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Background: The existing metabolic gene signatures for predicting breast cancer
outcomes only focus on gene expression data without considering clinical
characteristics. Therefore, this study aimed to establish a predictive risk model
combining metabolic enzyme genes and clinicopathological characteristics to predict
the overall survival in patients with breast cancer.

Methods: Transcriptomics and corresponding clinical data for patients with breast cancer
were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus
(GEO) databases. Differentially expressed metabolic genes between tumors and normal
tissues were identified in the TCGA dataset (training dataset). A prognostic model was then
built using univariate and multifactorial Cox proportional hazards regression analyses in the
training dataset. The capability of the predictive model was then assessed using the
receiver operating characteristic in both datasets. Pathway enrichment analysis and
immune cell infiltration were performed using Kyoto Encyclopedia of Genes and
Genomes (KEGG)/Gene Ontology (GO) enrichment and CIBERSORT algorithm,
respectively.

Results: In breast cancer and normal tissues, 212 metabolic enzyme genes were
differentially expressed. The predictive model included four factors: age, stage, and
expression of SLC35A2 and PLA2G10. Patients with breast cancer were classified into
high- and low-risk groups based on the model; the high-risk group had a significantly
poorer overall survival rate than the low-risk group. Furthermore, the two risk groups
showed different activation of pathways and alterations in the properties of tumor
microenvironment-infiltrating immune cells.

Conclusion:We developed a powerful model to predict prognosis in patients with breast
cancer by combining the gene expression of metabolic enzymes with clinicopathological
characteristics.

Keywords: breast cancer, TCGA, metabolism-related gene, survival analysis, prognosis

Edited by:
Pengcheng Zhou,

Central South University, China

Reviewed by:
Chuanke Zhao,

Peking University, China
Zhou Jiang,

University of Texas MD Anderson
Cancer Center, United States

*Correspondence:
Ran Zhang

ZR13971@hunnu.edu.cn

Specialty section:
This article was submitted to

Metabolomics,
a section of the journal

Frontiers in Molecular Biosciences

Received: 20 March 2022
Accepted: 25 May 2022
Published: 29 June 2022

Citation:
Lu J, Liu P and Zhang R (2022) A

Metabolic Gene Signature to Predict
Breast Cancer Prognosis.

Front. Mol. Biosci. 9:900433.
doi: 10.3389/fmolb.2022.900433

Abbreviations: BC, Breast cancer; BRCA, breast cancer susceptibility gene; DEG, differential expression gene; GEO, gene
expression omnibus; GO, gene ontology; KEGG, kyoto encyclopedia of genes and genomes; MRGs, metabolic enzyme genes;
OS, overall survival; ROC, receiver operating characteristic curve; TCGA, the cancer genome atlas; TME, tumor microen-
vironment; TNM, tumor node metastasis; Tregs, regulatory T cells.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 9004331

ORIGINAL RESEARCH
published: 29 June 2022

doi: 10.3389/fmolb.2022.900433

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.900433&domain=pdf&date_stamp=2022-06-29
https://www.frontiersin.org/articles/10.3389/fmolb.2022.900433/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.900433/full
http://creativecommons.org/licenses/by/4.0/
mailto:ZR13971@hunnu.edu.cn
https://doi.org/10.3389/fmolb.2022.900433
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.900433


INTRODUCTION

Breast cancer (BC) has become the most frequent malignancy in
women and the primary cause of cancer incidence worldwide (Liu
et al., 2021), accounting for 30% of new cancer diagnoses.
Although BC mortality has decreased significantly in recent
years with advances in cancer treatment, particularly in
immunotherapy (Siegel et al., 2018), individual differences in
benefits are more pronounced because of tumor heterogeneity
and drug resistance (Sharma et al., 2017).

Several cancer hallmarks, such as evasion of growth inhibition
and cell death, stimulation of motility and invasion, promotion of
angiogenesis, and avoidance of immune destruction, have been
linked with metabolism, either directly or indirectly (Hanahan
and Weinberg, 2011). Cancer demand causes metabolic
alterations in cancer cells relative to non-malignant cells,
implying that carcinogenesis and development necessitate the
metabolic reprogramming of cancer cells. Metabolic
reprogramming is a major hallmark of cancer that promotes
cancer cell proliferation, progression, metastasis and resistance to
chemotherapeutic agents (Pi et al., 2022). Therefore, focusing on
cancer metabolism could substantially advance tumor treatment
(Elia et al., 2016). In recent years, with further understanding of
the tumor immune microenvironment (TME), increasing studies
have focused on the role of metabolism in the TME.
Accumulation of abnormal metabolites in the TME has
become a hallmark of cancer (Liu et al., 2022). The TME
maintains cancer cell proliferation by inducing nutrient
removal mechanisms that deplete certain nutrients and force
cancer cells to adapt. Previous studies have established that the
TME plays a vital role in BC progression. Intermediate
metabolism through cell-to-cell interactions in the TME may
result in a tumor-suppressive or tumor-promoting phenotype
(Dias et al., 2019). A better understanding of the biological
pathways of cancer in specific genetic contexts will contribute
to the success of targeting cancer metabolism (Vander Heiden,
2011). Therefore, metabolic genes have emerged as promising
targets for tumor typing and therapy in many relevant studies.
Several metabolic gene signatures have been reported to predict
BC prognosis (Gong et al., 2021; Hua et al., 2021; Sun et al., 2021).
However, these studies have mainly focused on gene expression
data and have not included the influence of clinical factors.

In the present study, we combined gene expression data and
clinical information from patients to establish a novel risk
prediction model based on the BC (BRCA) data from The
Cancer Genome Atlas (TCGA); we then compared the ability
to predict the survival of patients with BC compared with that
using the conventional tumor, node, metastasis (TNM) staging
system.

METHODS

Data Collection
Transcriptomics and the corresponding clinical data for patients
with BC patients were downloaded from TCGA (https://portal.
gdc.cancer.gov/) and Gene Expression Omnibus (GEO) (https://

www.ncbi.nlm.nih.gov/geo/) databases. In total, 1095 BC cases
and 113 adjacent normal cases from TCGA were included in the
training set, whereas 327 BC cases from the GSE20685 dataset
were included in the test set (patients’ clinical characteristics show
in Supplementary Table S1). Clinical data included age, sex, and
TNM stage. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) PATHWAY database (https://www.genome.jp/kegg/
pathway.html) was used to acquire data regarding metabolic
enzyme genes (MRG) (Supplementary Table S2). All TCGA
and GEO data were obtained from open sources and therefore did
not require ethics committee approval. All analyses followed the
strict TCGA database access principles and publication
guidelines.

Bioinformatics Analyses
The R packages “limma”, “edgeR”, and “DESeq2” were used, with
adjusted thresholds of p < 0.05 and |log(fold change) | > 1, to
obtain differentially expressed genes from TCGA dataset
(Supplementary Table S3). These differentially expressed
genes were then intersected with 2891 metabolic enzyme genes
obtained based on KEGG PATHWAY. The R packages “survival”
and “survminer” were used to run univariate and multifactorial
Cox proportional hazards regression analyses, screen and model
appropriate biomarkers, and perform test set validation. In the
training set, the R package “ClusterProfiler” was used to run
KEGG (https://www.kegg.jp/) and Gene Ontology (GO, http://
geneontology.org/) enrichment analyses to explore whether there
were any differences in biological processes between the high-
and low-risk groups. Immune cell infiltration was evaluated using
the CIBERSORT algorithm.

Statistical Analyses
R software (version 4.0.2) was used to perform all the analyses.
Before the analyses, all data were log-transformed. Wilcoxon test
was used to compare the two groups. Univariate and multivariate
Cox regression analyses were used to identify the metabolic
enzyme genes linked with overall survival (OS). Kaplan-Meier
(KM) survival curve analysis was performed to investigate the
differences in survival between the high- and low-risk groups.
The sensitivity and specificity of the prognostic model were
determined by plotting receiver operating characteristic (ROC)
curves.

RESULTS

Identification of Differentially Expressed
MRGs in BC
We downloaded the gene expression profiles of 113 normal and
1095 BC samples from TCGA. For differential expression analysis
in BC and adjacent normal tissues, 2891 MRGs were selected
based on the KEGG metabolic pathway-related gene set. Three R
packages “DESeq2”, “limma” and “edgeR” were used to screen
upregulated differential genes with a threshold p-value < 0.05 and
|logFC| > 1. After taking intersections with the 2891 MRGs, 212
metabolic genes, which were upregulated in BC, were selected for
subsequent analysis. The heatmap, Volcano plot, and Venn
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diagram of differential genes were drawn using R packages
“pheatmap,” “EnhancedVolcano,” and “ggvenn,” respectively
(Figures 1A–C).

Establishment of the Metabolism-Related
Gene Prognostic Risk Model in Patients
With BC
After identifying differentially expressed genes, we performed
modeling. Patients with a follow-up time of 30–3,000 days were
included in TCGA data. We initially screened TCGA for 212
differentially expressed MRGs using univariate Cox proportional
hazard regression analysis to assess the MRGs related to OS. The
results revealed that 29 valid genes were significantly associated
with the OS in BC (Supplementary Table S4; p < 0.05). We then

checked 29 valid genes in the Human Protein Atlas (HPA, https://
www.proteinatlas.org/), a database of immunohistochemistry-
based expression data for cancer research. Finally, 11
metabolic genes that were significantly overexpressed in BC
and associated with survival were identified, of 10 genes
(SLC7A5, HPRT1, LPCAT1, SLC12A8, MTHFD2,
ALDH18A1, APOO, B4GALT3, ALG3, SLC35A2) that might
reduce BC survival were considered risk factors (p < 0.05; HR, 1.
171–1.681), whereas overexpression of the remaining gene,
PLA2G10, may improve survival and was considered a
protective factor (p < 0.05; HR, 0.8719). The best candidate
final regression model for the regression analysis was obtained
by screening these 11 genes using the stepwise variable selection
procedure in R package, “My stepwise”. Finally, two MRGs,
SLC35A2 and PLA2G10, were identified and used to establish

FIGURE 1 | Identification of differentially expressed genes in breast cancer. (A) Heatmap (B) volcano map (C) Venn diagram to compare the results of 3 R
packages “DESeq2”, “edgeR”, and “limma”.
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a metabolism-related signature. Based on regression coefficients
for these two genes in the training set, a model called MGS was
built to calculate the risk scores for patients with BC using the
following formula: MGS = 0.54527 expression value of SLC35A2 -
0.15133 expression value of PLA2G10.

To initially validate the model, we ran a time-dependent ROC
curve analysis on the training set using the R package
“survivalROC” and found that the area under the curve was
0.764, 0.689, and 0.612 for 1, 3, and 5 years in the training set,
respectively (Figure 2A). We believe that the model has some
utility, but the predictions are not as accurate as expected. As
covariates including age, sex, and tumor stage can affect the final
prediction results as independent variables, we combined age, sex,
and TNM staging to build a more accurate model based on the
original model. After multivariate Cox proportional hazards
regression analysis (Figure 2B), a new predictive model, MAS,
was built based on the training set. The TNM staging system was
used as a categorical variable, and the formulas used for each
stage were as follows: stage I: MAS = 0.02929 × age + 0.64179 ×
SLC35A2-0.16310 × PLA2G10; stage II: MAS = 0.02929 × age +
0.64179 × SLC35A2-0.16310 × PLA2G10 + 0.589644; stage III:
MAS = 0.02929 × age + 0.64179 × SLC35A2-0.16310 × PLA2G10

+ 1.32590; stage IV: MAS = 0.02929 × age + 0.64179 × SLC35A2-
0.16310 × PLA2G10 + 3.0152.

Validation of the Predictive Power of the
Prognostic Model
Next, we validated the prognostic ability of MAS with the
training and testing sets. A risk score was first computed for
each patient based on the model, and the median risk score
was used as the cutoff value to classify patients into low- and
high-risk groups. Risk scores, scatter plots, and gene
expression heatmaps provided a preliminary picture of the
distribution of patients (Figures 3A,B). The Kaplan-Meier
log-rank test then revealed that patients in the low-risk group
had a much longer OS than those in the high-risk group
(Figures 3C,D). Finally, the area under the ROC curve for
predicting the 3- and 5-years OS rates was 0.803 and 0.739 in
the training set and 0.737 and 0.644 in the validation set,
respectively (Figures 3E,F). In addition, we established a
nomogram by combining MAS and molecular subtypes of
breast cancer (Supplementary Figure S1). These findings
indicate that the MAS is a credible model for predicting BC
survival.

GO and KEGG Pathway Enrichment
Analyses
We used the R package “ClusterProfiler” to perform KEGG
and GO enrichment analyses in the training set to investigate
whether there were any differences in biological processes
between the high- and low-risk groups. With |log2FC| > 1
and FDR 0.05, the R package “EdgeR” was used to identify
differentially expressed genes (DEG) in the two groups; we
found that the DEG were associated with pathways such as IL-
17 signaling pathway, estrogen signaling pathway, and the
complement and coagulation cascades (Figure 4A). We
demonstrated the expression of these pathways in the high-
and low-risk groups based on GO analysis. The epidermal
pathway was activated in the high-risk group, whereas
pathways related to transcription and the nucleosome were
activated in the low-risk group, according to the results
(Figure 4B). These discoveries suggest potential
mechanisms for different prognoses between high- and low-
risk groups.

Degree of Immune Cell Infiltration in
Patients With BC
The tumor microenvironment plays an important role in
tumor development and progression. To assess the
relevance of MAS with immune infiltration in the TME, we
used the CIBERSOFT algorithm to quantify the comparative
composition of multiple immune cell subgroups infiltrating
the TME and to compare the abundance of immune cell
infiltration in the high- and low-risk groups of BC cases in
the training set. Figures 5A,B show the distribution of
immune cells in different patient groups. Further the

FIGURE 2 | Validation of MGS. (A) AUC of time-related ROC curves for
MGS at 1, 3 and 5 years in the TCGA cohort. (B) Forest map analysis of
SLC35A2 and PLA2G10 expression and clinicopathologic characteristics of
BC patients by Multivariate Cox Proportional Hazards Regression
analysis. *p < 0.05; **p < 0.01; ***p < 0.001.
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combined difference and correlation analyses revealed that the
eight immune cell subgroups exhibited statistically significant
differences between the two groups. Among them, M1
macrophages, activated NK cells, follicular helper T cells,
and regulatory T cells (Tregs) were positively associated
with risk scores. In contrast, naive B cells, activated
dendritic cells, resting mast cells, and resting CD4 memory
T cells were negatively correlated with the risk scores
(Figure 5C). These findings may represent variable levels of
immune cell infiltration in the BC TME in high- and low-risk
groups.

DISCUSSION

BC is the most common and fatal cancer in women worldwide
and has surpassed lung cancer as the most common cancer
according to the global cancer burden data released by the
World Health Organization’s International Agency for
Research on Cancer (IARC) in 2020. An accurate assessment
of the prognosis of patients with BC is essential to ensure
appropriate treatment plans. In this study, we combined the
clinical information and gene expression data from patients to
develop an accurate prognostic prediction model.

FIGURE 3 | Predictive characteristics of the model MAS in the training and validation sets. (A,B) Distribution of risk scores, survival status and heat maps of gene
expression for patients in the high- and low-risk groups. (C,D) Kaplan-Meier analysis of OS in breast cancer patients based on risk scores. (E,F) ROC curve analysis to
validate the performance of the MAS in predicting survival at 3 and 5 years for breast cancer.
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In recent years, increasing studies have identified the
metabolic activities involved in the progression of cancer and
other diseases, which can serve as promising clinical targets for
treatment (Pan et al., 2021). Reprogramming energy metabolism
is one of the hallmarks of cancer progression (Hanahan and
Weinberg, 2011). Metabolic studies on BC tissues and cells have
observed changes in metabolic enzymes, fluxes, and mediators,
indicating increased glycolysis, TCA cycle activity, glutamine
catabolism, and lipid biosynthetic pathways (Dias et al., 2019).
The TME plays a determining role in BC progression, whereas
intermediate metabolism is actively involved in forming cell-cell
interactions in the TME, leading directly to tumor suppressing or

promoting phenotypes (Dias et al., 2019). Besides, hypoxia is one
of the most typical features of the TME in BC, with HIF-1α
activation orchestrating the local disruption of innate and
adaptive antitumor immune responses (Malla et al., 2021).

In this study, we established an accurate model for predicting
the overall survival of patients with BC using metabolic enzymes
and clinical information from TCGA. Using this model, we
calculated the risk scores for the patients. Kaplan-Meier
analysis revealed that survival in the high-risk groups was
lower than that in the low-risk groups. KEGG and GO
analyses were used to determine the differences in biological
processes. The infiltration of immune cell subpopulations was

FIGURE 4 | KEGG and GO enrichment analysis. (A) KEGG analysis of differentially expressedmetabolic genes. (B)GOpathway enrichment analysis of differentially
expressed metabolic genes for high- and low-risk groups. BP represents biological process, CC represents cellular component and MF represents molecular function.
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analyzed by CIBERSORT using the Wilcoxon test to quantify the
TME in TCGA BC tissue and to assess the ability of the model for
reflecting immune cell infiltration. Our model identified two
metabolic enzymes: SLC35A2 and PLA2G10. Mutations in the
SLC35A2 gene located on chromosome X induce congenital
glycosylation disorders (Hadley et al., 2019). Nucleotide sugars
are donors of glycosyltransferases, which are differentially
expressed between normal and tumor cells, and their changes

can be used to identify relevant BC biomarkers (Scott and Drake,
2019). The role of PLA2G10 in cancer progression has been
reported previously. It is upregulated in hepatocellular carcinoma
and soft tissue smooth muscle sarcoma (Liu et al., 2007; Tan et al.,
2020). The protein encoded by PLA2G10 may contribute to the
survival of BC cells via its role in lipid metabolism. However,
PLA2G10 was found to have a weak protective effect on the
survival of patients with BC in our analysis. Previous findings

FIGURE 5 |MAS is associated with TME immune cell infiltration. (A) Heatmap of the differences in immune cell distribution for each BC patient in low- and high-risk
groups. (B) Histogram of the distribution of immune cells in all BC patients. (C) Differences in the distribution of immune cells in low- and high-risk groups.
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indicate that patients with BC who are ≤ 40 years old have worse
survival and a higher risk of recurrence than that in patients >
40 years old (Cathcart-Rake et al., 2021; Tan et al., 2021). Further,
a clinical study showed that the 5-years survival rates of patients
with BC in stages I, II, III, IV, and unknown were 100%, 91.9%,
78.8%, 34.2%, and 76.4%, respectively (Mangone et al., 2021).
Thus, the prediction model developed using metabolic genes
combined with age and the TNM staging system, which are
two key clinicopathological characteristics, can provide a more
accurate prognostic prediction for patients with BC of different
ages and stages.

We performed KEGG enrichment analysis to explore the
potential causes of poor prognosis in patients from the high-risk
group. The results suggested that the IL-17 signaling pathway
was activated in the high-risk BC group, which is consistent with
previous reports. IL-17, an important pro-inflammatory
cytokine, has been shown to promote proliferation, invasion,
and metastasis of BC cells and is significantly associated with
poor prognosis in patients with BC (Allaoui et al., 2017). IL-17
promotes the growth of metastatic primary breast tumors by
directly promoting tumor cell angiogenesis (Benevides et al.,
2015) and indirectly affecting the dependence on neutrophils
(Coffelt et al., 2015). In addition, the expression of IL-17 in BC
was positively correlated with PD-L1 (Wang et al., 2017).
Another pathway that is activated in high-risk patients is the
estrogen signaling pathway. Estrogen has been widely reported
as a risk factor for many cancer types. In BC cells, estrogen
promotes tumor progression by inhibiting apoptosis through
upregulated anti-apoptotic Bcl-2 and Bcl-X L (Musgrove and
Sutherland, 2009) and activation of MAPK and PI3K/Akt
pathways (Gompel et al., 2000). Furthermore, the
complement and coagulation cascade pathway, which is
upregulated in the high-risk group, has been reported to play
an immunosuppressive function in TME, which may be
associated with the suppression of anti-tumor CD8+ T cell
responses (Holers, 2014). The immune infiltration results
revealed immunophenotypic differences in the TME between
the high- and low-risk groups of patients with BC. Treg
infiltration was significantly increased in the high-risk group.
Tregs, which are key mediators of immune tolerance, are
metabolically reprogrammed in the TME to alter the
transcriptional landscape of tumor-infiltrating immune cells,
including the transcription factors in tumor-associated
macrophages, resulting in the promotion of
immunosuppression. Some metabolic proteins have been
found to be overexpressed on intratumoral Tregs of patients
with BC (Malla et al., 2022). In primary BC, the adaptive
immune response of CD4+ T cells may often be replaced by

immunosuppressive Treg cells, which may induce resistance to
checkpoint inhibition (Wesseling-Rozendaal et al., 2022).

Although the prognostic model developed for BC shows
strong predictive potential for survival, there are still some
limitations to the current study. Our study is limited to a raw
analysis using data from publicly available databases, TCGA and
GEO. Therefore, additional validation sets are required to verify
our conclusions along with experimental validation.

CONCLUSION

Overall, we developed and validated a new prognostic model
based onmetabolism-related genes and clinical data to predict the
overall survival in patients with BC. This model can classify
patients with BC into two different risk states and reflect the
immune status of the TME. Our model may be useful for precise
treatment of patients with BC.
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