroviral medication (ART+) and HIV-positive patients, based
on considerable alterations in glucose and lipid levels, was a more
intriguing conclusion. Untargeted ultrahigh-performance liquid
chromatography UHLC/MS/MS and GC/MS of plasma and
cerebrospinal fluid (CSF) were used by Cassol et al. to validate
these findings. The changes found in HIV+ ART+ samples involved
neurotransmitters (glutamate, N-acetylaspartate), myo-inositol, and
ketone bodies, and their prevalence suggested an effect similar to
increased aging. The results provided understanding of the
inflammatory and neurotoxic processes at play because the
discovered metabolites were also among the top classifiers for the
emergence of HIV-associated neurocognitive disorders (HAND)
(Diray-Arce et al., 2020; Tounta et al., 2021).

The metabolic profiles of HIV-1 and HIV-2 infections, as
determined by LC/MS, were compared in order to identify the
factor contributing to the decreased pathogenicity of HIV-2. Even
though the profiles for glycolysis and TCA were identical, the HIV-2
profile was distinguished by a rise in deoxynucleotide triphosphates
(dNTPs), which are thought to be related to HIV-2 viral protein x
(Vpx). SAMHD1, a host antiviral protein with dNTPase activity that
works to reduce the availability of dNTP for viral reverse
transcription, has been linked to Vpx’s role in degrading
SAMHD1. LC-MS/MS metabolites were extracted from both
HIV-uninfected and HIV-infected primary monocyte-derived
macrophages. The HIV-1 strains were associated with increases
in glyceraldehyde 3-phosphate (G3P) and fructose 1,6-bisphosphate
(FBP), but the rise in quinolinate was the most notable modification.
Quinolinate is an intermediate in the kynurenine pathway, which
begins with the breakdown of tryptophan, which produces NAD+.
NAD+ was not noticeably reduced despite the alterations in
quinolinate levels that were seen. The kynurenine pathway’s
impaired function has been linked to a number of conditions,
including neurodegenerative illnesses and chronic inflammation.
The immunological response has also been linked to tryptophan
levels, and ongoing tryptophan depletion has been associated to

T cell exhaustion and tryptophan catabolism towards immune
activation. These findings raised the possibility that tryptophan
levels may be responsible for the distinction between HIV-1 and
HIV-2 pathogenicity (Diray-Arce et al., 2020; Tounta et al., 2021).

Biofluids such urine, whole blood, and serum have been used in
metabolomic investigations to find metabolite markers associated
with HIV-induced oxidative stress (OS). Studies have investigated
changes suggestive of OS, such as altered amino acid metabolism,
including those of alanine and glutamine, using a variety of
techniques (NMR, LC/MS, GC/MS, UPLC/MS). Using a DB-5
MS capillary column and 105 plasma samples from HIV+ sub-
Saharan people, Bipath et al. carried out GC/MS analysis. They
discovered elevated levels of indoleamine 2,3-dioxygenase (IDO) in
the HIV+ samples. Using a DB-5 MS capillary column and
105 plasma samples from HIV+ sub-Saharan people, Bipath et al.
carried out GC/MS analysis. They discovered elevated levels of
indoleamine 2,3-dioxygenase (IDO) in the HIV+ samples. In
contrast to the findings from HIV− and HIV+ samples from
higher-income countries, this rise led to an accelerated
breakdown of tryptophan and a buildup of kynurenine pathway
intermediates such as quinolinate and compounds with neurotoxic
characteristics (Diray-Arce et al., 2020; Tounta et al., 2021).

Table 3 shows some of the metabolites that have been detected in
biological samples of HIV patients.

4.1.1.2 Hepatitis B
About 350 million infections and 600,000 deaths occur worldwide

each year, primarily in Asia and Africa, due to the blood-borne hepatitis
B virus (HBV). It can cause acute infection to chronic hepatitis B leading
to LF, LC, and HCC. Metabolomics can have a significant influence on
hepatitis B virus (HBV) research by offering a sensitive approach to
determine the disease stage without the requirement for potentially
harmful tests like biopsies and histopathology. The next stages are liver
fibrosis (LF) and cirrhosis, which can advance to hepatocellular
carcinoma (HCC), once an acute infection transforms into a chronic
condition. Researchers used metabolomics platforms such as GC/TOF
to identify metabolic biomarkers in serum samples to distinguish
between HBV stages and enable the early detection of HCC.
Asparagine and glutamate were found to be associated with HBV
infection, cirrhosis progression, and changes to distinguish cirrhosis
from HCC. For the development of HCC, major alterations of
metabolites of the key pathways like glycolysis and the TCA cycle
were reported. A blockage of the TCA cycle was reported with increases
in malic acid, citric acid, and succinic acid, and a dependency on
glycolysis. Additionally, palmitic acid for the detection of cirrhosis
against HBV and phenylalanine, malic acid, and 5-methoxytryptamine
was proposed as possible biomarkers for discriminating between HBV
and controls. In order to examine themetabolome during chronic HBV
and for disease staging, UPLC/MS was used to detect metabolites from
serum samples. An elevated ornithine levels together with elevated
citrulline and glutamate levels, which indicated dysregulation of the
urea cycle could be linked to liver injury. Additionally, the virus also
used the glycerol-3-phosphate NADH shuttle as a vehicle for its
reproduction (Tounta et al., 2021).

4.1.1.3 Hepatitis C
According to the WHO (2018), 70% of individuals who contract

the hepatitis C virus (HCV) proceed to develop a chronic illness.
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TABLE 3 Metabolites detected in patient’s samples as a result of microbial infection.

Disease Species Type of infection Sample Technique Metabolites/pathways References

Virus Lentivirus Human
immunodeficiency
virus/HIV

CSF,
plasma

1H-NMR, LC–MS,
targeted LC–MS

acetate, citrate, creatine,
dicarboxylicacylcarnitines, dopamine,
glucose, glycerophospholipids, glycolysis,
L-aspartate plasmalogen/plasminogen,
lysophospholipids,
methylglutarylcarnitine,
phosphatidylcholines, sphingomyelin,
sphingosine-1-phosphate

Diray-Arce et al.
(2020)

Flavivirus (DENV)
(Dengue virus)

Dengue Serum GC-MS, LC-MS acylcarnitines, amino acids, bile acids,
chenodeoxyglycocholic acid, galactose and
pyrimidine, glycine, glyoxylate and
dicarboxylate, kynurenine, pentose
phosphate pathway, phospholipids,
propanoate, purines, serine, serotonin,
starch and sucrose, threonine, uric acid,
fatty acid synthesis, glycolysis

Diray-Arce et al.
(2020)

Alphainfluenza virus Influenza Plasma 1H-NMR, GC–MS amino acids and ketone bodies, cAMP,
glucose, glutathione, lipid,
N-acetylglucosamine(O-GlcNAc), purine

Diray-Arce et al.
(2020), Tounta et al.
(2021)

1H-NMR, Citrate; Fumarate; 3-Methyl,2-Isovalerate;
Alanine; Tyrosine; Methionine; Histidine;
4-Hydroxybutyrate

Banoei et al. (2017)

GC–MS Uric acid, Tyrosine, Citric acid,
Asparagine, Myoinositol, Lysine,
Arabinonic acid Threonine, Aspartic acid,
Threonic acid

SARS-CoV-2 COVID-19 Plasma,
serum

LC-MS Bile acids, bilirubin, diacylglycerols, free
fatty acid, glucose, glucuronate, glycerol 3-
phosphate, kynurenine,
lysophosphotidylcholines, malic acid,
monosialodihexosylganglioside,
phosphatidylcholines, sphingomyelin,
triglycerides, tryptophan

Diray-Arce et al.
(2020)

Serum LC-MS L-phenylalanine, tyrosine Qiu et al. (2023)

Serum GC-MS Pyruvate, lactate, succinate,
a-ketoglutarate

Hepatitis B virus (HBV) Infection Serum GC/TOF Asparagine, β-glutamate, glycerol, and
glucose.

Tounta et al. (2021)

UPLC/MS Ornithine, citrulline and glutamate

Hepatitis C
virus (HCV)

Infection Plasma 1H-NMR, LC-MS,
GC-MS

Induces activation of SREBPs and FASN
to induce fatty acid synthesis,
phosphatidylcholine,
phosphatidylethanolamine, cholesterol,
sphingolipids, glycolysis

Tounta et al. (2021)

Bacterial Escherichia coli Urinary tract infection Urine 1H-NMR, LC-MS acetate, amines, aspartic acid, cadaverine,
citrate, glutamic acid, glycine, hippurate,
trimethylamine, trimethylamine n-oxide

Tounta et al. (2021)

Mycobacterium
tuberculosis

Tuberculosis Plasma,
Serum

LC-MS, FIA-MS,
GC-MS

amino-acyl tRNA, asparagine, aspartate,
citrulline, cysteine, gamma-
glutamylglutamine, fatty acid metabolism,
glutamate, glutamine, histidine, inosine,
kynurenine, lysophosphatidylcholines,
medium chain fatty acid, lysosome
pathway, mannose methionine, protein
digestion pathway, sphingolipid,
sphingosine-1-phosphate,
sulfoxymethionine, tryptophan, urea

Tounta et al. (2021)

(Continued on following page)
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Hepatitis C (HCV) is caused by a flavivirus (Paula et al., 2012).
While the acute phase typically only causes minor symptoms,
Hepatocellular carcinoma (HCC) and cirrhosis are possible
outcomes of chronic HCV infection resulting in liver fibrosis
(LF), which develops over time. According to the METAVIR
scale, the stages of fibrosis are frequently categorized as F0, F1-2,
F3, and F4. These stages range from cirrhosis to no symptoms of
fibrosis, and one of the greatest risks of the latter stages is further
development into HCC (Tounta et al., 2021).

Enzyme immunoassays (EIA) for the detection of anti-HCV
and Polymerase chain reactions (PCR) for the identification of
HCV-RNA are the standard techniques used in the screening and
diagnosis of HCV-infections. These methods involve a lot of time
and come with a risk of contamination, and the increased expense
of the procedure prevents them from being used on a regular
basis. Although liver biopsy is presently regarded as the gold
standard method for staging the HCV-associated LF, it has
several disadvantages, such as the possibility of bleeding, acute
discomfort, and organ perforation. As a result, scientists are
concentrating on developing alternative approaches that are
easy to use, cheap to produce, safe to use, and quick to screen
for HCV infection. Due to the significant incidence and fatal
outcomes of the HCV-induced HCC worldwide, metabolomics
studies have been used for early diagnosis and understanding of
the correlation of metabolites with the progression of the disease
(Tounta et al., 2021).

Utilizing NMR, biomarkers for disease detection have been
discovered, and by combining MS with other chromatographic
techniques, changes in sugar metabolism and elevated levels of
metabolites, such as glucose, in the blood, were observed. Similar
to HBV, metabolomics can offer a precise and non-invasive tool for
disease staging, and numerous studies in this area have been carried
out. Data mining and multivariate statistical analysis were used to
create one of these algorithms, which attempted to use the methods
of statistical analysis to create an algorithm to distinguish between
stages by using amino acid ratios in plasma based on the formula
[(phenylalanine)/(valine) + (threonine + methionine + ornithine)/
(proline + glycine)]. Biopsies were used to assess the extent of
fibrosis in 53 individuals’ plasma samples. The formula successfully
distinguished between F3-F4 and earlier phases, according to the
results, and successfully distinguished F4 from all other stages. The
area under the receiver operator curve was used to assess
performance, and the findings showed good confidence (95%
confidence interval). Although these findings are preliminary,
they could be used to assess liver fibrosis without invasive
procedures. Another study used LC/MS and GC/MS to find

changes that may be used as fibrosis markers, such as cysteine
and bile acids (Tounta et al., 2021).

NMR has also shown promise in the staging of diseases. A
1H-NMR technique was used to detect NMR spectra of serum
samples from 67 patients with HCV, 50 with HBV, and
43 healthy controls in order to characterize their metabolic
fingerprints (Tounta et al., 2021).

Increases in the metabolites such as lactate, 3-hydroxybutyrate,
acetate, and pyruvate after HCV infection suggest activation of the
glycolysis pathway, which the virus is thought to have triggered. The
use of metabolomics in HCV diagnosis and staging can significantly
benefit from the findings for HBV (Tounta et al., 2021).

4.1.1.4 Dengue
Dengue virus belongs to the genus of flaviviruses, which also

includes yellow fever virus, West Nile virus, tick-borne encephalitis
virus, and Zika virus; all are arthropod-transmitted infections. Four
different serotypes of dengue virus exist. The virus DENV can cause
clinical illness such as dengue fever, dengue hemorrhagic fever,
dengue shock syndrome, chronic fatigue syndrome or death. In
2019, dengue resulted in 2.38 million DALYs and 36,100 deaths.
Among all neglected tropical diseases in South-east Asia in 2019,
dengue had the largest DALY burden (Diray-Arce et al., 2020).
Infected host cells exhibit increased fatty acid synthesis and
glycolysis (Table 3) (Personalized Medicine Coalition, 2021).
There is no specific treatment or vaccine for dengue.

There are four distinct serotypes of the DENV that cause dengue
fever (DF), designated as DENV-1 through DENV-4. Aminimum of
5% of DENV-mediated DF develops into severe forms, such as
dengue hemorrhagic fever (DHF) and dengue shock syndrome
(DSS), which can be fatal. Despite the fact that the majority of
DENV-mediated DF is asymptomatic or only manifests mild
symptoms (fever, rash, and joint pain). One serotype’s infection
does not offer defense against another. Therefore, accurate diagnosis
and prognosis depend on early and precise disease identification.
Metabolomics is crucial for achieving this goal. Several studies that
compared the metabolomes of DENV-infected and non-DENV-
infected patients found metabolites that might be utilized to
diagnose DENV and predict the prognosis of severe to mild
DENV disease. These research articles describe how sphingolipids
and glycerophospholipids are affected by DENV infection. Sera
from DENV-infected patients exhibit lower amounts of
phosphatidylcholine (PC), lysophosphatidylcholines (LPC), and
lysophosphatidylethanolamines (LPE), as well as decreased levels
of sphingomyelin (SM) in contrast to healthy control participants.
The LPE correlates with the host’s later response while the increased

TABLE 3 (Continued) Metabolites detected in patient’s samples as a result of microbial infection.

Disease Species Type of infection Sample Technique Metabolites/pathways References

Parasites Plasmodium falciparum
and Plasmodium vivax

Malaria Plasma,
Urine

1H-NMR, UHPLC-
HRMS

LDL/VDL, lactic acid, isoleucine,
glycoprotein, pipecolic acid, taurine,
N-acetylspermidine, N-acetylputrescine,
1,3-diacetylpropane, tyrosine, glucose,
alanine, creatine/phosphocreatine,
N-acetylglutamate, salicylurate,
N-acetylornithine, valeylglycine, pipecolic
acid, biopterin-3-hydroxybutyrate

Tounta et al. (2021)
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SM correlates with the host’s early response. These investigations
thereby indicate the potential of these lipids as diagnostic and
prognostic biomarkers (Diray-Arce et al., 2020; Tounta et al., 2021).

4.1.1.5 Influenza
Seasonal influenza is an acute respiratory infection which is

caused by four types of seasonal influenza viruses. These are
influenza virus A, B, C, and D. WHO estimates that seasonal
Influenza may result in 290,000 to 650, 000 death each year due
to respiratory diseases alone (Lajoie, 2015). Clinical symptoms of
seasonal influenza include sudden onset of fever, dry cough,
headache, muscle and joint pain, sore throat, runny nose and
severe malaise. Although most people recover from the
symptoms within a week, influenza can cause severe illness or
even death in patients with chronic medical conditions such as
chronic cardiac, pulmonary, renal, metabolic, liver or hematological
diseases, immunosuppressive conditions such as HIV/AIDS or
patients receiving chemotherapy or suffering from malignancy
(Karlsson et al., 2021).

The management of the disease can be greatly improved by the
early use of antiviral medications in patients who have been
diagnosed with H1N1 influenza pneumonia. Increased ICU
admission and mortality have been linked to delaying treatment
for pneumonia caused by the H1N1 virus. With the use of
biomarkers, viral pneumonia may be diagnosed and prognosed
earlier, treated more effectively, and new knowledge about
pathophysiologic processes may be gained. Applying
metabolomic profiling is one promising strategy for discovering
disease-related biomarkers. Through the use of nontargeted
1H-NMR and GC-MS methods, researchers were able to
distinguish H1N1 pneumonia from bacterial CAP (community
acquired pneumonia) and ventilated ICU control subjects
through metabolomic profiling of plasma samples collected
within 24 h of hospital admission. Additionally, by separating
H1N1 non-survivors from survivors using samples taken from
inside the study population, researchers further hypothesized that
plasma metabolomics may be employed for the prognosis of
mortality (Banoei et al., 2017). Metabolites detected in samples of
influenza patients include amino acid pathway, glycolysis, lipid and
purine metabolism pathway (Table 3).

4.1.1.6 SARS-CoV-2
The virus, severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) is a strain of coronavirus family and causes the
disease COVID-19. The outbreak caused by SARS-CoV-2 caused
over 100 million confirmed cases in December 2019, and almost
2.5 million fatalities by 2021. Since there is no effective treatment, an
immediate and accurate diagnosis is required. Metabolomics is an
effective technique for combating COVID-19 because of its speed
and ease of use. This method produces large amounts of information
and enables the quick screening of molecules for the identification of
biomarkers for the diagnosis and prediction of disease severity. With
the use of LC/MS and NMR, several researchers found inflammation
associated metabolites such as increased level of alpha-1-cis
glycoprotein. There was an increased ratio of kynurenine/
tryptophan in COVID-19 patients with diabetes and metabolic
disorders. Changes in arginine and kynurenine ratio in plasma
samples of COVID-19 patients were also detected by LC/MS/MS

and 1H-NMR. Alterations in amino acid and carbohydrates were
found to be linked to disease severity in COVID-19 patients
(Table 3) (Tounta et al., 2021).

4.1.2 Bacterial infection and host metabolism
4.1.2.1 Tuberculosis (TB)

Mycobacterium tuberculosis is the etiological agent of
tuberculosis. It is a contagious disease. Both pulmonary and
extrapulmonary TB are caused by the bacteria. The bacteria
cause both drug-susceptible and drug-resistant TB. In 2019, there
were 1.8 million TB-related deaths and 8.5 million new cases of TB
(Table 2) (Institute for Health Metrics and Evaluation, 2022). The
pathogen is a facultative intracellular pathogen. The main target
organ for M. tuberculosis colonization is the lung, which results in
pulmonary tuberculosis (TB).M. tuberculosis predominantly adapts
to intracellular habitats in macrophages. In a specialized
phagosomal compartment within these host cells, M. tuberculosis
survives and reproduces. The bacteria appear to be capable of
escaping into the cytoplasm of the host cells under specific
circumstances. Immediately upon infection, granulomas develop,
which contain an infected macrophage core encircled by foamy
macrophages, monocytes, and multinucleated giant cells. M.
tuberculosis may also infect other organs in immune-
compromised individuals, leading to extrapulmonary TB. It has
been suggested that an essential reservoir for the persistence of M.
tuberculosis is the visceral adipose tissue (Tounta et al., 2021).

A lot of work has been done on understanding M. tuberculosis’
complicated metabolism both in vitro and in vivo due to its
importance to healthcare. The metabolic reactions of the target
host cells and tissues to M. tuberculosis infections are much less
understood, hence this issue is far from being fully resolved. Several
investigations involving infected host cells (mostly macrophages)
and animals involved transcript profiling. Additionally, M.
tuberculosis-infected cells and animal models were subjected to
proteomics and metabolomics analyses. These investigations gave
researchers important insights into the nature of the immunological
responses that M. tuberculosis causes, as well as some hints about
how it affects the host cells’ metabolic processes (Tounta et al.,
2021).

The majority of the metabolic alterations seen in host cells
infected withM. tuberculosis are connected to defense mechanisms,
such as oxidative stress and the synthesis of antimicrobial peptides.
By producing RNI from iNOS, macrophages can prevent M.
tuberculosis from replicating. This enzyme is produced when
macrophages are infected with M. tuberculosis. It has also been
reported that PHOX induction causes ROS levels to rise. The
generated mycobacterial catalase KatG, which contains catalase
and peroxidase activity, inactivates ROS, making M. tuberculosis
relatively resistant to being killed by them. Infection with M.
tuberculosis also increases heme oxygenase (HO-1) expression in
mouse macrophages and other host cells, most likely through the
TNF-α signaling pathway. The two-component system DosS/T
appears to be the mechanism by which CO, one of the reaction
products of HO-1, and NO produced by iNOS promote
transcription of the Mtb dormancy regulon. In addition, elevated
amounts of host cell proteins necessary for the production of ROS,
such as the neutrophil cytosolic factor 1 (NCF1 or p47) and the
p67phox component of NADPH oxidase, are detected. The
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production of the antioxidant Mn-dependent superoxide dismutase,
which quenches ROS and hydrogen peroxide, is also increased
(Tounta et al., 2021).

The unique lipids found in mycobacterial cell walls are crucial to
M. tuberculosis pathogenic processes. 166 different macrophage
proteins were differently expressed when M. tuberculosis lipids
were exposed to macrophage-like cells in the laboratory.
Although the roles of these proteins are not fully defined, a
significant fraction of the differentially expressed proteins (14%)
appeared to be involved in metabolism (Tounta et al., 2021).

As human tuberculosis progresses, the caseous pulmonary
granuloma, which contains a core of infected macrophages,
develops. Prior studies have revealed an abundance of lipid
species, including cholesterol, cholesterol ester, and triacylglycerol
in these infected cells. Transcriptome analyses of such TB
granulomas showed a considerable upregulation of genes
involved in the sequestration, degradation, and synthesis of host
lipids. The fact that several of the upregulated genes are likewise
increased by TNF-α suggests that this response may be brought on
by the chronic inflammation primarily generated byM. tuberculosis
cell wall components. IfM. tuberculosis colonizes the granuloma in a
latent state, the accumulating lipids may provide the necessary
carbon supply for the bacteria (Tounta et al., 2021).

Using1H-NMR-based metabolite profiling studies from the
mouse and guinea pig models infected with M. tuberculosis,
researchers were able to get detailed information on the
metabolic changes of the host. The lung, liver, and spleen
tissues that were evaluated in the infected animals showed
qualitatively similar alterations of the key catabolic and
anabolic chemicals. The lung, the primary site of M.
tuberculosis infection, exhibits the most significant results
quantitatively. It has been observed that lactate increases,
whereas levels of glucose, glycogen, NAD, and NADP level
decline. This indicates higher glucose consumption via the
glyoxylate shunt (GL) and the pentose-phosphate pathway.
This further supports the decreased levels of the TCA cycle
intermediates such as oxaloacetate and fumarate, thereby
decreased TCA cycle activity. However, the concentration of
succinate, another intermediate of the TCA cycle showed
increased levels (Tounta et al., 2021).

The increased glutaminolysis in mitochondria brought on
by the oxidative stress experienced during M. tuberculosis
infection may be the cause of this elevated level of
succinate. As an alternative, M. tuberculosis may secrete
succinate, which has been discussed above. This may induce
increased lipolysis in the host cells. Furthermore, the amount
of several amino acids also rises in the tissues that were
examined and even in the serum of the M. tuberculosis-
infected mice, indicating accelerated amino acid catabolism
and/or proteolysis. The “anabolic block” seen in TB patients
may be connected to this metabolic alteration (Tounta et al.,
2021).

Additionally, elevated levels of a number of pyrimidine and
purine nucleotide biosynthesis intermediates were found in the
infected lung. The infected lung and spleen were also found to
have higher levels of the antioxidant glutathione (GSH), another
metabolic response to protect against induced oxidative stress.
Similar patterns of metabolites are found in the lung tissues and

serum of infected guinea pigs when metabolite profiling is
performed (Tounta et al., 2021).

Overall, M. tuberculosis infection leads to substantial metabolic
host responses that affect the host’s ability to fight off the infection as
well as increased lipid metabolism, glucose uptake, and proteolysis.
These metabolic host responses, which were seen in vivomouse and
guinea pigs, appear to support intracellular replication of M.
tuberculosis. Most of the identified metabolic host responses
appear to be significantly influenced by the distinct mycobacterial
cell wall components (Tounta et al., 2021).

4.1.2.2 Leprosy
Mycobacterium leprae is the etiological agent of leprosy. The

global burden of leprosy was 28,800 DALYs in 2019 (Table 2). The
sensory system may become scarred or impaired as a result of
leprosy. Additionally, it leads to ulcers, profound atrophy, or
profound sensory impairment (Santacroce et al., 2021).

4.1.2.3 Urinary tract infection (UTI)
Approximately 150 million cases of urinary tract infections

(UTIs) occur each year, making it one of the most prevalent
bacterial infections worldwide (Mann et al., 2017). UTIs may
develop as community-acquired or during health-care-related
treatment. Urinary tract infection (UTIs) is one of the most
prevalent bacterial infection and, predominantly affect women
(Conover et al., 2016). A wide range of Gram-positive and
Gram-negative bacteria such as Escherichia coli, Proteus mirabilis,
Klebsiella pneumoniae, Staphylococcus saprophyticus, and
Enterococcus faecalis have been linked to UTIs. However, up to
75% of all cases and 95% of cases that are community-acquired are
due to Uropathogenic E. coli (UPEC), which is the main causative
agent of the disease (Mann et al., 2017).

The gut microbiome is the source of UPEC, a pathotype of
extraintestinal pathogenic E. coli (ExPEC). UPEC rarely creates any
health issues in the colon. However, UPEC can spread and colonize
in the urinary tract and the bloodstream. The organism secretes
toxins, which can trigger an infection in the host. It is evident that
UPEC’s ability to utilize nutritionally diverse habitats, including the
intestines, urine, bladder, kidneys, and bloodstream, significantly
contributes to the disease’s etiology. Because UPEC metabolism is
tightly controlled and extremely responsive to the availability of
nutrients, it can survive in a wide variety of environments that are
both competitive and in fluctuating conditions. UTIs are typically
initiated by UPEC that contaminate, colonize, and migrate into the
urethra and bladder lumen. There is evidence that the majority of
human UTIs are caused by UPEC strains that infiltrate the bladder
epithelium and go through an intracellular infection cycle. The
infection cycle is a complicated process that includes epithelial
attachment, invasion of host cells, and intracellular proliferation.
Ultimately, the bladder epithelial cell ruptures, causing infection to
spread and infect neighboring epithelial cells. Lower urinary tract
infections have the potential to spread to the kidneys and enter the
bloodstream, leading to urosepsis, which can be fatal. As UPEC
travels between the intestinal lumen and the urinary tract, they need
to quickly adapt to new environments. One of the main sources of
nutrients that UPEC receives in the urinary system is urine. It is yet
unclear how the metabolic variety of urine lead to the development
of UPEC in the urinary tract (Mann et al., 2017).
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Urinary metabolites are more likely trigger the genetic and
metabolic adaptation mechanisms of UPEC in order for the
bacteria to survive and spread infection inside the urinary
system. Aerobic respiration and carbon metabolism are critical
for survival during intracellular UPEC colonization of the
bladder and kidneys. Mice models infected with UPEC mutants
showed that upregulation of the gluconeogenesis and the
tricarboxylic acid (TCA) cycle is required for the colonization
and survival of the pathogen during bladder infection. These
observations showed that the organism can adapt to different
nutrient availability within the host environments (Mann et al.,
2017).

UPEC also possesses a variety of iron uptake and transport
systems during the intracellular infection cycle. These are iron-
chelating sideraphores and hemophores. The host can withhold free
iron through the iron-binding proteins like lactoferrin, ferritin,
transferrin, ovalbumin, and siderocalin. Siderocalin has high
affinity to the E. coli siderophore enterobactin. Siderocalin has
low binding affinity to the siderophores that are associated with
UPEC strains. As a result, these provide evolutionary advantage for
the UPEC to scavenge host iron (Alteri and Mobley, 2015; Mann
et al., 2017). Other than animal model studies, LC-MS analysis of
UTI patients’ urine sample revealed a variety of diamines,
polyamines, and acylated conjugates (Table 3) These molecules
have served as biomarkers for urine infection for over 3 decades
(Satink et al., 1989; Lussu et al., 2017).

4.1.3 Parasite infection and host metabolism
4.1.3.1 Malaria

Plasmodium vivax and Plasmodium falciparum are the parasites
that cause malaria. The disease is transmitted by mosquitoes. The
disease, at its acute stage can lead to death and disability. Children
who survive from cerebral malaria suffer from neurological effects
and the effects are severe. In 2019, 643,000 people died frommalaria.
Of these fatalities, 356,000 occurred in children under 5 years old
(Nagana Gowda and Raftery, 2013). There has been interest in using
metabolic markers to support non-invasive disease diagnosis and
the prognosis of disease severity. Significant changes in metabolic
profiles based on molecules like amino acids and lipids have been
detected whenMSwas used to diagnose P. falciparum infection from
plasma samples. GC/MS was used to identify disease stages in
pediatric plasma samples that were infected by the parasite.
Increased amounts of 3-hydroxybutyric acid and fatty acids were
detected in the samples. An increased level of valine was detected
which had the potential connection between the severity of the
illness and an increase breakdown of hemoglobin. A decreased level
of alanine and pyruvate, which is connected to gluconeogenesis was
observed (Tounta et al., 2021).

Other than plasma samples, in a separate study, high-
performance liquid chromatography-high resolution mass
spectrometry (HPLC/HRMS) was used to detect potential urine
biomarkers in both healthy individuals and infected individuals.
Following antimalarial therapy, the observed elevations in
metabolite levels decreased. The differences in 1,3-
diacetylpropane, N-acetylputrescine, and N-acetylspermidine
levels between patients and controls make these molecules
promising candidates to be used as biomarkers of infection. An
abnormal level of amino acids and their metabolites such as

threonine and trimethyl-L-lysine was detected too. These
metabolic reprogramming are also related to kidney injury
(Tounta et al., 2021).

4.2 Therapeutics

The infection triggers a complex host response. The
establishment and severity of the disease are significantly
influenced by the virulence of the infecting pathogen. Host
genetic variations play a key role in the vulnerability to
disease and the duration of an infection. Genome-wide
association studies (GWAS) have made it possible to identify
biomarkers linked to pathogens such as the human
immunodeficiency virus (HIV), hepatitis C virus (HCV),
dengue virus, malaria, and Mycobacterium tuberculosis. GWAS
are a powerful tool for establishing a causal relationship between
genetic polymorphisms and specific diseases (Yu et al., 2021).
Pharmacogenomics is the study of how a person’s genetic make-
up affects their response to medications and intends to guide the
right choice and dosing of therapy. A large portion of the analyses
in pharmacogenomics is focused on SNPs in order to
comprehend the effects of single nucleotide polymorphisms
(SNPs) on drug metabolism and disposition. SNPs that affect
the expression and/or activity of metabolizing enzymes and drug
transporters and alter therapeutic efficacy and safety profiles are
of special interest. Pharmacogenomics uses a star nomenclature
system (for example, CYP2B6*6) to designate common genetic
variants that may have clinical importance. *1 is commonly
associated with the wild-type allele in this naming system (Yu
et al., 2021).

Pharmacogenomics is emphasized in therapies that are
approved for the treatment of infectious diseases on an
individual basis. Through treatment tailoring and
individualization based on numerous intrinsic (e.g., organ
dysfunction, genotype) and extrinsic (e.g., diet, drug interactions)
aspects, clinical pharmacology plays a key role in precision medicine
and drug discovery. Pharmacogenomics can be useful in detecting
drug responders and non-responders, preventing side effects, and
adjusting drug dosage. The primary objective of infectious disease
management aims at the identification of genetic elements of the
pathogen(s). The patient’s pharmacogenetic and/or immunogenetic
profiles, however, may give the physician additional insights to help
the patient effectively combat infection (Bissonnette and Bergeron,
2012). Drugs can be labelled with genomic biomarkers information
and describe the events associated with drug exposure and clinical
response, adverse events, genotype-specific dosing, mechanism of
drug action, drug disposition and target genes with polymorphism
(Bissonnette and Bergeron, 2012; Yu et al., 2021). Table 4 shows
some of the drugs that are FDA approved and used for infectious
disease treatment at the personalized level.

4.3 Diagnostics

4.3.1 Point-of care tests (POCTs)
POCTs belong to in vitro diagnostic tests that use biological

samples such as blood, sweat, urine or tissue in order to diagnose a
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TABLE 4 Selected drugs approved for treating infectious diseases in a tailored approach.

Pathogen Disease Drug Brand Biomarker Affected subgroups Description of gene-drug
interaction

Target
protein/
molecule

Pathways/others Status References

Virus HIV Abacavir Ziagen® HLA-B *57:01 allele positive are hypersensitive
to the medication.

Results in higher adverse reaction risk
(hypersensitivity reactions). Patients
positive for HLA-B*57:01 should not
be treated with abacavir. (FDA
recommends therapeutic
management)

Reverse transcriptase Nucleoside pathway Marketed Personalized Medicine
Coalition (2020)

Atazanavir Reyataz® UGT1A1 Patient’s with mutation in the gene
suffer from hyperbilirubinemia,
especially those with Glibert’s syndrome
who carries mutation in the gene.

HIV protease Protease inhibitor

Dolutegravir Tivicay® UGT1A1 Poor metabolizers. Decreased drug
clearance was observed in patients with
mutation in the gene. Neuropsychiatric
adverse events were observed in some
patients also.

Results in higher systemic
concentrations. (There is evidence of a
potential impact on pharmacokinetic
properties of the drug. There is no
demonstrated relationship between the
safety or reaction to the related
medicine and genetic variants or
genetic variants inferred phenotypes).

Integrase HIV integrase inhibitor

Efavirenz Sustiva® and
Stocrin®

CYP2B6 Poor metabolizers. Mutation in the gene
affects drug metabolism and clearance
from the body.

Increases systemic concentrations and
the likelihood of adverse reactions
(Pharmacogenetic relationship
indicates a potential effect on response
or safety)

Reverse
Transcriptase

Reverse Transcriptase inhibitor (Personalized Medicine
Coalition, 2020; Yu et al., 2021)

Maraviroc Selzentry® CCR5,
CYP3A5

*3/*3 and *1/*1 loss of function allele,
poor metabolizer.

In homozygous dysfunctional
populations, higher plasma levels and
reduced clearance is observed.

CCR CCR antagonist. Blocks viral
gp120 from interacting with co-
receptor.

Personalized Medicine
Coalition (2020)

Raltegravir Isentress® UGT1A1 *28/*28 (poor metabolizers) Increases systemic concentrations.
(There is evidence of a possible effect
on pharmacokinetic properties. There
is no demonstrated relationship
between the safety or reaction to the
related drugs and genetic variants or
genetic variants inferred phenotypes.).

Integrase Integrase inhibitor

Hepatitis C Boceprevir Victrelis® IFNL3 (IL28B) One of the key predictors of HCV
clearance is IL-28B polymorphisms.

HCV Protease Protease inhibitor (Matsuura et al., 2014;
Personalized Medicine
Coalition, 2020)Daclatasvir Daklinza®

Dasabuvir, ombitasvir,
paritaprevir, and ritonavir

−

Ombitasvir, paritaprevir,
ritonavir

−

Peginterferon alfa-2a Pegasys®
Peginterferon alfa-2b

Elbasvir and grazoprevir Zepatier™

Ribavirin − − Anti-viral

Simeprevir − HCV protease Protease inhibitor

(Continued on following page)
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TABLE 4 (Continued) Selected drugs approved for treating infectious diseases in a tailored approach.

Pathogen Disease Drug Brand Biomarker Affected subgroups Description of gene-drug
interaction

Target
protein/
molecule

Pathways/others Status References

Sofosbuvir Sovaldi® DNA/RNA Synthesis DNA Damage

Sofosbuvir and velpatasvir Epclusa® − Protease inhibitor

Sofosbuvir, velpatasvir, and,
voxilaprevir

Vosevi® - -

Telaprevir Incivek® − -

Ledipasvir and sofosbuvir Harvoni® − −

Leprosy Dapsone − G6PD Patients with Glucose 6-Phosphate
Dehydrogenase (G6PD) deficiency
suffer from severe haemolysis if treated
with Dapsone.

− Antibiotic (Aftab et al., 2016; Personalized
Medicine Coalition, 2020)

Urinary tract
infections

Nalidixic acid − G6PD Topoisomerase DNA Damage Personalized Medicine
Coalition (2020)

Sulfamethoxazole and
trimethoprim

Bactrim ® G6PD; NAT NAT is related to poor metabolizers May result in higher adverse reaction
risk (Pharmacogenetic association data
indicate a potential impact on safety or
response)

Nucleic acid
synthesis pathway.

Antibiotic

Nitrofurantoin Furadantin® G6PD − Antibiotic

Tuberculosis Isoniazid, pyrazinamide and
rifampin

Nydrazid®,
Rifater®, Rifadin®

NAT NAT is related to poor metabolizers May result in higher systemic
concentrations and adverse reaction
risk. (Pharmacogenetic association
data indicate a potential impact on
safety or response)

- Anti-infection

Parasite Malaria Primaquine − G6PD; CYB5R People with G6PD require higher dose
of the drug.

− − (Personalized Medicine
Coalition, 2020; Visvikis-Siest
et al., 2020)Quinine sulfate Qualaquin® CYP2D6;

G6PD
− −

Tafenoquine − G6PD − −

Chloroquine − G6PD Autophagy,
ATM/ATR

PI3K/Akt/mTOR

Hydroxychloroquine Plaquenil® G6PD Autophagy Autophagy

Note: HLA-B = Human leukocyte antigen-B; UGT1A1 = UDP, Glucuronosyltransferase Family 1 Member A1; CYP2B6 = Cytochrome P450 Family 2 Subfamily B Member 6; G6PD = Glucose-6-phosphate dehydrogenase, IFNL3 = Interferon Lambda 3; NAT =

N-acetyltransferase; CYB5R = Cytochrome b5-related protein; CCR5 = C-C chemokine receptor type 5; CYP2D6 = Cytochrome P450 2D6; CYP2C19 = Cytochrome P450 2C19; P450 = Cytochromes P450; CYP17 = Cytochrome P450 17A
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TABLE 5 List of selected POCT for Infectious diseases that are commercially available.

Disease POC device name Test approach Biomarker Sample type
(metabolic
pathway)

Result
time

(minute)

Storage
temperature

(◦C)

Benefit References

Dengue SD Bioline Dengue Duo
(Dengue NS1 Ag +
IgG/IgM)

Lateral flow test strips (Antibody
based, qualitative test)

Dengue NS1 Ag +
IgM/IgG

Serum/plasma/whole
blood (Energy
metabolism-ATP
production)

15–20 2–30 (Mukherji and
Mondal, 2017;
Castelli et al., 2022)

Panbio Dengue Early
Rapid Kit

Lateral flow (cassette) (Antibody
based, qualitative test)

Dengue NS1 Ag Human serum, plasma
or whole blood

15–20 2–30

Dengue NS1 Rapid test
(Strip)

Membrane-based immunoassay
(Antibody based, qualitative test)

Dengue NS1 Ag Human serum 30 30

CareStart™ Dengue
Combo (NS1+IgM/IgG)

Lateral flow (Antibody based
qualitative test)

Dengue NS1 Ag +
IgM/IgG

Serum, plasma or whole
blood

15–20 1–30

Bhat Bio-SCcan®
Dengue NS1 & IgG+IgM
Combi Card Test

Immunochromatographic assay Dengue NS1 Ag +
IgM/IgG

Human serum and
plasma

20 2–30

Standard Q Dengue Duo
test

Immunochromatographic assay Dengue NS1 Ag +
IgM/IgG

Human serum, plasma,
and whole blood

15–20 1–40

Tuberculosis Alere Determine™ TB
LAM Ag

Lateral flow Lipoarabinomannan Urine (glycolysis, amino
acid)

25 2–30 Screening tool for early detection
of TB is useful in numerous low-
income or resource-poor nations
or settings where tuberculosis is
not under control.

EasyNat TB-CPA
Diagnostic Kit

Isothermal amplification- lateral
flow assay

M. tuberculosis DNA Sputum (Pyruvate
metabolism)

120 −

Tuberculosis IgM/IgG
Rapid Test

Sandwich lateral flow
chromatographic immunoassay

TB IgM/IgG Human serum or plasma
(glycolysis, amino acid
metabolism)

10 2–30

Hepatitis B virus VIKIA® HBs Ag Immunochromatographic or
lateral flow

HBs Ag Human serum, plasma,
or whole blood

15 4–30 HBV causes chronic viral
hepatitis. Patients can be co-
infected with HBC and HAV.
Early and rapid detection can help
clinicians start treating patients
immediately.

HBsAg Rapid Test
(strip)

Lateral flow chromatographic
immunoassay

HBsAg Human serum or plasma 15 −

Alere Determine™
HBsAg

Lateral flow HBsAg Human serum, plasma,
or whole blood

15 2–30

EuDx TM-HE (A, B,
C) KIT

Immunochromatographic
method

HAV IgM, HBsAg, and
anti-HCV

Serum sample 15 −

SD Bioline Anti-HBsAg Immunochromatographic
method

HBsAb Human serum or plasma − 2–30

(Continued on following page)
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TABLE 5 (Continued) List of selected POCT for Infectious diseases that are commercially available.

Disease POC device name Test approach Biomarker Sample type
(metabolic
pathway)

Result
time

(minute)

Storage
temperature

(◦C)

Benefit References

HIV/AIDS
(Restricted to
clinical
laboratories)

Alere Determine™ HIV-
1/2

Lateral flow − Serum, plasma, or whole
blood

15 2–30 Rapid HIV/AIDS patient
screening improves point of care
and patient management.

Chembio Dual Path
Platform (DPP®) HIV
1/2

Immunochromatographic test HIV-1/2 Ab Oral fluid 10 2–30

OraQuick Advance® Immunochromatographic test HIV-1/2 Ab Oral fluid 20 −

HIV 1/2 AntibodyTest
Strip

Lateral flow immunoassay HIV-1/2 Ab Whole blood, serum, or
plasma

10 2–30

INST® HIV-1/HIV-
2 Antibody Test

Immunofiltration “flow-through”
approach

HIV-1/2 Ab Whole blood, fingerstick
blood, serum or plasma

1 −

Others

Acro Biotech COVID-19
15 min RAPID POC test

Lateral flow chromatographic
immunoassay

SARS-CoV-2 IgG
and IgM

Whole blood, serum, or
plasma

15 2–30

Note: NS1 = Non-structural protein of dengue.
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patient (Mukherji and Mondal, 2017; Castelli et al., 2022). The tests
are performed in a controlled environment outside a living
organism. Each year, thousands of new POCT devices are
launched and medical professionals are increasingly employing
these for early disease diagnosis. POCT offers advantages as it is
a fast, sensitive, and inexpensive diagnostic that enables more
accurate patient stratification, diagnosis, and treatment options
(Mukherji and Mondal, 2017; Castelli et al., 2022).

POCT combines expertise in advanced manufacturing and
analytical chemistry (Mukherji and Mondal, 2017; Castelli et al.,
2022). Some POCTs can detect metabolites from a specific
metabolic pathway. POC has evolved in terms of sensitivity,
accuracy, and adaptability for use in the individualized diagnosis of
infectious diseases due to miniaturization, smartphone-based sensing
assays, and lab-on-a-chip (LOC) (Mukherji and Mondal, 2017; Castelli
et al., 2022). The POCT testing can be multiplexed or segmented into
dipsticks, lateral flow immunoassays (LFIA), and microfluidics
(Mukherji and Mondal, 2017; Castelli et al., 2022). The basis for
LFIA involves the interaction of a sample with labelled antibody
that has been pre-loaded on a strip of polymer, nitrocellulose,

papers or other materials (Mukherji and Mondal, 2017; Castelli
et al., 2022). Conversely, microfluidic diagnostic allows for precise
regulation over the rate of flow of samples and reagents through the
microchannel, leading to the separation and detection of the intended
analyte. Each POC testing system has a sample handling platform and a
signal transduction unit that is unique to the system. Proteins, disease-
specific biomarkers, and cell density are the target analytes, and the
testing platforms are integrated with various sensing mechanisms
including electrochemical, colorimetric, fluorescence, and
spectroscopy (Mukherji and Mondal, 2017; Castelli et al., 2022). For
POCT, it is critical to choose appropriate specific biomarkers (Mukherji
and Mondal, 2017; Castelli et al., 2022). Table 5 shows some of the
POCT that are approved for the detection of different pathogens and
commercially available.

4.3.2 Companion diagnostics
A companion diagnostics (CDx) is a medical device that is

used in conjunction with therapeutic drugs to assess the effect
and suitability of drugs on the human body (Waldman and
Terzic, 2015). The CDx tests are biomarker tests that help in

TABLE 6 List of selected companion diagnostics (CDx) for detection of drug resistant viruses.

Disease/
Pathogen

Number of
known

mutations

Targeted drugs Test
type

Test name Detection
technology

Sample
type

Status References

HIV resistance
testing

57 20 (-NNRTI, -NRTI,
-INI, -PI)

Genotype ViroSeq, (Abbott
Molecular,
Chicago, IL,
United States)

RT-PCR, Sanger
sequencing

Plasma Kit. FDA
approved.

(Dailey et al., 2020;
US Food and Drug
Administration,
2020)

Sentosa SQ,
(Vela
Diagnostics,
Singapore)

RT-PCR, NGS Plasma Kit. FDA
Approved.

HCV resistance
testing

6 7 (Mavyret, Vosevi,
Epclusa, Zepatier,
Daklinza, Harvoni,
Sovaldi

Genotype Sentosa SQ HCV
Genotyping
Assay (Vela
Diagnostics)

RT-PCR, NGS Serum or
plasma

Kit. FDA
approved

GenoSure HCV
(Monogram
Biosciences)

RT-PCR, NGS Serum or
plasma

LDT

HBV resistance
testing

9 6 (Tenofovir
disoproxil, Tenofovir
alafenamide,
Entecavir,
Telbivudine, Adefovir
dipivoxil,
Lamivudine)

Genotype − PCR, Sanger
sequencing

Plasma or
serum

LDT. Available
through
commercial
laboratories

− PCR, multicolor
melting curve
analysis

− LDT

− PCR, Ultra Deep
Pyrosequencing

−

− PCR, Microarray −

Influenza 4 4 (Ganciclovir,
Valganciclovir,
Foscarnet, Cidofovir)

Genotype Roche 454 Life
Sciences
(Branford, CT,
United States)

NGS/
pyrosequencing

Nasal and
nasopharyngeal

LDT

− RT-PCR − LDT

Note: NNRTI: Non-nucleoside reverse transcriptase inhibitor; NRTI: nucleoside reverse transcriptase inhibitor; INI: integrase inhibitor; PI: protease inhibitor; HIV, human immunodeficiency

virus; HCV, Hepatitis C virus; HBV, Hepatitis B virus; HPV, human papilloma virus; CMV, human cytomegalovirus; HSV-1, Herpes simplex virus subtype 1; HSV2, Herpes simplex virus

subtype 2.
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drug usage decision-making. The FDA classifies these tests as
class III in vitro diagnostic tests (Jørgensen, 2021). Companion
diagnostics and drugs are used to exclude or select patient groups
according to their response to therapy. These devices enable
healthcare professionals to make decisions and analyzing
improvements in the treatment. CDx is thus also known as a
targeted and predictive assay device (Jorgensen, 2015). The first-
generation CDx assays detect a single biomarker. The detection
techniques are PCR, FISH, and ChIP-seq. However, the FDA has
approved multiplex CDx assays that use the next-generation
sequencing (NGS) platform. These devices can also detect
drug or therapy resistance in patients. The rising incidence of
cancer and the importance of personalized medicine are driving
the global market size of companion diagnostics to increase.
Infectious diseases are occasionally regarded as ideal examples of
personalized medicine applications. The usefulness of
biomarkers connected to the immune response, infectious
disease susceptibility, host-microbiota interactions, or
responsiveness to antimicrobial medication treatment,
however, is gradually changing this perception (Bissonnette
and Bergeron, 2012). For the molecular management of
infections, personalized medicine for infectious diseases has
clear advantages. In fact, the use of a personalized medicine
approach could be conceptualized as a bimodal process aiming to
decipher the clinically-relevant genomic components of the
patient and the disease-associated pathogen(s) in order to
choose and optimize the course of treatment for acute life-
threatening diseases. Tables 6, 7 show some of the FDA-
approved companion diagnostics for infectious diseases.
Mutational genes of the pathogen can be detected using the
CDXs assay, and clinicians can make the appropriate
treatment decisions (Nordström and Lewensohn, 2010).

4.4 Drugs targeting host metabolic
pathways for the treatment of infectious
disease

While metabolomics can be used as biomarkers of disease
diagnosis, drugs targeting the host metabolic pathway also possess
potential benefit to manage infectious disease. Antimicrobial
resistance has grown widely, necessitating the development of
additional therapies in addition to new antibiotics. The
development of a wide spectrum of host-directed medicines that
target and modify biological pathways to achieve a successful
therapeutic treatment outcome has been fueled by a renaissance in
scientific researchmethodologies targeting host variables over the past
2 decades rather than directly targeting pathogen components. Host-
directed therapies that have wide-ranging effectiveness may also be
helpful in treating infectious diseases that have the potential to
become epidemic and are related to high mortality cases. The
unique advantage of host-directed treatments is that they can stop
or slow the emergence of antibiotic resistance (Zumla et al., 2020).
Table 8 shows examples host-directed therapies that are used to target
the metabolic pathway for a number of infectious diseases caused by
viruses, bacteria and parasite.

5 Current challenges

5.1 Technological challenges

Identification of robust markers is key to the success of
personalized medicine. Metabolomics is used to identify
biomarkers associated with disease diagnosis, prognosis and
treatment. However, the complex chemical properties of different
metabolites and overlapping roles in different metabolomic

TABLE 7 List of selected companion diagnostics (CDx) to detect drug resistant genes of bacteria.

Pathogen Test name/
manufacturer

Sample type Detection
technology

Mutational genes/Targets References

Bacteria (Dailey et al., 2020; US
Food and Drug
Administration, 2020)Mycobacterium

tuberculosis
COBAS® MTB-RIF/INH
(Roche Molecular Systems,
Pleasanton, CA, United States)

Sputum or bronchial
alveolar lavage

Nucleic Acid
Amplification

Mutations in the rpoB gene associated
with Rifampicin-resistance; mutations in
the katG and inhA genes linked to
isoniazid-resistance.

Xpert® MTB/RIF Ultra
(Cepheid, Sunnyvale, CA,
United States)

Sputum or bronchial
alveolar lavage

MTB and rifampin resistance mutations

RealTime MTB RIF/INH
(Abbott, Chicago, IL,
United States)

Sputum or bronchial
alveolar lavage

Rifampicin (RIF) and isoniazid (INH)
resistance targeting up-stream promoters
of rpoB, katG and inhA genes.

GenoType MTBDRplus VER 2.0
(Hain LifeScience, Gmbh,
Nehren, Germany)

Pulmonary specimens
and/or liquid or solid
culture samples

rpoB gene that confers rifampicin
resistance; katG gene resistant to high
level isoniazid; the promoter region of the
inhA resistant to low level isoniazid.

GenoType MTBDRsl VER 2.0
(Hain LifeScience, Gmbh)

Pulmonary specimens
and/or liquid or solid
culture samples

Genes resistance to fluoroquinolones,
aminoglycosides/cyclic peptides and
ethambutol
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TABLE 8 List of selected antimicrobial drugs targeting host metabolic pathways.

Pathogen type Disease/Species
name

Drug name Host factor targeted References

Virus Hepatitis C virus (HCV) Mycophenolic acid and Ribavirin Inosine monophosphate dehydrogenase
(IMPDH)

Mahajan et al. (2020)

DENV DFMO and Diethylnorspermine Host Polyamine synthesis pathway

Celgosivir Alpha-glucosidase I inhibitor (hostdirected
glycosylation)

SARSCoV-2 Sanglifehrin A IMPDH

Ribavirin IMPDH

Mycophenolic acid IMPDH

Merimepodib IMPDH

Loratadine Sodium-dependent neutral amino acid
AT2 from SLC6A15 gene

Dengue Cerulenin, C7594, pravastatin, U18666A,
Medica, TOFA, GGTI (geranyl
geranylationinhibitor), Lovastatin, 25-
Hydroxycholesterol, Fluvastatin with Peg-IFN/
Ribavirin, AM580, PF-429242

Fatty acid synthesis inhibitor

SARS-CoV-2 cPLA2α, PCSK9, A939572, Fingolimod, C75,
Cerulenin, Fibrates, Triacsin C

Inhibits lipid biosynthesis

HCV Quercetin GLUT1 (glucose transporter 1)-Glycolytic
pathway

Silibinin GLUT4 (glucose transporter 4)-Glycolytic
pathway

LY294002 PI3K (phosphatidylinositol 3-kinases)-
Glycolytic pathway

Dengue Quercetin GLUT1-Glycolytic pathway

Silibinin GLUT4-Glycolytic pathway

Luteolin HEK2 (hexokinase 2) -Glycolytic pathway

SARS-CoV-2 Fasentin, Phloretin GLUT2-Glycolytic pathway

Ritonavir GLUT4-Glycolytic pathway

Silybin/Silibinin, STF-31 GLUT1-Glycolytic pathway

Phloridzin SGLT1-Glycolytic pathway

Dapagliflozin SGLT2-Glycolytic pathway

Metformine, Resveratrol, Ivermectin AMPK activator-Glycolytic pathway

H1N1 influenza A virus 2DG and BrPa, 2DG and Oxamate Glycolysis Sumbria et al. (2021)

HCV Difluoromethylornithine (DFMO) ODC1 (Ornithine Decarboxylase 1)-
Polyamine pathway

Mahajan et al. (2020)

Diethylnor spermidine (DENspm) Polyamine metabolism

Ciclopirox (CPX), Deferiprone (DEF),
and, GC7

Hypusination-Polyamine pathway

SARS-CoV-2 Difluoromethylornithine (DFMO) ODC1 (Ornithine Decarboxylase 1)-
Polyamine pathway

DENV RBM10 SAT1-Polyamine pathway

SARS-CoV-2 Peptide-N-Glycosidase F (PNGase-F) N-glycans-Polyamine pathway

Iminosugars Miglustat, Celgosivir and NNDNJ ER a-glucoside I-Polyamine pathway

(Continued on following page)
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pathways requires the use of cross-validation platforms (Kennedy
et al., 2018; Di Minno et al., 2022). Moreover, metabolites are
modulated by genetic factors, signaling molecules, and proteins.

Therefore, clinical interpretation of biomarkers requires the
integration of data from various omics-based technological
platforms. There are currently very few studies that combine all

TABLE 8 (Continued) List of selected antimicrobial drugs targeting host metabolic pathways.

Pathogen type Disease/Species
name

Drug name Host factor targeted References

Deoxymannojirimycin, mannostatin A α-mannosidase-Polyamine pathway

N-butyl deoxynojirimycin, N-nonyl
deoxynojirimycin, castanospermine, celgosivir

α-glucosidase-Polyamine pathway

DENV Castanospermine (CST) and
deoxynojirimycin (DNJ)

α- Glycosidase-Polyamine pathway

Bacteria Mycobacterium
tuberculosis

AM 92016, Benoxinate hydrochloride,
BENZAMIL, DICHLOROBENZAMIL,
FLECAINIDE, FLUNARIZINE, KB-R7943,
LIDOCAINE, NICARDIPINE,
NIGULDIPINE, Proadifen hydrochloride,
QUINIDINE, TETRANDRINE, U-54494A,
VERAPAMIL

Ion channel Kuang et al. (2022)

AG 957, AG1478, ALK inhibitor, allosteric
AKT1/2 inhibitor, BML-265, Bohemine, EGFR
inhibitor, GNF2, Abl inhibitor, GSK-3
Inhibitor II, PDGR inhibitor, PI3K/mTOR
inhibitor, Diacylglycerol Kinase Inhibitor I,
Diacylglycerol Kinase Inhibitor II, FTT, GF-
109203X

Kinase inhibitor

Aspirin Arachidonic acid metabolism in host. The
drug is involved in dampening of TNFa-
induced hyperinflammation to aid tissue
repair and control burden of M. tuberculosis.

Zileuton Arachidonic acid metabolism in host.
Promotes reduced lungM tuberculosis burden
and pathology

Kolloli and Subbian
(2017)

Vitamin D3 Induces autophagy of infected cells.
VitD3 supplementation could augment faster
recovery.

Phenylbutyrate Promotes colocalization of LL-37 and LC3-1I
in autophagosomes and restricts M.
tuberculosis growth inside the macrophage

Parasite Plasmodium falciparum Blockers of lipid transport (Bl Ts) Targets scavenger receptor (SR)-81. Inhibits
SR-81-mediated selective uptake of lipids from
high-density lipoproteins

Nutlin-3 Targets MDM2. Prevents degradation of p53,
promotes lipid peroxidation in infected
hepatocytes

S8505124 TGF- receptor 1 is targeted. The drug inhibits
the enzymatic activity of kinases involved in
multiple cellular processes

Auphen Targets aquaporin 3 (AQP3). The drug
selectively and irreversibly inhibits glycerol
transport by AQP3; effective against both liver
and blood stages and against multiple human
malarias.

lmatinib Targets receptor tyrosine kinases. The drug
inhibits erythrocyte band 3 phosphorylation,
preventing parasite egress.

Erastin Targets SLC7A11. The drug blocks host
SLC7a11- GPX4 pathway to induce lipid
peroxidation in Plasmodium infected
hepatocytes.
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of the omics platforms (Kaddurah-Daouk et al., 2008). The host-
immune response and infection-related co-morbidity induced by
the pandemic strain, SARS-Cov-2, have been analyzed using
integrated omics platforms. More research is needed to
determine the root causes of vaccination relapse and antibiotic
resistance in both the pathogen and the host’s immune
system for other pathogens. Future research will need to combine
both genomic and metabolomic data to find reliable biomarkers
linked to a certain disease and its therapy (Kaddurah-Daouk et al.,
2008).

5.2 Economic challenges on
instrumentation

Instruments like NMR and MS are highly expensive. Instrument
operation and data analysis demand for qualified personnel. For tailored
diagnosis, there are numerous in vitro diagnostic kits that use data from
metabolomics, genetics, and even proteomics. Companion diagnostics,
which are in vitro diagnostics kits, are helpful since they can contribute
to the detection of pathogenic organisms for which there is no vaccine
available. Drawbacks include these tests are targeted assays that may
miss other related organisms and that detection equipment may not be

available or affordable in all parts of the world. Several companion
diagnostics tests have been developed in laboratories (LDTs). Because of
this, these are only economical in a specific region. On the other hand,
POCTs, which are also in vitro diagnostics kits, are affordable in
countries and regions with limited resources. However, for these,
accurate biomarkers must be identified; otherwise, the patient will be
at risk of receiving an incorrect diagnosis, which would necessitate
expenditure at the personal level (American Association for Clinical
Chemestry, 2021; Tolstikov et al., 2017; zhong, 2019).

In addition to NMR and MS, biobanks which are believed to be
instruments for personalized medicine, are mostly accessible in
high-income nations. Many nations throughout the world use
context-based and automated biobanks. Human genome
sequencing is being carried out in a number of nations as genetic
information reduces the knowledge gap on a population’s genetic
causes of illness. In an effort to better understand health and disease,
the US has started analyzing the genomes of at least one million
Americans who voluntarily provide their genetic data for research.
Genomic profiling is being carried out in other nations as well. The
100,000 Genome Project in the United Kingdom, the One Million
Genome Project in China, the Personal Genome Project in Canada,
the FinnGen genomic sequencing and biobank project in Finland,
the Qatar Biobank, and the Biobank Japan are a few examples. These

FIGURE 2
Global Financing in health sector: (A) Total spending in health sector for last 2 decades (USD). Global and countries categorized byWorld Bank based
on GDP’s are shown. (B) Funds spent in health sector in high-income, upper-middle income, lower-middle income and low-income countries in 2019.
Images of (A) and (B) were generated using the software provided at https://vizhub.healthdata.org/fgh/.
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initiatives are anticipated to offer the possibility of using huge
amounts of information to comprehend human diversity on a
global scale (MacDonald, 2020; Doxzen et al., 2022). Only a few
underdeveloped nations can afford biobanking because of the high
costs of the equipment, sample storage, and maintenance. For both
rich and developing nations, dried blood spots (DBS) for newborn
screening are a successful example of personalized medicine (Rudan
et al., 2011).

5.3 Economic challenges in the health sector

Prior to decisions regarding new drug formulation and treatment
approaches, patient omics datamust bemade available at the clinical level.
High-throughput technologies, which are quite expensive, are needed to
accomplish this. This demands adequate funding in the healthcare field.
Over the last 2 decades, the amount spent globally on healthcare has
doubled. The health sector’s spending was US $ 8.9 trillion in 2019. There
was also an increase inGDP, from8.5%ofGDP in 2000 to 9.8%ofGDP in
2019. However, expenditure varies widely among nations (Figure 2). The
World Bank has divided the world’s nations into four income segments
based on total GDP: high-income, upper middle-income, lower middle-
income, and low-income (WHO Global Health Expenditure Database,
2021). Government assistance for the health sector is higher in high
incomenations. On the other hand, high levels of personal expenditure are
found in low-income nations. Low-income nations still can access outside
aid, though. These, however, are insufficient because the development of
disease- and patient-specific biomarkers and medications necessitates
years of research, patent applications, regulatory agency approval,
clinical trials, post-marketing evaluations, and investigations into drug

responses that may not work (Alyass et al., 2015; Hartl et al., 2021; World
Health Organisation, 2021).

5.4 Economic challenge at the industry level

The process of discovering new drugs based on the
identification of biomarkers is expensive and time-consuming.
Preclinical research, clinical testing, and post-market approval
are all processes in the introduction of new medications. Drug
efficacy and safety are assessed on volunteer patients during
clinical trials. Moreover, only a small fraction of all medicines
are tested and validated in clinical trials. Diagnostic assays or kits
face the same difficulties as other medicines. It requires time to
complete regulatory approval, clinical trials, and post-market
validation. A product might be on the market for ten to 15 years
of times. Personalized treatments or targeted tests are intended
for small groups, hence it can be difficult for enterprises to
balance cost and affordability (Alyass et al., 2015; Mathur and
Sutton, 2017; American Association for Clinical Chemestry,
2021).

5.5 Challenges in the drug and diagnostics
industry

Drug and diagnostics companies have different development
timelines including phases of product development, returns on
investment, customers, and regulatory requirements. Drugs are
valued as products with high average values and are reimbursed

FIGURE 3
Factors and scope of metabolomics in personalized treatment of infectious diseases. Images on the statistics of death, YLDs and DALYs in different
regions of the world due to infectious diseases was generated using the software provided at https://www.healthdata.org/results/gbd_summaries/2019/
World Health Organization (WHO). Note: YLDs = years lived with disability; DALYs = disability-adjusted life years.
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accordingly. Diagnostics are considered services and
compensated accordingly, usually at a substantially lower
price. There are not many models, if any, available for valuing
drug-diagnostic combinations. Patents provide protection for
drugs, but there is less emphasis on intellectual property in
the companion diagnostics sector because biomarkers are seen
as being present in the cell. Since biomarkers are not inventions
but rather preexisting components of cells, there is even
argument as to whether they should be patentable at all
(OECD Dir Sci Technol Ind, 2011).

5.6 Challenges to implementation of
biomarkers in clinics

Multiple requirements must be fulfilled for a biomarker to be
used in the clinic. The population must accurately represent the
people where the test will be utilized. The study size should be
selected carefully so that there is enough evidence to detect true
biomarkers. However, this is challenging in metabolomics studies
in the discovery phase because it is difficult to estimate the
clinically significant differences required. The participants must
be carefully controlled to avoid confounding variables. Patient-
based outcomes rather than reduction of a disease biomarker must
be chosen, and endpoints must be correctly judged in accordance
with clinical trial guidelines. The biomarker needs to be accurately
identified and measured precisely. For multi-center research in
particular, collection, storage, preparation, and analysis processes
must be completely harmonized to prevent artifactual results. The
assays themselves need to go through rigorous Quality Control
processes, particularly if batch to batch variation is anticipated a
problem. The Metabolomics Quality Assurance and Control
Consortium’s guidelines serve as an example of this. To make
sure that results are reliable and generalizable, any novel
biomarkers discovered in one study should be validated in a
different cohort. When these criteria are met, this has the
further advantage of supporting data for comparison and better
biological interpretation. In addition, the biomarkers also need to
be compared with gold standard methods and routine
biochemistry tests to compare the turn-around time,
availability, robustness, accuracy and precision. The turn-
around time, availability, robustness, accuracy, and sensitivity of
the biomarkers should also be compared to those of conventional
procedures and standard biochemical assays. Finally, a health
economics study is essential to determine whether any cost
increases brought on by new tests are justifiable in terms of
outcomes for patients (OECD Dir Sci Technol Ind, 2011).

6 Conclusion

Personalized medicine is a therapeutic option. Over the last
decade, there has been an increase in reports of drug resistance
and vaccine relapse. As a result, various drug regulatory bodies
have coined the term “Personalized medicine” to describe the
need for drug development based on a person’s genetic profile.
However, this is still in its infancy and requires the involvement
of multidisciplinary researchers to identify appropriate

biomarkers related to disease cause and diagnosis. Profiling a
patient’s genetic and metabolic fingerprints, as well as clinical
interpretation, necessitates the use of omics technologies. Since
metabolomics is one of the omics technology and provides
information on genotype to phenotype changes, technologies
that can ensure measurement and detection of all relevant
molecules using untargeted and targeted approaches will play
a crucial role in the identification of biomarkers associated with
diseases and treatment response. In clinics, single metabolite
measurement is performed using analytical and biochemical
assays. However, use of NMR and MS enables metabolite
detection from large number of samples. MS and NMR are
the two major technological platforms used in clinical
metabolomics.

Due to the complexity of the technology platforms,
metabolomics studies that aims to identify biomarkers of disease
necessitate the design of a workflow for accurate interpretation of
the patient-related data. Selecting a single analytical platform does
not offer information on all the chemicals present in the biosample
as metabolites demonstrate a high degree of chemical diversity.
Another hurdle in biomarker identification is handling and storing
samples. These differ between countries and geographical areas.
Implementation requires standard operating procedures (SOPs) for
sample collection, storage, preparation, and analysis in clinics to
maintain the consistency of the data. In addition to this, the
platforms encounter significant difficulties as a result of ongoing
improvements to the data pre-processing software. Software
development for metabolome study requires the involvement of
personnel from bioinformatics, statistics, and computational
biology. The majority of software programs are used to
preprocess, analyze, visualize, and manage data as well as
databases. Despite these, numerous metabolites in the bio-sample
remain unidentified.

Despite its inherent complexity and challenges, metabolomics is
evolving into a crucial tool for defining patient phenotypes
concurrently with other -omics platforms (Figure 3). In this
review, we have discussed the various metabolite types that have
been reported to serve as biomarkers in infectious diseases, along
with drugs developed for personalized treatment, diagnostic kits
(POCTs) and companion diagnostics that have received FDA
approval. Although metabolomics is still regarded to be in its
infancy in the field of personalized medicine, it will inevitably
take the lead in PM.
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