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Recent extensions of single-cell studies to multiple data modalities raise new

questions regarding experimental design. For example, the challenge of sparsity

in single-omics data might be partly resolved by compensating for missing

information across modalities. In particular, deep learning approaches, such as

deep generativemodels (DGMs), can potentially uncover complex patterns via a

joint embedding. Yet, this also raises the question of sample size requirements

for identifying such patterns from single-cell multi-omics data. Here, we

empirically examine the quality of DGM-based integrations for varying

sample sizes. We first review the existing literature and give a short overview

of deep learning methods for multi-omics integration. Next, we consider eight

popular tools in more detail and examine their robustness to different cell

numbers, covering two of the most common multi-omics types currently

favored. Specifically, we use data featuring simultaneous gene expression

measurements at the RNA level and protein abundance measurements for

cell surface proteins (CITE-seq), as well as data where chromatin accessibility

and RNA expression are measured in thousands of cells (10x Multiome). We

examine the ability of the methods to learn joint embeddings based on

biological and technical metrics. Finally, we provide recommendations for

the design of multi-omics experiments and discuss potential future

developments.
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1 Introduction

Many diseases, such as cancer, affect complex molecular

pathways across different biological layers. Consequently,

there iscurrently an ongoing surge in multi-omics techniques

that study the interaction of biomolecules across various omics

layers (Veenstra, 2021b; Picard et al., 2021). Multi-omics

techniques have been used, e.g., to infer mechanistic insights

about molecular regulation, the discovery of new cell types, and

the delineation of cellular differentiation trajectories (Colomé-

Tatché and Theis, 2018; Adossa et al., 2021; Veenstra, 2021a;

Tarazona et al., 2021). However, because performing multi-

omics experiments in the same cell is still costly and

experimentally complex, many experiments have been carried

out with comparatively small numbers of cells so far.

Additionally, single-cell multi-omics data suffer from the

sparseness and noisiness of the measured modalities,

differences in sequencing depth, and batch effects. Data

analysis is further complicated by differing feature spaces as

well as shared and modality- or batch-specific variation (Lance

et al., 2022).

Deep learning approaches, known for their ability to learn

complex non-linear patterns from data, have become a popular

building block for integrating different data types (Grapov et al.,

2018; Erfanian et al., 2021). For example, in 2021s Conference on

Neural Information Processing Systems (NeurIPS) competition

(https://openproblems.bio/neurips_2021), which addressed the

topic of multimodal single-cell data integration, neural networks

proved to be the most popular model choice, with shallow deep

learning models being among the best-performing methods

(Lance et al., 2022). Specifically, deep generative models

(DGMs), such as variational autoencoders (VAEs), are

FIGURE 1
Neural network architectures. (A) Exemplary network architecture of vanilla VAE, where x represents the input data and x̂ is the reconstructed
data. Random variables z in the bottleneck layer are indicated by dashed circles. μ and σ represent the mean and standard deviation of the
distributions, typically Gaussian distributions with diagonal covariance matrices, learned in the bottleneck layer. (B) Typical workflow: High-
dimensional omics data are mapped to a low-dimensional embedding, which can then be utilized for visualization and downstream analyses
such as clustering or trajectory inference. (C) General architecture of multimodal VAEs. (D) Cross-modality translation: High-dimensional
measurements from one modality are mapped to a low-dimensional embedding with the modality-specific encoder. The latent representation is
then used as input for the decoder of the respective other modality. (E) Adversarial training principles: Adversarial discriminators can be employed (1)
to align low-dimensional embeddings of differentmodalities (squares vs. circles) of the same cell (same color) in the latent space (black arrows), (2) to
align reconstructed profiles with the cross-modal reconstructions (lighter colors) obtained by decoding low-dimensional embeddings of one
modality with the decoder of the other modality (black arrows in the reconstruction space, or (3) to align re-embedded decoder outputs from intra-
modal and/or cross-modal reconstruction (lighter colors) with the original embeddings (red arrows in the latent space).
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increasingly employed to infer joint embeddings, i.e., low-

dimensional representations, from multi-omics datasets. This

allows for performing all further downstream analyses

simultaneously within this joint latent space (Figure 1B).

This review provides a systematic overview of current DGM-

based approaches for learning joint embeddings from multi-

omics data and illustrates how small sample sizes impact the

amount of information that can be recovered from multi-omics

datasets. Specifically, we examine how the performance of

popular DGM-based approaches to infer joint low-

dimensional representations from such data is influenced by

varying numbers of cells. The required number of cells is

particularly relevant at the stage of designing an experiment

(Treppner et al., 2021). To tackle the challenging task of

evaluating the quality of a latent representation with respect

to the conservation of biological signal and batch correction

capabilities, we draw on the guidelines provided by Luecken et al.

(2021a).

The training of DGMs on multi-omics data is challenging

due to the inherent high dimensionality and low sample size of

multi-omics data and the large number of model parameters that

need to be estimated while avoiding overfitting and bias (Kang

et al., 2021). Thus, we investigate the impact of cell numbers on

the performance of selected single-cell multi-omics integration

algorithms. We consider eight popular VAE-based tools that

incorporate different integration paradigms and training

strategies for this illustration. Specifically, we included

product-of-experts- and mixture-of-experts-based approaches

and techniques that employ additional, commonly used

integration techniques, such as cross-modality translation and

adversarial training. Also, we chose models with different degrees

of architectural complexity, including one model (Li et al., 2022)

with (self-) attention modules and additional regularization by

clustering consistency. We thus created an exemplary selection

that represents the range of architectural choices, additional

training and regularization strategies, and levels of complexity

currently used for the task at hand. Thus, viewing the selected

models as representatives of the current landscape of DGMs for

multi-omics integration, our case study enables us to draw

conclusions on the performance of the investigated tools in

small sample size scenarios, and to give recommendations

regarding architectural choices, integration strategies, and

regularization paradigms.

2 Deep learning background

As the number of experimental methods in molecular

biology is exploding, immense amounts of data are produced.

Machine learning techniques can help in extracting information

from such data to make it human-interpretable.

In recent years, deep learning has emerged as a potent tool for

analyzing such high-throughput biological data. At the core of

these approaches are artificial neural networks (ANNs) that

provide powerful yet versatile building blocks to learn

complex non-linear transformations and thus uncover

underlying structures from high-dimensional data.

In particular, a networks’ architecture comprises

interconnected layers of neurons. Each neuron is connected to

all of the neurons in the preceding layer. The depth of the

network is determined by the number of hidden layers,

i.e., the layers between the input and output layers. In

contrast, the number of neurons in one layer determines a

network’s width (Figure 1A). With deep architectures, ANNs

are especially effective at learning increasingly complicated

patterns from large volumes of data based on non-linear

transformations. Specifically, each individual neuron computes

a weighted sum of its inputs, where the weighted total is then

subjected to an activation function, typically producing a

nonlinear transformation of the neuron’s output. The weights

of an ANN, which link the neurons between layers and make up

the model’s parameters, are a crucial part of the model. Training

an ANN amounts to finding model weights that optimize a loss

function, which represents how well the model fits the data.

However, one of the major difficulties in training ANNs is

optimizing the loss function as it is typically complex and

non-convex and the parameter space is high-dimensional

(Angermueller et al., 2016).

While supervised deep learning relies on labeled data to solve,

e.g., classification problems, unsupervised deep learning can be

employed in exploratory analyses to uncover central structure in

data. For example, researchers frequently aim to understand cell-

type compositions, for which they usually rely on unlabelled data.

Hence, unsupervised deep learning methods have become

increasingly popular in omics data analysis. Specifically,

DGMs have been used for imputation (Lopez et al., 2018; Xu

et al., 2020), visualization of the underlying structure of single-

cell RNA-sequencing (scRNA-seq) data (Ding et al., 2018), and

synthetic data generation (Marouf et al., 2020; Treppner et al.,

2021).

Many computational approaches for processing scRNA-seq

data use dimensionality reduction to produce a compressed

representation of the high-dimensional transcription space.

Grouping cells based on some measure of distance is a typical

step in scRNA-seq research since these analyses usually attempt

to understand the cell type composition of tissues or samples.

However, conventional distance metrics, such as Euclidean

distance, are unsuited to accurately represent similarity

relations between cells due to the high dimensionality of the

gene expression space, which is commonly referred to as the

curse of dimensionality. As a result, the solution usually adopted

is to reduce the number of dimensions based on the assumption

that such a low-dimensional space captures the underlying

biological phenomena. As an illustration, a transcription

factor may be responsible for the activation of many genes.

Therefore, one variable characterizing the activation of genes
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through the transcription factor would be adequate to describe

the patterns of gene expression rather than modeling the high-

dimensional space spanned by all genes and their combinations

(Kharchenko, 2021). Principal component analysis (PCA) is one

method for reducing the dimensionality of scRNA-seq data.

However, applying PCA to scRNA-seq data has a number of

drawbacks since it assumes a symmetric distribution, which is

typically not satisfied in scRNA-seq data, and only learns linear

relationships. As a result, researchers have developed DGMs that

accurately represent the distributional assumptions of scRNA-

seq data while accurately portraying the data’s inherent

complexity (Lopez et al., 2018; Grønbech et al., 2020).

An autoencoder is the basis for many DGMs and is

composed of three modules: an encoder, a bottleneck layer,

and a decoder. The encoder reduces the input to a lower

dimension (through the bottleneck layer), and the decoder

reconstructs the original input from the bottleneck. This

design also forms the foundation for the variational

autoencoder and effectively compresses the essential

information needed for data reconstruction (Lopez et al.,

2020), which is mainly used to eliminate noise from data by

compressing and re-compressing and reducing data to lower

dimensions for visualization. In contrast, a variational

autoencoder aims to infer the parameters of the probability

distribution assumed to underly the source data, which can

subsequently be used to generate realistic in silico data.

Specifically, DGMs are trained to capture the joint

probability distribution over all features in the input data,

thus allowing to also generate new synthetic data with the

same patterns as the training data by sampling from the

learned distribution. This is typically done by introducing

latent random variables z in addition to the observed data x.

In single-cell transcriptomics applications, these latent variables

might encode complex gene programs based on non-linear

relationships between genes. Typically, the joint distribution

pθ(x, z) of observed and latent variables is described through a

parametric model, where θ represents the model parameters. The

joint probability can be factorized into a prior probability pθ(z)

and a posterior pθ(x|z) and can thus be written as pθ(x, z) = pθ(z)

pθ(x|z). Inferring the data likelihood pθ(x) = ∫pθ(x, z)dz from the

joint distribution requires marginalizing over all possible values

of z, which is typically computationally intractable (Kingma and

Welling, 2019). Hence, approximate inference techniques are

employed to efficiently optimize themodel parameters (Blei et al.,

2017).

Two methods are frequently used in the machine learning

literature to aggregate distributions, such as data from various

single-cell modalities like gene expression and surface proteins.

One strategy involves multiplying the density functions of the

two modalities to create a product of experts (PoE) approach. On

the other side, a mixture of experts (MoE) approach can blend

the modalities using a weighted sum. In Section 2.2, we go over

these strategies’ benefits and drawbacks.

In single-cell applications, the most frequently used DGMs to

date are Variational autoencoders (VAEs) (Kingma andWelling,

2013) and generative adversarial networks (GANs) (Goodfellow

et al., 2014), which we present in more detail below.

2.1 Variational autoencoders

VAEs employ two independently parameterized but jointly

optimized neural network models to learn an explicit

parametrization of the underlying probability distributions.

This is achieved by non-linearly encoding the data into a

lower-dimensional latent space and reconstructing back to the

data space. Specifically, the encoder (or recognition model) maps

the input data x to a lower-dimensional representation given by a

sample of the latent variable z, while the decoder network

performs a reverse transformation and aims to reconstruct the

input data based on the lower-dimensional latent representation

(Figure 1A).

To approximate the underlying data distribution pθ(x), the

encoder and decoder parameterize the conditional distributions

pθ(z|x) and pθ(x|z), respectively. Since pθ(x) and pθ(z|x) are

intractable, a variational approximation qϕ(z|x) is employed,

typically given by a Gaussian distribution with diagonal

covariance matrix.

Intuitively, the model is trained by reconstructing its inputs

based on the lower-dimensional data representation, such that

the latent space recovers the central factors of variation that allow

for approximating the data distribution as closely as possible.

Formally, a training objective for the model can be derived based

on variational inference (Blei et al., 2017). The parameters ϕ and

θ of the encoder and decoder distributions can be optimized by

maximizing the evidence lower bound (ELBO), a lower bound for

the true data likelihood pθ(x), with respect to ϕ and θ. Denoting

with KL the Kullback-Leibler divergence KL[q‖p] ≔ Eq[log q
p]

for probability distributions q and p, the ELBO is given by

ELBO x; ϕ, θ( ) � Eqϕ z|x( ) log
pθ x, z( )
qϕ z|x( )[ ]

� Eqϕ z|x( ) logpθ x|z( )[ ] − KL qϕ z|x( )‖p x( )[ ] (1)

Here, the likelihood of a single observation (i.e., cell) x

indicates how well it is supported by the model. The first

term on the right side of Eq. 1 describes the reconstruction

error indicating how well the generated samples from the model

resemble the input. The KL-divergence on the right-hand side

quantifies the difference between the approximate posterior to

the true posterior, and, therefore, defines the tightness of the

bound—meaning the difference between the ELBO and the

marginal likelihood.

The decoder network is typically built to learn the parameters

of specific distributions, which best describe the underlying

biological data. For scRNA-seq and surface protein data
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(CITE-seq) a negative binomial distribution is frequently

assumed, while single-cell assay for transposase-accessible

chromatin using sequencing (scATAC-seq) data usually

requires an additional modeling term that accounts for the

increased sparsity of the data, e.g., in the form of a zero-

inflated negative binomial (ZINB) distribution (Minoura et al.,

2021). Other approaches use a binarized version of the scATAC-

seq data (Ashuach et al., 2021; Wu et al., 2021; Zuo et al., 2021;

Zhang R. et al., 2022).

The typical workflow for analyzing high-dimensional (single-

or multi-) omics data with a VAE is illustrated in Figure 1B. The

data is embedded with the encoder to obtain a low-dimension

representation, which can subsequently be used for downstream

analysis, such as clustering or trajectory inference.

2.2 Multimodal variational autoencoders

Several approaches already exist in which multimodal VAEs

(Shi et al., 2019) are used to map different omics measurements

into a common latent representation (Gong et al., 2021; Minoura

et al., 2021; Lotfollahi et al., 2022). Each of these methods uses

different approaches to combine the latent variables of the

respective modalities. We can usually distinguish between

MoE and PoE models (Figure 1C). Hence, we describe a MoE

and a PoE model in more detail below and examine their

performance in our analyses.

We denote a single-cell multimodal dataset as x1:M, where

two modalities (M = 2) is the most common case. The joint

generative model can therefore be written as

pθ(x1: M, z) � p(z)∏M
m�1pθm(xm|z), where pθm(xm|z)

represents the likelihood of the decoder network for modality

m, and θ = {θ1, . . . , θM}.

For the MoE model, the resulting joint variational posterior

can be factorized into qϕ(z|x1: M) � ∑M
m�1αmqϕm(z|xm), with

αm = 1/M and ϕ = {ϕ1, . . . , ϕM}. This results in the following

ELBO:

ELBO � 1
M

∑M
m�1

Ezm~qϕm z|xm( ) log
pθ x1: M, z( )
qϕ z|x1: M( )[ ]

� 1
M

∑M
m�1

Ezm~qϕm z|xm( ) logpθ x1: M|zm( )[ ] −KL qϕm z|xm( )‖p x( )[ ]{ }
(2)

which is similar to Eq. 1, but the ELBOs of the individual

modalities are combined by a weighted average. In contrast, PoE

approaches (Gong et al., 2021; Lotfollahi et al., 2022) combine the

variational posteriors of the individual modalities as products

qϕ(z|x1: M) � ∏M
m�1qϕm(z|xm).

Shi et al. (2019) argue that PoE approaches suffer from

potentially overconfident experts, i.e., experts with lower

standard deviations will tend to have a more considerable

influence on the combined posterior, as experts with lower

precision come with lower marginal posteriors. In contrast, in

the MoE approach we consider here, both modalities receive

equal weighting, reflecting the assumption that both modalities

are of similar importance. Intuitively, employing a PoE approach

corresponds to taking the ‘intersection’ of the individual

posteriors, as a single posterior assigning a near-zero

likelihood to a specific observation is enough to cause the

product to be near-zero. In contrast, an MoE approach

corresponds to taking the ‘union’ of all posteriors.

Additionally, the weights αm assigned to each modality can be

adjusted to reflect prior assumptions on their relative importance

or be learned from the data during training.

2.3 Cross-modality translation

In addition to architectural choices regarding the integration

of the modality-specific sub-networks via a PoE or MoE

approach, many VAE-based methods introduce training

objectives that facilitate specific functionality such as cross-

modality translation or encourage particular properties of the

embedding, such as clustering consistency between the modality-

specific latent representations. On a higher level, these

components can be seen as regularizers that push the

embeddings found by the model towards certain desired

properties.

A prominent example of such an additional feature to direct a

joint embedding is cross-modality translation. Here, a cell’s

measurements of one modality, say, gene expression, are

mapped to the joint latent space with the respective modality-

specific encoder. Then, the decoder of another modality, say,

chromatin accessibility, is employed to map the latent

representation of the gene expression profile to a

corresponding chromatin accessibility profile (Figure 1D).

This is only possible due to the integration of both modalities

into a shared latent space, in which 1 cell’s encoded

representations of different modalities align.

When paired measurements of both modalities in the same

cell are available, the translated reconstructions in the respective

other modality can be compared to the cell’s observed profile

during training. The model learns a latent embedding that

facilitates consistent cross-modality predictions. Thus, the

model is explicitly pushed towards an embedding from which

both modality-specific profiles can be reconstructed equally well,

and that can, therefore, help in better capturing general

underlying biological cell states as defined by the interplay of

both modalities.

After training, cross-modality translation can be used to

impute measurements of cells for which a specific modality is

missing or to answer counterfactual questions such as ‘based on

this specific gene expression profile, what would the

corresponding chromatin accessibility profile have looked

like?’. This could be further combined with in silico
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perturbations, i.e., generating synthetic profiles of one modality

and using the model to infer corresponding profiles in other

modalities. Additionally, this technique can be used to query the

trained model for, e.g., subpopulations of cells where the cross-

modality predictions are particularly well or particularly poorly

aligned with the true measurements and to further characterize

them, thus, also facilitating interpretability.

Examples of approaches that employ this technique are given

by, e.g., Minoura et al. (2021), Wu et al. (2021), and Zhao et al.

(2022), and will be presented in more detail below in Section 3

and in the experimental Section 6.

2.4 Adversarial training strategies

Another commonly used regularization technique is given by

adversarial training, which is closely related to cross-modality

translation and is often employed concurrently. Such adversarial

components are often integrated into a variational or standard

autoencoder framework and are inspired by generative

adversarial networks (GANs) (Goodfellow et al., 2014),

another form of DGMs that differs from VAEs in how the

joint probability distribution over all input features is

specified. While VAEs learn an explicit parameterization of

(an approximation of) this distribution (see 2.1), in GANs,

this distribution is available only implicitly via sampling. A

GAN consists of a generator and a discriminator neural

network that can be thought of as playing a zero-sum

minimax game: The generator simulates synthetic

observations that are presented to the discriminator together

with real data observations. The discriminator then has to decide

whether a given sample is a real observation or a synthetic one

from the generator.

In multi-omics data integration, such adversarial approaches

are typically integrated into (V)AE models as additional

components to regularize the latent representation and/or the

decoder reconstructions (Liu et al., 2021; Xu et al., 2021a; Hu

et al., 2022; Zhao et al., 2022), while, e.g., Amodio and

Krishnaswamy (2018); Amodio et al. (2022) present purely

GAN-based approaches. More specifically, a discriminator is

typically employed to distinguish between two omics

modalities, either based on samples from their latent

representations or based on reconstructed samples from cross-

modal decoders (Figure 1E, black arrows). The objective of the

discriminator then is to maximize the probability of correctly

identifying the original modality a sample comes from, while the

encoder and decoder of the (V)AE model are trained to fool the

discriminator by producing samples that are indistinguishable.

By training all components jointly, the (V)AE model is

encouraged to find a latent embedding in which the different

modalities are better aligned and integrated, and/or learn

decoders that allow for accurate cross-modal predictions well

aligned with the intra-modal predictions. In practice, this is

achieved by incorporating adversarial penalty terms into the

loss function.

Such adversarial components can also be used to train the

model in a cyclical fashion for additional intra-modal and cross-

modal consistency. For intra-modal consistency, the low-

dimensional embeddings of samples of one modality are

decoded with the modality-specific decoder. Subsequently, the

reconstructions are re-encoded with the modality-specific

encoder and compared to the original embedding of the

sample. An adversarial discriminator can be employed to align

the embedding of the original sample with the embedding of the

re-encoded reconstruction of that sample (Figure 1E, red

arrows). For cross-modal consistency, the low-dimensional

embeddings from samples of one modality are decoded and

subsequently re-encoded with the decoder and encoder of the

other modality. By aligning these cross-modal embeddings with

the original embeddings using an adversarial discriminator, the

model can learn to produce cross-modal translations that are

consistent with the original sample when re-embedded in the

latent space.

3 Literature review

Although recently, several available deep learning-based

applications for the integration of single-cell multi-omics data

have been reviewed in (Erfanian et al., 2021) and (Stanojevic

et al., 2022), there is still a lack of a more comprehensive review

focusing specifically on DGMs. In the following, we are going to

survey approaches for paired (both modalities measured in the

same cell in one experiments) and unpaired (modalities

measured in different cells in separate experiments) single-cell

data. An overview is given in Table 1, where we list recent deep

learning-based approaches for multi-omics data integration. We

remark whether the methods are designed for paired or unpaired

datasets and compare the basic network architectures and

demonstrated modalities on which the respective methods

have been demonstrated. Additionally, we comment on the

integration tasks tackled by each model and provide a

reference to the implementation.

We exclusively included methods that learn a joint

embedding based on DGMs and have been demonstrated on

multi-omics data of different modalities (not just, e.g., single-cell

RNA-seq from different protocols).

3.1 Approaches for paired data

The Cobolt model (Gong et al., 2021) learns shared

representations between modalities and is based on a

multimodal VAE, where an independent encoder network is

used for each modality and the learned parameters of the

posterior distributions are combined using a PoE approach.
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TABLE 1 Overview of recently published deep learning-based methods to integrate single-cell multi-omics data. 1Only for mapping single-omics to
multi-omics; 2Only when converting peaks to activity scores.

Name References Un-
paired

Network
architecture

Demonstrated modalities Integration type Code

MAGAN Amodio and
Krishnaswamy
(2018)

yes Two GANs, both
unsupervised and semi-
supervised training

Flow cytometry + scRNA-seq;
Multiple CyTOF Panels; Multiple
CyTOF Replicates

Integration of single-omics
data

https://github.com/
KrishnaswamyLab/
MAGAN

SCIM Stark et al. (2020) yes multimodal
autoencoders with an
adversarial objective

scRNA + CyTOF, more
modalities possible

Integration of multi-omics
data

https://github.com/
ratschlab/scim

BABEL Wu et al. (2021) no VAE with separate
encoders and decoders,
trained by cross-
prediction

SNARE-seq, SHAREseq, CITE-
seq, scRNA-seq, scATAC-seq

Cross-modality translation https://github.com/
wukevin/babel

Cobolt Gong et al. (2021) yes MVAE (direct fusion/
concatenation)

SNARE-seq, 10x multiome
(treated as different modalities)

Integration of multi-omics
data and multi- with single-
omics data

https://github.com/
epurdom/cobolt

DAVAE Hu et al. (2022) yes VAE, shared encoder +
adversarial classifier

scRNA-seq from different
samples/protocols (SmartSeq2,
10X), scRNA + scATAC-seq, 10X/
Visium. Requires common input
features

Integration of multiple scRNA-
seq into an atlas References,
transfer learning

https://github.com/
jhu99/scbean

DCCA Zuo et al. (2021) no VAE with separate
mutually supervised
encoders and decoder

scRNA-seq + scATAC-seq (10x,
SNARE-seq, SHARE-seq,
scNMT-seq)

Transfer learning, impute
missing modalities

https://github.com/
cmzuo11/DCCA

MultiVI Ashuach et al.
(2021)

no1 VAE (distributional
average and penalization
to mix the latent
representations)

scRNA-seq + scATAC-seq
(PBMC 10x)

Integration of multi-omics
data and multi-omics with
single-omics data, imputation
of missing modalities

https://github.com/
YosefLab/scvi-tools

p/mp
SMILE

Xu et al. (2021b) no Modality-specific
encoders trained by
noise-contrastive
estimation

scRNA-seq + scATAC-seq,
scMethyl + scHi-C, SNARE-seq,
sci-CAR, SHARE-seq, (integration
of > 2 modalities possible)

Integration of single-omics and
multi-omics data

https://github.com/
rpmccordlab/SMILE

SCALEX Xiong et al. (2021) (yes)2 VAE with batch-free
encoder and a batch-
specific decoder

CITE-seq, spatial transcriptome
MERFISH data, scRNA-seq +
scATAC-seq

Integration of single-omics
data, integration of multi-
omics data

https://github.com/jsxlei/
SCALEX

scMM Minoura et al.
(2021)

no VAE (mixture of
experts)

CITE-seq + SHARE-seq Integration of multi-omics
data, cross-modal prediction

https://github.com/
kodaim1115/scMM

scMVAE Zuo and Chen
(2021)

no MVAE (3 strategies:
product of experts,
neural network, direct
concatenation)

SNARE-seq Integration of multi-omics
data

https://github.com/
cmzuo11/scMVAE

TotalVI Gayoso et al.
(2021b)

no VAE CITE-seq Integration of multi-omics
data, missing protein
imputation

https://github.com/
YosefLab/scvi-tools

Con-AAE Wang et al. (2022) no Two autoencoders,
using adversarial loss
and latent cycle-
consistency loss

sci-CAR, SNAREseq Integration of single-omics
data, integration of multi-
omics data

https://github.com/
kakarotcq/RNA-Seq-
and-ATAC-Seq-
mapping

MIRA Lynch et al. (2022) no VAE SHARE-seq and 10X Integration of multi-omics
data

https://github.com/
cistrome/MIRA

Polarbear Zhang et al.
(2022a)

yes VAE with semi-
supervised cross-
domain translation

SNARE-seq (+snATAC-seq,
scATAC-seq, scRNA-seq)

Cross-modality translation,
align single-modality data,
predict missing modalities

https://github.com/
Noble-Lab/Polarbear

Multigrate Lotfollahi et al.
(2022)

yes VAE (product of
experts)

CITE-seq and scRNA-seq +
scATAC-seq (adaptable to other
modalities)

Mapping of novel multi-omic
query datasets to a References
atlas, imputation of missing
modalities, integration of
multi-omics

https://github.com/
theislab/multigrate

Portal Zhao et al. (2022) yes AE + GAN: adversarial
discriminators on latent
spaces

Various single-cell RNA-seq
(Drop-seq, 10X, SmartSeq2),
scRNA (10X, DropSeq) + snRNA-
seq (Split-Seq), scRNA +
scATAC-seq

Integration of multi-omics and
single-omics data, cross-
modality translation

https://github.com/
YangLabHKUST/Portal

(Continued on following page)
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Additionally, Cobolt can jointly integrate single-modality

datasets with multi-omics datasets, allowing one to draw on

the many publicly available scRNA-seq or scATAC-seq datasets.

Multigrate (Lotfollahi et al., 2022) is another model that

employs a PoE to combine the posteriors of different modalities.

Additional datasets can be integrated into the model by

minimizing the maximum mean discrepancy (MMD) loss

between joint representations of different datasets.

Similar to Cobolt and Multigrate, scMM (Minoura et al.,

2021) is a VAE-based method that trains an encoder network for

each modality independently. However, instead of combining the

parameters of the posterior distributions using a PoE, a MoE is

used. By equally mixing information from both modalities

through the MoE, the model avoids putting too much

emphasis on one individual modality only (Minoura et al.,

2021). In addition, scMM provides a method for model

interpretability that uses latent traversals, where synthetic cells

are generated by the learned decoder and one latent variable is

modified continually, while the others remain fixed. The

Spearman correlations calculated between each latent variable

and the features of each modality then allow relevant features to

be identified. Additionally, by using a Laplace prior, scMM learns

disentangled representations, with correlations between latent

variables being penalized, which allows for better interpretation

of individual features (Treppner et al., 2022).

Similarly, the MultiVI model presented by Ashuach et al.

(2021) is also based on a MoE with αm = 1/M where M denotes

the number of modalities, as the authors use individual encoders

for each data modality and then average the resulting variational

posteriors. However, a regularization term is added to the ELBO,

which penalizes the distance between the learned latent

representations such that a joint representation can be

inferred (Ashuach et al., 2021).

While the single-cell multi-view profiler (scMVP) (Li et al.,

2022) is also based on a multimodal VAE architecture with

modality-specific encoders and decoders and a joint latent space,

it more explicitly accounts for the much higher sparsity of single-

cell measurements from joint profiling protocols, with a

throughput of only one-tenth to one-fifth of that of single-

modality assays (Li et al., 2022). Specifically, the authors

employ attention-based building blocks for both the encoder

and decoder. Attention mechanisms have first been proposed in

computer science in the context of machine translation

(Bahdanau et al., 2014; Kim et al., 2017) and are based on the

idea of using flexible weighting of an input observation, to have

the model specifically ‘attend to’ the most important parts of the

observation. In the context of omics data, attention scores are

assigned to the observed features (e.g., genes, chromatin loci) of

each cell, to enhance the effect and interplay of specific features.

In contrast to fixed weights, the attention scores are learned

during model training and can thus adapt to highlight the most

informative features for learning, e.g., latent representations.

Attention-based mechanisms have specifically been

popularized by transformer models (Vaswani et al., 2017) due

to their high performance on sparse datasets in the area of natural

language processing or protein structure prediction. In scMVP,

the authors build on that by using multi-head self-attention

transformer modules to capture local, long-distance

correlation in the encoder and decoder of the term frequency-

inverse document frequency-transformed (Stuart et al., 2021)

scATAC-seq data while using simple attention blocks in the RNA

encoder and decoder. Given the latent embedding, the modality-

specific decoders are weighted according to the posterior

probabilities of cell-type or cluster identity. To encourage

consistency of the shared latent space, the decoder-

reconstructed values of each modality are again embedded

into the latent space, and the KL-divergence between the joint

latent embedding and the modality-specific re-embedding from

the reconstructed data is minimized as an additional loss term.

This corresponds to the idea of cyclical adversarial training as

described in Section 2.4 and Figure 1E. More generally, this

concept is based on a cycle GAN (Zhu et al., 2017) and is also

present in, e.g., Xu et al. (2021a); Zhao et al. (2022); Khan et al.

(2022); Wang et al. (2022) and Zuo et al. (2021).

SCALEX (Xiong et al., 2021) builds on SCALE (Single-Cell

ATAC-seq Analysis via Latent feature Extraction) (Xiong et al.,

2019), a tool for analyzing scATAC-seq data. The developers of

SCALE found that its encoder could be beneficial in

disentangling cell-type- and batch-related features, which

would allow for online integration of different batches.

Specifically, using a VAE, SCALEX integrates different batches

into a batch-invariant embedding through simultaneous learning

of a batch-free encoder and a batch-specific decoder. The latter

contains a domain-specific batch normalization layer. This

TABLE 1 (Continued) Overview of recently published deep learning-basedmethods to integrate single-cell multi-omics data. 1Only formapping single-
omics to multi-omics; 2Only when converting peaks to activity scores.

Name References Un-
paired

Network
architecture

Demonstrated modalities Integration type Code

scMVP Li et al. (2022) no Multimodal VAE with
Gausian mixture prior
and attention modules

SNARE-seq, sci-CAR, Paired-seq,
SHARE-seq, 10X (could be
extended to parallel profiling of
other epigenomic data)

Integration of multi-omics
data

https://github.com/bm2-
lab/scMVP
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allows the encoder to concentrate only on batch-invariant

biological data components while being oblivious to batch-

specific variations. The resulting generalizability of the

encoder further allows for the integration of new single-cell

data in an online manner, i.e., without the need to retrain the

model. The authors demonstrate this property of SCALEX by

generating multiple expandable single-cell atlases.

Another subgroup of models addresses the task of translating

between different modalities. These cross-modality translation

approaches, however, often do not learn a common latent

representation of the data. For example, Polarbear (Zhang R.

et al., 2022) trains VAEs on each of two modalities (here: scRNA-

seq and scATAC-seq data) and then links the respective encoders

to the decoders of the other modality. The authors intend that the

training in the first stage, i.e., the training of the individual VAEs,

takes place on publicly available single-assay data, whereby the

translation task is carried out on SNARE-seq data in a supervised

manner.

Another such model called BABEL (Wu et al., 2021) similarly

employs distinct modality-specific encoders and decoders for

scRNA- and scATAC-seq data but utilizes a shared latent space.

In contrast to PoE/MoE approaches, this joint representation is

not constructed from separate spaces from each modality, but the

encoders directly project onto the common latent space. Mutual

cross-modal translation together with single-modality

reconstruction are then used to train the model, i.e., from

each modality-specific encoder, a sample of the joint latent

representation is obtained and subsequently passed through

both decoders to reconstruct both the scRNA and the

scATAC profiles of the respective cell. Thus, both the

reconstruction of the modality itself and the respective other

modality based on the joint latent embedding are evaluated for

each modality.

A similar approach is taken by Portal (Zhao et al., 2022),

where a domain translation framework is combined with an

adversarial training mechanism to integrate scRNA- and

scATAC-seq data. Specifically, as in (Wu et al., 2021),

modality-specific encoders directly embed the data in a shared

latent space and cross-modal generators are introduced to decode

the latent representation to the respective other modality. The

resulting domain translation networks for each modality are then

trained to compete against adversarial discriminators on the

domain of each modality that aims to distinguish between

original cells from the respective modality and cells translated

from the other modality. The discriminators are specifically

designed to adaptively distinguish between domain-shared and

domain-unique cells by thresholding the discriminator scores.

Since, according to the authors, domain-unique cell populations

are prone to be assigned with extreme discriminator scores,

discriminators are, thus, made effectively inactive on cells with

a high probability of being modality-specific, which avoids the

risk of over-correction by enforced alignment of domain-unique

cells. Further, additional regularizers are employed: an

autoencoder loss based on the within-modality

reconstructions, a latent alignment loss to encourage the

consistency of a specific cell’s embedding and the embedding

of its cross-modal reconstruction, and a cosine similarity loss

between cells and their cross-modal reconstructions. Notably,

Portal uses the first 30 principal components of a joint PCA as

inputs for the model and employs a 20-dimensional latent space,

such that the dimension reduction component is less pronounced

than for the other models, and the data are not modeled as

counts.

The authors of Zuo and Chen (2021) have extended scMVAE

and proposed Deep Cross-Omics Cycle Attention (DCCA) (Zuo

et al., 2021), which improves some of the weaknesses of scMVAE.

DCCA combines VAEs with attention transfer. While scMVAE

combines two modalities into a shared embedding, which

potentially attenuates modality-specific patterns, in the case of

DCCA, each data modality is processed by a separate VAE. These

VAEs can then learn from each other through mutual

supervision based on semantic similarity between the

embeddings of each omics modality.

In the sciCAN model presented by Xu et al. (2021a),

modality-specific autoencoders map the input data to a latent

space for each modality, and a discriminator is employed to

distinguish between the two modalities based on their latent

representations. Additionally, a cross-modal generator is

employed that generates synthetic scATAC-seq data based on

the scRNA-seq latent representation, and a second discriminator

is employed to distinguish between generated and real scATAC-

seq samples. Additionally, the generated scATAC-seq data can be

fed to the encoder again, and the latent representation is

compared with the original latent representation from the

scRNA-seq data used for generating the scATAC-seq data,

thus introducing a cycle consistency loss (see Figure 1E,

Section 2.4). Notably, the model does not necessarily expect

paired measurements from the same cell but employs a shared

encoder for both modalities, and, thus, requires a common

feature set.

The authors of Hu et al. (2022) propose the DAVAE model

based on domain-adversarial and variational approximation to

integrate multiple single-cell datasets and paired scRNA-seq and

scATAC-seq data. The model employs an adversarial training

strategy to remove batch effects and enable transfer learning

between modalities, by incorporating a domain classifier that

tries to determine the batch or modality label based on the latent

representation of VAE and training the VAE encoder to ‘fool’ the

classifier via an adversarial loss component. Similarly to Portal

and sciCAN, the DAVAE model also employs a shared encoder

and thus requires a common set of input features.

Similarly, the scDEC model proposed by Liu et al. (2021) is

based a pair of generative adversarial models to learn a latent

representation. While focusing on scATAC-seq data analysis,

this approach also allows for integrative analysis of multi-modal

scATAC and scRNA-seq datasets for trajectory inference during
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differentiation processes and cell type identification based on the

joint latent representation.

Finally, MIRA (Lynch et al., 2022) combines probabilistic

cell-level topic modeling (Blei, 2012) with gene-level regulatory

potential (RP) modeling (Wang et al., 2013; Qin et al., 2020) to

determine key regulators responsible for fate decisions at lineage

branch points. The topic model uses a VAE with a Dirichlet prior

to learn both the topic of the gene transcription and the topic of

gene accessibility for each cell to derive the cell’s identity.

Complementing MIRA’s topic model, its RP model integrates

the transcription and accessibility information for each gene

locus to infer how the expression of the respective gene is

influenced by surrounding regulators. To this end, the topic

model learns the rate with which the regulatory influence of

enhancers decays with increasing genomic distance. In addition,

the identity of key regulators is identified by analyzing

transcription factor motif enrichment or occupancy.

3.2 Approaches for unpaired data

Since the generation of multi-omics measurements in the

same cell is still costly and experimentally complex, many

methods for integrating datasets measured in different cells

are being developed.

Because of the difficulty of linking latent representations

learned from variational autoencoders in the absence of

measurement pairing information, Lin et al. (2022) proposed

a transfer learning approach. Although not a DGM, it is worth

mentioning in this article because of its usefulness and the

possibility of adapting it to unsupervised settings. Notably, it

represents a method for a horizontal alignment task, i.e., it relies

on a common set of features as anchors and thus requires the

translation of scATAC peaks to gene activity scores.

In a similar spirit, the scDART model proposed by Zhang Z.

et al. (2022) learns a neural network-based joint embedding or

unpaired scRNA-seq and scATAC-seq data by composing the

embedding network with a gene-activity module network that

maps scATAC peaks to genes. In addition, scDART can leverage

partial cell matching information by using it as a prior to inform

the training of the gene activity function.

Similar to the sciCAN model presented by Xu et al. (2021a),

scAEGAN (Khan et al., 2022) also embraces the concept of cycle

consistency, integrating the adversarial training mechanism of a

cycle GAN (Zhu et al., 2017) into an autoencoder framework.

Specifically, for each modality, a discriminator and a generator

are defined. In addition to the standard GAN loss for each

modality, a cycle loss is calculated by mapping a cell from one

modality to the second modality with the second modality’s

generator and mapping it back to the first modality with the first

modality’s generator and comparing that to the original

observation. Unlike for Xu et al. (2021a), the model does not

rely on a common feature set but first trains an autoencoder

model independently for each modality before training a cycle

GAN on the two latent spaces to enforce their consistency.

A similar approach is employed in the Contrastive Cycle

Autoencoder (Con-AAE) proposed byWang et al. (2022). Again,

the consistency between latent spaces of modality-specific

autoencoders is enforced by a cycle consistency loss. However,

here, it is more tightly integrated within the AE architecture, as

the modality-specific encoder and decoders are used as

generators, i.e., samples from one modality are embedded

with the modality-specific encoder but decoded with the

decoder of the other modality, and subsequently encoded with

the other modality encoder back to the latent space, where they

are compared with the original latent representation from the

original encoder of the modality.

A purely GAN-based approach to integrating unpaired data

by aligning the respective manifolds is presented in Amodio and

Krishnaswamy (2018).

Another line of research for the integration of unpaired

multi-omics data focuses on the concept of optimal transport

(Peyré and Cuturi, 2019). A separate embedding or distance

matrix is constructed from each modality, and the alignment

task is formulated to find an optimal coupling between the two

embeddings or distance matrices. An optimal coupling

corresponds to finding a map along which one modality can

be “transported” with minimal cost to the other, which can be

formalized as an optimal transport problem (Peyré and Cuturi,

2019). Examples for such optimal transport-based methods are

UnionCom (Cao et al., 2020), SCOT (Demetci et al., 2022) and

Pamona (Cao et al., 2021). While these approaches typically

rely on computing a coupling between modality-specific

distance matrices and are not deep learning-based, a recent

approach called uniPort employs a VAE architecture and solves

an optimal transport problem in the latent space. More

specifically, a shared encoder that requires a common input

feature set across modalities is used to project the data into a

common latent space, is combined with modality-specific

decoders for reconstruction, and an optimal transport loss is

minimized between the latent cell embeddings from different

modalities.

Finally, the recently published Graph-Linked Unified

Embedding (GLUE) framework (Cao and Gao, 2022) is based

on the construction of a guidance graph based on prior

knowledge of the relations between features of the different

modalities to explicitly model regulatory interactions across

different modalities with distinct feature spaces. This is

achieved by learning joint feature embeddings from the

knowledge graph with a graph VAE and linking them to

modality-specific autoencoders. Specifically, the decoder of

these modality-specific AEs is given by the inner product of

the feature embeddings and the cell embeddings from the latent

space of the respective modality. Additionally, the cell

embeddings of different modalities are aligned using an

adversarial discriminator.
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4 Benchmark dataset

To acquire an objective performance estimate of the ability of

different multi-omics integration approaches to describe the

biological state of a cell through learning a joint embedding

from multiple modalities, we used the benchmark dataset which

was provided in the course of the NeurIPS 2021 competition and

for which the ground-truth cell identity labels are known

(Luecken et al., 2021a). This dataset was the first available

multi-omics benchmarking dataset for single-cell biology. It

mimics realistic challenges researchers are faced with when

integrating single-cell multi-omics data, e.g., by incorporating

nested donor and site batch effects (Lance et al., 2022).

Specifically, the NeurIPS benchmark dataset is a multi-donor

(10 donors), multi-site (4 sites), multi-omics bone marrow

dataset comprising two data types (Lance et al., 2022):

• CITE-seq data with 81,241 cells, where for each cell RNA

gene expression (GEX) and cell surface protein markers

using antibody-derived tags (ADT) are jointly captured.

• 10X Multiome assay data with 62,501 cells, where nucleus

GEX and chromatin accessibility measured by assay for

transposase-accessible chromatin (ATAC) are jointly

captured.

In total, this dataset contained information on the

accessibility of 119,254 genomic regions, the expression of

15,189 genes, and the abundance of 134 surface proteins, and

has been preprocessed as described in Luecken et al. (2021a). We

acquired the benchmark dataset from the NeurIPS 2021 website

(https://openproblems.bio/neurips_2021), it can, however, also

be accessed via https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE194122.

As recommended in Luecken and Theis (2019), we filtered

this dataset for highly variable genes, as they are considered to be

most informative of the variability in the data. In addition,

analogous to the FindTopFeatures function of Signac (Stuart

et al., 2021), we filtered the ATAC data such that we retained only

peaks with the 25% highest overall counts. Finally, to determine

the effect of the number of cells, we randomly subsampled the

original NeurIPS dataset to subsamples containing information

on 500, 1,000, 2,500, 5,000, and 10,000 cells, where for each

number of cells we sampled 10 subsamples of that size.

5 Performance metrics

Generating a highly resolved, interpretable, low-dimensional

embedding capturing the underlying biological cell states is

pivotal for the analysis of multi-omics data (Lähnemann et al.,

2020; Lance et al., 2022). We assess the performance of the

compared integration approaches based on six metrics capturing

the conservation of biological variation (normalized mutual

information (NMI), cell type average silhouette width (ASW),

trajectory conservation) and the degree of batch removal (batch

ASW, site ASW, graph connectivity) (Lance et al., 2022). These

metrics are described in detail in Luecken et al. (2021b) and are

briefly introduced below:

• NMI compares the overlap of two clusterings. It is used to

compare the Louvain clustering of the joint embedding to

the cell type labels. It ranges from 0 (uncorrelated

clustering) to 1 (perfect match).

• Cell type ASW is used to evaluate the compactness of cell

types in the joint embedding. It is based on the silhouette

width, which measures the compactness of observations

with the same labels. Here, the ASW was computed on cell

identity labels and scaled to a value between 0 (strong

misclassification) and 1 (dense and well-separated

clusters).

• The trajectory conservation assesses the conservation of a

continuous biological signal in the joint embedding.

Trajectories computed using diffusion pseudotime after

integration for relevant cell types are compared. Based on a

diffusion map space embedding of the data, an ordering of

cells in this space can be derived. Using Spearman’s rank

correlation coefficient between the pseudotime values

before and after integration, the conservation of the

trajectory can be quantified, with the scaled score

ranging from 0 (reverse order of cells on the trajectory

before and after integration) to 1 (same order).

• Batch ASW describes the ASW of batch labels per cell. The

scaled score ranges from 0 to 1, where 1 indicates well-

mixed batches and any deviation from 1 indicates a batch

effect.

• Site ASW describes the ASW of site labels per cell and can

be interpreted analogously to batch ASW.

• The graph connectivity score evaluates whether cells of the

same type from different batches are close to each other in

the embedding by assessing if they are all connected in this

embedding’s k-nearest neighbor (kNN) graph. It ranges

from 0 (no cell is connected) and 1 (all cells with the same

cell identity are connected).

6 Results

We use various metrics to quantify the preservation of

biological variation and metrics for the removal of technical

effects based on the 10-dimensional embeddings obtained when

applying Cobolt, scMM, TotalVI, and SCALEX to subsamples of

the NeurIPS CITE-seq dataset, and Cobolt, scMM, MultiVI,

scMVP, DAVAE, and Portal to subsamples of the NeurIPS

Multiome dataset. We randomly sampled 500, 1,000, 2,500,

5,000, and 10,000 cells ten times each and applied the models

to the respective datasets. We refrain from extensive parameter
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optimisation as we put ourselves in the position of a user new to

the field of deep learning, who will, most likely, leave the default

parameters unchanged and use the same parameters as the

original authors in their application of their proposed method.

Thus, we used the default hyperparameters of the respective

models as reported by the authors who originally proposed them

where possible (Supplementary Material: Hyperparameters).

When applying scMM to the CITE-seq data, we frequently

observed non-converging training runs, in particular for larger

sample sizes. Here, we refer to the convergence of the iterative

optimization procedure by stochastic gradient descent on the loss

function of the respective model (see also Section 2).

Convergence is achieved if towards the end of the training,

the changes in the loss function in each iteration become

smaller and eventually level out, whereas in non-converging

runs we observe exploding gradients of the loss function. This

is often due to suboptimal hyperparameter choices. For scMM,

lowering the learning rate for sample sizes above 2,500 by one

order of magnitude and increasing the batch size from 128

(default used by scMM) to 200 achieved convergence of the

model training on all subsamples.

In general, similar performances were achieved irrespective

of which of the two data types we used for deriving a joint

embedding (Figures 2, 3). For the Multiome dataset, two of the

considered tools, DAVAE and Portal, employ a shared encoder

based on a common set of features across both modalities (top

30 principal components of a joint PCA on both datasets for

Portal and common highly variable genes when converting

scATAC peaks to gene activity scores for DAVAE) and thus

embed each cell’s profiles in the two modalities separately. To

keep the evaluation as comparable as possible to the other tools,

we thus created a joint embedding by calculating the mean of

each cell’s embedded profiles in the two modalities in a mixture-

of-experts approach.

We compare our results with the metric values achieved by

the models of the NeurIPS 2021 competition for the integration

of the Multiome dataset (data points were extracted via

WebPlotDigitizer-4.5 (Rohatgi, 2021) from Supplementary

Figure S6 of (Lance et al., 2022)). However, as we merely used

a subset of at most 10,000 cells of the original benchmark dataset,

we expect our investigated algorithms to score higher for most

metrics if they were to be subjected to the complete benchmark

dataset.

By visual inspection of the Uniform Manifold

Approximation and Projection (UMAP) (Becht et al. (2019);

Konopka and Konopka (2018) version 0.2.9.0 with default

parameters) plots of one exemplary subsample (Figure 4 and

Figure 5), we see that MultiVI shows no obvious clustering for

500 cells (2, top panel). In contrast, defined cluster structures are

beginning to build at this low cell number, and become more

refined for 10,000 cells, for all other investigated tools. This

behavior of MultiVI for smaller numbers of cells is also reflected

in lower values for most of the investigated performance metrics

(Figures 4, 5). Interestingly, the TotalVI tool, which is built on a

similar architecture and was used for the CITE-seq dataset does

not show such behavior (4, top panel).

UMAP plots including further meta information on the

embedded cells are given in Supplementary Figures S3–22 for

the exemplary subsample.

To ensure that the number of parameters in the respective

models is not the determining factor for decreasing performance

on small sample sizes, we calculated the Spearman correlation

coefficient between the ranks of the models from Figures 2, 3 and

the evaluation metrics. The predominantly negative correlations,

i.e., lower rank (better performance) with an increasing number

of trainable parameters, indicate that more complex models also

deliver better performance regardless of the number of

observations.

6.1 Preserving biological information

We assess the preservation of biological variation based on

the NMI, cell type ASW, and the trajectory conservation scores

(Figure 2). In addition, we show boxplots of the metrics for all

models and sample sizes for bothMultiome and CITE-seq data in

the Supplementary Figures S1, 2, to show the variability of each

metric across the 10 replicates of each dataset size.

NMI, as a measure of cluster overlap, reaches values of approx.

0.7 for all Multiome and CITE-seq integrating models. The NMI is

slightly lower than what was achieved during the NeurIPS

2021 competition, where the best competition entries reached an

NMI of close to 0.8 for the complete Multiome dataset (Lance et al.,

2022) (see Supplementary Figure S1). This is to be expected as we

evaluate the models in a low sample size scenario. MultiVI profits

greatly from a larger cell number, while an increasing cell number

only slightly increases the performance of the other models. Across

most sample sizes, Cobolt performed best for the CITE-seq datasets,

while Portal performs best on the Multiome datasets for all sample

sizes but does not profit much from increasing sample size. For

larger sample sizes, scMVP shows only slightly worse performance

than Portal on the Multiome dataset.

Cell type ASW is a measure of cluster compactness and

overlap. We see values of around 0.5 for the Multiome and CITE-

seq datasets, which implies overlapping of clusters and only a

moderate separation. This is slightly lower than the 0.6 that

models have achieved in the NeurIPS 2021 competition (Lance

et al., 2022). For Multiome data, the impact of cell numbers was

minor in Cobolt, scMM, Portal, DAVAE and scMVP

representations and higher for MultiVI. For CITE-seq data,

only scMM and TotalVI show a dependence between cell type

ASW and cell number. As expected, increasing the number of

cells leads to a decrease in variance.

The trajectory conversation scoremeasures the preservation of

a biological signal, e.g. in the form of developmental processes. For

the CITE-seq dataset, all models reach comparable scores of
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around 0.9 irrespective of the cell numbers, with a substantial

decrease in variance for larger cell numbers. In contrast, for the

Multiome dataset, an increase in cell numbers affects the trajectory

conservation score for all models except DAVAE. In particular

MultiVI shows a large improvement in performance with

increasing cell numbers, while for Portal, scMVP, Cobolt and

scMM, the scores increase from around 0.87 to around 0.96.

Cobolt performs best for higher cell numbers, while the

performance of Portal and scMVP is on par and slightly better

than Cobolt for lower cell numbers. The maximum score that

models reach in our analysis slightly exceeds the median of the

trajectory conservation scores of around 0.9 achieved by models of

the NeurIPS 2021 competition (Lance et al., 2022).

Taken together, Cobolt is the strongest performing model

based on almost all biology preservation metrics on the CITE-seq

data and regarding cell type ASW on the Multiome data,

performing well even in scenarios with small sample sizes.

Portal is the strongest performing model on the Multiome

data based on NMI and trajectory conservation and performs

well on cell type ASW, also showing consistently high

performance across sample sizes.

6.2 Removing technical effects

We assess the removal of technical artifacts based on the

batch ASW and graph connectivity score (Figure 3). As a

measure of between-site technical variation and to account for

the shortcomings of batch ASW (which does not sufficiently

account for the nested batch effects of donors and sites) and

graph connectivity (which is not sufficiently challenging) (Lance

et al., 2022), we also assess batch ASW with the site as a covariate

(‘Site ASW‘), as has been suggested by Lance et al. (2022).

The Batch ASW score of around 0.8 that we observe in our

results indicates only a minor batch effect, although the score is

slightly lower than the 0.9 that models achieved in the course of the

NeurIPS 2021 competition (Lance et al., 2022) (see Supplementary

Figure S2). There is a slight increase in performance for increasing

cell numbers across both datasets. For the Multiome dataset, Portal

consistently performed best, closely followed by scMVP in particular

for larger cell numbers, while MultiVI scored lowest for most cell

number settings. For the CITE-seq dataset, SCALEX shows the

highest Batch ASW score across all cell number settings, implying

superior handling of batch effects even with small sample sizes. This

is in line with SCALEX being specifically designed to separate batch-

related from batch-invariant components (Xiong et al., 2021).

The graph connectivity score indicates how well cells of the

same cell type and cells coming from different batches are

connected in the joint embedding. For the Multiome dataset,

MultiVI’s graph connectivity score is considerably lower for

small sample sizes, while all models improve performance

with an increasing number of cells. Portal and scMVP are the

best performing models, reaching a score of almost 1 for higher

cell numbers in the case of the Multiome dataset in line with the

scores achieved by themodels of the NeurIPS competition (Lance

et al., 2022). For the CITE-seq dataset, the performance of

FIGURE 2
Biological preservation metrics. NMI, cell type ASW, and trajectory conservation score indicate the biological preservation quality achieved by
joint embeddings from various models. On the 10x Multiome data, the performance of Portal, scMVP, Cobolt, scMM, DAVAE, MultiVI is shown (top),
whereas the performance on CITE-seq data is shown for Cobolt, TotalVI, SCALEX, and scMM (bottom). Median scores across all iterations are shown
inside the tiles.
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TotalVI increased with increasing cell numbers, achieving the

highest graph connectivity score for 5,000 and 10,000 cells. In

contrast, the number of cells had only a minor effect on the other

models. scMM consistently had the lowest graph connectivity

score for the CITE-seq dataset.

Site ASW captures site-specific batch effects. Compared to

Batch ASW, the performance differences between the models

that we applied to the CITE-seq dataset are enhanced. For the

CITE-seq dataset, Cobolt and SCALEX perform best, with Cobolt

surpassing SCALEX for increasing cell numbers. scMM

consistently has the lowest scores on the CITE-seq data. For

the Multiome data, the spread of the investigated models is

comparable to the one of Batch ASW. Portal achieved the

highest Site ASW scores followed by scMVP, which is in

agreement with their high Batch ASW score.

Portal and scMVP are the best performingmodels for metrics

considering the removal of technical effects on the Multiome

data, whereas MultiVI’s performance suffers. On the CITE-seq

data, SCALEX and Cobolt are among the best performing

models, while scMM shows consistently low scores across

metrics and cell numbers.

6.3 Usability

The scMMmodel by (Minoura et al., 2021) was easily usable.

The authors provide both a command line interface and a script

that is straightforward to adapt and run. However, HDF5-based

data (such as the popular “AnnData” objects) has to be manually

restructured to separate files to be used as input for the model.

For CITE-seq-data, model training did not always converge, in

particular for larger sample sizes, which could be addressed by

lowering the learning rate and changing the batch size. While this

behavior did not occur with very small learning rates (2 orders of

magnitude smaller than the default used by Minoura et al.

(2021)), this also tended to substantially lower the performance.

To run the scMVP model by (Li et al., 2022), package

dependency issues had to be resolved manually. Here, too,

data had to be restructured manually to fit the custom input

data structs defined by the authors. Adapting and running the

model and extracting the learned embedding was

straightforward.

All in all, all investigated tools were relatively easy to use and

adapt, though in most cases not without at least intermediate

programming skills (e.g., to transform own data into rather

specific and often largely undocumented data structs defined

by the authors).

Finally, looking at the time the tools need for their

calculations, we found that the central processing unit (CPU)

time (without preprocessing) of Cobolt considerably exceeds the

CPU time of the other tools especially for the Multiome dataset

(Supplementary Figures S1, 2). Of note, the tools were run on

different machines, which hinders a direct comparison. However,

it should give the reader a rough idea about the processing time

each tools requires, and it is useful to see how well the different

investigated tools scale timewise for increasing cell numbers.

FIGURE 3
Technical effect removal metrics. Site ASW, batch ASW, and graph connectivity score indicate the quality of technical effects removal achieved
by joint embeddings from variousmodels. On the 10x Multiome data, the performance of Portal, scMVP, scMM, Cobolt, DAVAE, and MultiVI is shown
(top), whereas the performance on CITE-seq data is shown for the SCALEX, Cobolt, TotalVI, and scMM (bottom). Median scores across all iterations
are shown inside the tiles.
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FIGURE 4
UMAP of the 10-dimensional latent space of Cobolt, scMM, MultiVI, scMVP, DAVAE, and Portal based on 500 (top) and 10,000 (bottom) cells of
one exemplary subsample from the Multiome dataset each. The color coding corresponds to manually annotated cell types as provided by Luecken
et al. (2021a).
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7 Outlook and discussion

The rapid emergence of experimental protocols for profiling

several omics layers from the same cell or in independent

experiments is closely followed by the development of

corresponding computational models for analyzing and

integrating such data. These methods promise to answer

biological questions previously out of reach. Still, they have so

far been hampered by often rather small and sparse datasets and

the lack of a systematic overview and comparison. In particular,

considering the sparsity and high dimensionality inherent to

single-cell (multi-)omics data, researchers seek to identify a low-

dimensional embedding that integrates the information from

multiple modalities and can be used for further downstream

analyses. Consequently, many computational tools to infer such

a joint latent representation have recently been proposed, often

based on deep learning approaches due to their success in

identifying complex structures from data in unsupervised

settings. Specifically, deep generative models such as VAEs that

infer a low-dimensional, compressed representation of the input

data in an unsupervisedway are among themost popular solutions,

often including additional components or custom architectures to

accommodate the properties of single-cell multi-omics data and

facilitate specific characteristics of the learned embedding.

Due to the rapidly growing number of complex

methodological proposals for solving the challenging task of

computationally integrating multi-omics data, an overview

and categorization of such models are essential for

understanding the advantages and disadvantages of the

different methods. We have compiled a comprehensive review

of the literature on DGMs for learning joint embeddings of

multi-omics data and categorized the different models according

to their architectural choices.

In addition to this overview, we have also illustrated the

robustness of selected models to small sample sizes, where

sample size refers to the number of cells in the dataset. For

evaluating model performance, we have relied on the guidelines

of a comprehensive benchmarking project (Luecken et al.,

2021a). We have evaluated the models based on established

metrics concerning their ability to adjust for technical effects

while maintaining biological signals. Our analyses have shown

that Cobolt, an approach that uses a multimodal VAE with

products of experts to combine individual embeddings, and

Portal, an approach that uses the principal components of a

FIGURE 5
UMAP of the 10-dimensional latent space of Cobolt, scMM, TotalVI, and SCALEX based on 500 (top) and 10,000 (bottom) cells of one exemplary
subsample from the CITE-seq dataset each. The color coding corresponds to manually annotated cell types as provided by Luecken et al. (2021a).
The following cell types are not present in the 500 cell sample: CD4+ T CD314+ CD45RA+, CD8+ T naive CD127+ CD26−CD101-, cDC1, dnT, Plasma
cell IGKC-, Plasma cell IGKC+, Plasmablast IGKC-, T prog cycling.
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joint PCA on both modalities as input to an autoencoder with an

adversarial training strategy, deliver the best performance for

most biological preservation metrics, particularly for small

numbers of cells. On the other hand, Portal and scMVP, an

approach that employs attention-based components and a

dedicated architecture to deal with the sparsity of scATAC-seq

data, score highest for metrics related to removing technical

artifacts on the 10x Multiome data, while SCALEX performs best

on the CITE-seq data.

To consider the usability of the approaches from the

perspective of a user who is not an expert in tuning deep

learning models, we employed the default hyperparameters of

the models as proposed by their original authors. While this

could potentially introduce bias and dedicated tuning of

hyperparameters might improve the results, our focus was on

comparing the different approaches relative to each other and

relative to the sample size of the respective dataset rather than

absolute values of a metric which might be improved by

hyperparameter tuning.

Especially for users with little programming experience, some

of the models investigated will be difficult to apply, as they

require, e.g., the use of command line tools. Here, libraries such

as scvi-tools (Gayoso et al., 2021a) offer a significant benefit by

providing extensive documentation and exemplary applications.

Interpretability is an aspect that is of great importance for the

application of DGMs (Treppner et al., 2022). Some of the models

we have reviewed already offer the possibility of making the

corresponding outputs interpretable for users. For example, post-

hoc methods such as applying archetypal analysis (Cutler and

Breiman, 1994) to the joint embedding as conducted by TotalVI

(Gayoso et al., 2021b), can make the models explainable after

they have been trained. On the other hand, model-based

interpretability can be directly incorporated into the model

architecture to allow for immediate interpretation, such as the

latent traversals and specification of a dedicated prior to facilitate

disentanglement in (Minoura et al., 2021). However, no

dominant approach has yet emerged in this area, providing

scope for new developments.

Wewould like to stress that our review should not be understood

as a comprehensive benchmark but rather as an illustrative case

study, as wemerely looked at the investigatedDGM tools in the scope

of representative examples of the landscape of state-of-the-art

approaches, with a focus on potential differences in the number

of cells they require to perform well.

In this work, we merely discussed some of all available omics

modalities, and the performance of the models may be affected

for the better or the worse if applied to other data types due to

differing data characteristics, e.g., in the degree of sparsity.

The performances we obtained by running the investigated

tools on a benchmark dataset may well deviate if applying those

tools to other datasets of differing biological backgrounds, e.g., in

terms of cell type composition, tissue types, etc. Although a focus

on specific cell types is beyond the scope of our review, we invite

others to use our findings as a stepping stone to explore the

performance of DGMs for specific biological scenarios.

In the future, linking information from measurements of

transcriptomes, epigenomes, proteomes, chromatin organization,

etc., could lead to a deeper understanding of cellular processes.

Scientists could then further enhance their understanding of these

processes by information on the spatial context.
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