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Diabetes has been a worldwide healthcare problem for many years. Current

methods of treating diabetes are still largely directed at symptoms, aiming to

control the manifestations of the pathology. This creates an overall need to find

alternative measures that can impact on the causes of the disease, reverse

diabetes, or make it more manageable. Understanding the role of key players in

the pathogenesis of diabetes and the related β-cell functions is of great

importance in combating diabetes. PDX1 is a master regulator in pancreas

organogenesis, the maturation and identity preservation of β-cells, and of their

role in normal insulin function. Mutations in the PDX1 gene are correlated with

many pancreatic dysfunctions, including pancreatic agenesis (homozygous

mutation) and MODY4 (heterozygous mutation), while in other types of

diabetes, PDX1 expression is reduced. Therefore, alternative approaches to

treat diabetes largely depend on knowledge of PDX1 regulation, its interaction

with other transcription factors, and its role in obtaining β-cells through

differentiation and transdifferentiation protocols. In this article, we review

the basic functions of PDX1 and its regulation by genetic and epigenetic

factors. Lastly, we summarize different variations of the differentiation

protocols used to obtain β-cells from alternative cell sources, using

PDX1 alone or in combination with various transcription factors and

modified culture conditions. This review shows the unique position of

PDX1 as a potential target in the genetic and cellular treatment of diabetes.
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1 Introduction

Diabetes mellitus (diabetes) is a chronic metabolic disease characterized by high blood

glucose levels and associated with impaired insulin secretion, insulin action, or both (Weir

et al., 1990; Kerner et al., 2014). According to the World Health Organization, more than

400 million people are living with diabetes worldwide, prompting global efforts to stop the

rise of the disease. Many approaches are being used in the treatment of diabetes, ranging

from conventional methods, like the use of pharmaceutical compounds, to more

advanced approaches such as gene and cellular therapies (Ryan et al., 2005; Wong

et al., 2010; Sorli and Heile, 2014; Hering et al., 2016; Loretelli et al., 2020). However, many
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of them fall short as substitutes for the sophistication of human

β-cells. Therefore, in pursuit of understanding the pathogenesis

of diabetes, we must understand the key players in the molecular

mechanisms of β-cells. One of these key players is pancreatic and
duodenal homeobox 1 (PDX1), also known as insulin-promoting

factor 1 (IPF1).

Although PDX1 is predominantly expressed in β-cells and
some δ-cells of the islets of Langerhans, it is also expressed in the

gastrointestinal tract (duodenum, stomach, pancreas), and the

central nervous system during development (Perez-Villamil

et al., 1999; Fagerberg et al., 2014). PDX1 is one of the early-

expressed genes during pancreas development and one that

persists through β-cell maturation. Studies have revealed its

role in the normal development of the pancreas by regulating

the fate and propagation of pancreatic precursor cells (Jonsson

et al., 1994). Furthermore, PDX1-expressing progenitors give rise

to both exocrine and endocrine lineages, hence PDX1 loss-of-

function mutations lead to arrested development of the exocrine

compartment and an underdeveloped endocrine compartment,

since endocrine lineage is also affected by NGN3-expressing

progenitors (Oliver-Krasinski et al., 2009). Mutations in the

PDX1 gene cause pancreas agenesis, maturity-onset diabetes of

the young 4 (MODY4) and other pancreatic dysfunctions

(Jonsson et al., 1994; Stoffers et al., 1997). PDX1 is also linked

to diabetes pathogenesis; in type 1 diabetes (T1D)

PDX1 autoantibodies have been detected, while in type

2 diabetes (T2D), PDX1 expression levels are compromised

(Li et al., 2010; Guo et al., 2013; Abreu et al., 2021). These

data solidify the role of PDX1 as a master regulator of embryonic

pancreatic formation, in both exocrine and endocrine

compartments, and most importantly in the maturation and

development of β-cell function.

2 PDX1 gene structure and regulation
of expression

PDX1 was first described as a nuclear endodermal protein

expressed in the epithelium of the duodenum and the pancreas

(Wright et al., 1989). Later, PDX1 was linked to β-cells’ specific
expression of insulin by binding and transactivating the insulin

gene promoter (Ohlsson et al., 1993). PDX1 also activates other

pancreas-associated genes like those for SST (somatostatin),

GCK (glucokinase), IAPP (islet amyloid polypeptide), RFX6

(regulatory factor X6), HNF1B (HNF1 homeobox B), and

even PDX1 itself (Wang et al., 2018).

The PDX1 gene is highly conservative among different

species. It is composed of two exons spanning a region of

6 kb on chromosome 13 and encoding a protein of 283 amino

acids without any known splice forms (Stoffel et al., 1995). One

exon encodes for the NH2- terminal region containing a DNA

activation domain and the other exon encodes for the COOH-

terminal region and the homeodomain region that contains three

helixes and harbors a nuclear localization signal responsible for

DNA binding (Inoue et al., 1996; Melloul et al., 2002;

Schwitzgebel et al., 2003; Stanojevic et al., 2004).

Although PDX1 has only one promoter (Figure 1), it is

regulated by a large number of distant enhancers mainly

located in the 5′-flanking region of the gene (Sharma et al.,

1996; Wu et al., 1997; Campbell and Macfarlane, 2002). Those

enhancers were first discovered and characterized by studying the

nuclease hypersensitive sites (HSS). HSS are markers of

transcription factor (TF) binding sites, and three of them have

been identified in the approximate area between −3,000 and

+180 bp of the mouse Pdx1 gene. HSS1 (−2,560 to −1880), has

demonstrated an ability to control the β-cell-specific expression
of PDX1 (Wu et al., 1997). Further investigation of the HSS1 site

showed that it can be divided into three subdomains: area I

(−2,694 to −2,561 bp), area II (−2,139 to −1958 bp), and area III

(−1879 to −1799 bp). The most distant PDX1 enhancer is located

near −6,000 bp in the mouse gene and near −8,300 bp in the

human gene and is known as area IV (Gerrish et al., 2004). Areas

I, III, and IV are very conserved between mice, humans, and

chickens, sharing 78–89% similarity, whereas area II is present

only in mammals (Gerrish et al., 2000; Gerrish et al., 2004).

Analyses of the enhancer region have shown that areas I–III

contain binding sites for important transcription factors

participating in pancreatic organogeneses, such as HNF1α,
FOXA2, HNF6, PAX6, and MaFA (Dassaye et al., 2016),

moreover, areas I–II contain binding sites both for

transcriptional activators and inhibitors of PDX1 (Gerrish

et al., 2004). Further analyses of enhancer functions show that

areas I, II, and IV are capable of maintaining the expression of the

β-cell-specific reporter in transfection assays independently of

each other (Marshak et al., 2000; Gerrish et al., 2004), and

together areas I and II can induce strong PDX1 expression in

β-cells (Van Velkinburgh et al., 2005). Although area III seems to

be less important and does not drive β-cell-selective activity, it

contributes to PDX1 expression during embryogenesis through

its binding of the PTF1α transactivator (Gerrish et al., 2000;

Wiebe et al., 2007). Furthermore, the removal of areas I–III in

vivo leads to decreased expression of PDX1 and impairs the

formation of the pancreas in the early development stages in mice

(Fujitani et al., 2006)—an outcome similar to pancreatic agenesis

in homozygous loss-of-function PDX1 phenotypes.

As was mentioned before, Area II is unique to mammals and

has multiple essential functions both in early endocrine cell

specification and postnatal β-cell maturation. Deletion of this

locus does not affect pancreas development or size, but it does

change islet cell composition. Homozygous absence of Area II in

PDX+/-pancreas (PDX1ΔII/−) results in a large decrease in

endocrine progenitors, abnormal β-cell specification, and

subsequent hyperglycemia in newborn mice (Yang et al.,

2017). Furthermore, the PDX1 deficient condition associated

with the PDX1ΔII/− state caused a significant alteration in the

proportion of α- and β-cells, shifting the balance towards the α-
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cell type, probably because of the inhibited PDX1-mediated

repression of the ARX gene expression—a main α-cell fate

inductor (Collombat et al., 2007; Yang et al., 2017). These

data demonstrate that area II of the PDX1 enhancer

participates in maintaining a proper α- and β-cell balance in

the islets. Of note, PDX1 repression of the ARX gene is mediated

by co-expression of the Groucho-related gene 3 (GRG3), a

member of the Groucho family of co-repressors (Metzger

et al., 2014), but interactions of the GRG3, ARX, and PDX1

area II enhancers are yet to be investigated.

Like area II, area IV is not essential for normal organogenesis

of the pancreas, but it regulates postnatal PDX1 expression and β-
cell functions and growth. Area IV has binding sites for both

FOXA1 and FOXA2 which are pioneer TFs of several foregut-

derived organs, including the pancreas (Figures 1A). These TFs

occupy area IV more efficiently than other areas and their

bindings are heavily dependent on developmental time, and

increases with age (Gao et al., 2008). Interestingly, mice with

area IV mutations exhibited sexually dimorphic phenotypes:

affected diabetic males with reduced PDX1 levels manifested

hyperglycemia at weaning time versus phenotypically normal

females (Spaeth et al., 2017). Spaeth et al. (2017) also suggested

that PDX1may autoregulate area IV during weaning which could

explain why PDX1 levels increase in this period of development

(Stolovich-Rain et al., 2015). Additionally, area IV of the PDX1

enhancer is tissue-specific and is upregulated by HNF3β and

NEUROD/b2 strictly in islet cells (Naya et al., 1997; Kaestner,

2000). This region is also influenced by glucocorticoids, which

reduce PDX1 expression by interfering with HNF3β activity

(Sharma et al., 1997).

FIGURE 1
Regulation of mammalian PDX1 gene bymultiple factors. Expression of PDX1 is controlled by numerous epigenetic factors such as nucleosome
positioning, histone methylation, histone acetylation, accessibility of enhancers and non-coding RNAs. PDX1 expression can be upregulated (bold
green upward arrows) or downregulated (bold red downward arrows) by any of these factors. (A). Distant enhancers known as areas I-IV, participate
in PDX1 transcription regulation due to their ability to bind transcription factors and boost gene expression. Same TFs can bind tomultiple areas
with different affinities, for example FOXA1/2 occupy area IV more efficiently (bold green arrows) than other areas (narrow green arrows). (B).
regulation of PDX1 through upstream regulatory factors (USF) and E-box. (C). interaction of PDX1 and histone deacetylases. (D). interaction between
β-arrestin-1, P300 and their role in PDX1 regulation. (E). PDX1 recruitment to Lys methyltransferase Set7/9. (F). RNAmodification in PDX1 regulation.
(G). (H). role of ncRNAs in PDX1 regulation.
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Besides its occupation of the PDX1 enhancer, transactivation of

the gene by FOXA2 is also augmented by FAM3A—amitochondrial

protein that enhances ATP production. Yang et al. (2020) studied

the role of mitochondria in regulating PDX1 expression in

pancreatic β-cells and demonstrated that FAM3A-induced ATP

production elevates cellular Ca2+ levels, which results in the release of

activated calmodulin to function as a co-activator of FOXA2, thus

stimulating PDX1 gene transcription. This is one of the possible

mechanisms that link mitochondrial dysfunction with insulin

deficiency under diabetic conditions.

After transcription, PDX1 cooperates with FOXA1 and

FOXA2 (FOXA1/2) to promote downstream gene regulation.

Generally, FOXA1/2 bind to the enhancers of target genes,

assisting increased deposition of histone H3 lysine four mono-

methylation (H3K4me1) that leads to chromatin relaxation and

accessibility for other TFs, a process known as enhancer priming

(Lee et al., 2019). A recent study has shown that FOXA1/

2 recruitment to primed enhancers before pancreatic lineage

induction is independent of PDX1, whereas, in contrast, FOXA1/

2 binding with unprimed enhancers requires cooperation with

PDX1 (Geusz et al., 2021). This indicates that full chromatin

accessibility and enhancer activation during β-cell development

are heavily reliant on PDX1.

Another group of enhancers are the E-boxes (enhancer

boxes)—short DNA sequences that share a signature motif

CANNTG (N for any nucleotide) and act like protein-binding

sites (Massari and Murre, 2000). During pancreas genesis,

PDX1 activates its promoter through the proximal (−104/

−99 bp) E-box motif in the PDX1 promoter region, creating a

positive autoregulatory loop (Melloul et al., 2002). Upstream

stimulatory factor 1 (USF1) occupies that E-box motif and has

been proven to be crucial for the autoregulation of PDX1

(Amemiya-Kudo et al., 2011). First, it was discovered that

USF1 forms a complex with PDX1, and together they activate

the expression of the PDX1 gene, however further investigation

revealed that USF1 has a dose-dependent repressing effect on the

PDX1 promoter, but is successively abrogated in a higher

concentration of PDX1 (Spohrer et al., 2017) (Figure 1B).

Interestingly, both PDX1 and USF1 have been identified as

substrates for protein kinase CK2 (Meng et al., 2010; Lupp et al.,

2014). Spohrer et al. (2017) have shown that CK2 is a negative

regulator of USF1-dependent PDX1 transcription because of the

CK2 phosphorylation of USF1, which strengthened the

USF1 interaction with the PDX1 protein.

All these combined findings indicate the importance of the

conserved enhancer elements for PDX1 expression both in

pancreas development and in the maintenance of β-cells.

3 Epigenetic control of PDX1 function

Epigenetic modifications are an important part of the gene

expression machinery that operate transcription by changing the

state of the chromatin. PDX1 regulates pancreas development

and β-cell maintenance with the help of various recruited

coregulators. Among them are numerous epigenetic modifiers

that participate in DNA methylation, histone modification,

chromatin remodeling, and ncRNA operation (Spaeth et al.,

2016).

Genome sequencing of the islets of T2D donors has revealed

that the PDX1 gene is heavily methylated in diabetes (Volkov

et al., 2017). Interestingly, high levels of glucose promote

methylation of PDX1 in isolated T2D islets, decreasing the

expression of the gene even further (Yang et al., 2012).

Different levels of glucose also affect the chromatin landscape

shifting of PDX1 in β-cells. According to Mosley and Ozcan

(2004) in the presence of low glucose levels, PDX1 is located in

the nuclear periphery, where it interacts with the histone

deacetylases HDAC1 and HDAC2, allowing them to target the

insulin promoter, producing condensed chromatin and

consequently reducing insulin gene expression (Figure 1C).

When the concentration of glucose becomes high,

PDX1 translocates to the nucleoplasm where it interacts with

histone acetyltransferase p300. P300 causes the hyperacetylation

of histone H4 in the insulin promoter, thus stimulating insulin

gene expression (Mosley et al., 2004) (Figure 1D). However, in

contrast to the studies of Mosley and others (Rafiq et al., 1998;

Elrick and Docherty, 2001), later experiments did not find any

evidence of glucose-dependent changes in the localization of

PDX1 (Spohrer et al., 2017).

Recently it has been shown that β-arrestin-1 participates in

the engagement of p300 to PDX1 (Figure 1D). β-Arrestin-1 and

β-arrestin-2 are intracellular signaling proteins that participate in
the sensitization of many G protein-coupled receptors (GPCRs)

(Pierce and Lefkowitz, 2001) or act independently (Shukla et al.,

2011). Tissue-specific knockout of β-arrestin-2 in mouse β-cells
causes metabolic deficits, including impaired insulin secretion

and reduced glucose tolerance (Zhu L. et al., 2017). Surprisingly,

β-cell-specific β-arrestin-1 knockout in mice fed a standard chow

did not show similar deficits (Barella et al., 2019), but severe

impairment in glucose tolerance in mice on an obesogenic diet

was reported (Barella et al., 2021). Further investigation showed

that β-arrestin-1 deficiency in β-cells leads to reduced PDX1

expression because of the lack of β-arrestin-1 complexes with

p300, which normally promote PDX1 transcription (Barella et al.,

2021).

The nucleosome state heavily affects the availability of

chromatin for TFs. The SWI/SNF family members forming

part of the ATP-dependent chromatin remodeling complex

are key regulators of nucleosome positioning (Euskirchen

et al., 2012). Like HDACs, the SWI/SNF complex interacts

with PDX1 in a glucose-dependent manner (McKenna et al.,

2015). The mammalian SWI/SNF complex contains ATPase

subunits, either BRG1 or BRM. In low glucose,

PDX1 interacts with the BRM:SWI/SNF complex, allowing it

to repress its target genes INS1, SLC2A2, and UCN3. Whereas in
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high glucose, PDX1 binds to the BRG1:SWI/SNF complex,

which, in contrast, enhances the expression of these genes

(Kim and Kulkarni, 2020).

Class III HDACs also known as sirtuins (SIRTs) are involved

in the regulation of pancreas development and glucose

homeostasis. SIRT1 promotes β-cell formation by boosting the

transcription of PDX1 through the deacetylation of FOXA2 on

the promoter of the PDX1 gene (Wang et al., 2013). Oppositely,

SIRT5 downregulates the transcription of PDX1 through

H4K16 deacetylation of its promoter region (Ma and Fei, 2018).

PDX1 co-modifiers are also involved in histone methylation

and demethylation. For example, PDX1 recruits Lys

methyltransferase Set7/9 to the INS gene, where it performs

H3-K4 methylation and thus activates transcription of the gene

in mouse β-cells (Deering et al., 2009). Set7/9 also takes part in

PDX1 expression regulation (Figure 1E). The β-cells specific

knockout of Set7/9 results in the downregulation of PDX1 and

other important β-cell genes like MAFA, GCK, and GLUT2,

causing a shift from insulin production to increased

proliferation (Maganti et al., 2015; Jetton et al., 2021).

Furthermore, Set7/9 seems to be important for the

PDX1 protein itself: it has been shown that Set7/9 methylates

the N-terminal residue Lys-131 of PDX1, augmenting PDX1

transcriptional activity, which is important for the maintenance

of normal β-cell function and glucose homeostasis (Maganti

et al., 2015).

RNA modification is a relatively newly discovered

mechanism of gene expression regulation that also takes part

in PDX1 regulation. One of the most abundant RNA

modifications is the methylation of the adenosine in N6-

position-m6A (Figure 1F) (Frye et al., 2018). It was shown

that the m6A landscape of T2D islets significantly differs from

the landscape of healthy islets—the mRNA pool in T2D islets is

hypomethylated. Artificial depletion of m6A levels in EndoC-

βH1 (immortalized human β-cell line) cells results in G0-G1 cell

cycle arrest and impaired insulin secretion due to

downregulation of the insulin/IGF1–AKT–PDX1 pathway,

decreasing the AKT phosphorylation and PDX1 protein levels

(De Jesus et al., 2019).

Non-coding RNAs (ncRNA) are other key players in gene

regulation. More than 1,000 cell-type-specific long non-coding

RNAs (lncRNA) have been identified both in human and murine

pancreatic islets (Moran et al., 2012; Benner et al., 2014), most of

which are located outside of genes, but near the islet-specific

chromatin domains and protein-coding regions (Moran et al.,

2012).

Frequently, enhancer clusters are targets of lncRNAs. An

enhancer cluster, otherwise defined as a superenhancer, is a

group of enhancers in close genomic proximity that are

bound by multiple TFs (Pott and Lieb, 2015). LncRNAs affect

the binding of TFs with pancreatic-enhancer-cluster-associated

genes, changing their affinity for targets (Pasquali et al., 2014;

Akerman et al., 2017). Knockdown of islet-specific lncRNAs

identified their ability to modulate gene expression and,

consequently, insulin secretion in human β-cells. It was shown
that in T2D islets several lncRNAs were significantly altered

compared to healthy islets (Akerman et al., 2017; Sathishkumar

et al., 2018).

PDX1 is regulated by many lncRNAs, but only a few are well-

characterized. One of them is HI-LNC71, also known as PLUTO

(PDX1 locus upstream transcript). PLUTO regulates PDX1

transcription by affecting the 3D contacts between the

enhancer cluster and the PDX1 promoter (Figures 1G).

Although lncRNA sequences generally are not conserved

across different species, PLUTO regulation of PDX1 has been

confirmed for both mouse and human orthologs, underlining the

possible importance of that lncRNA in the modulation of PDX1

expression (Akerman et al., 2017).

Circulating lncRNA-p3134 also participates in the regulation

of PDX1 and other β-cell-associated TFs (Figure 1H). It has been

shown that overexpression of lncRNA-p3134 in the mouse

pancreatic β-cell line MIN6 upregulates Pdx1, MAFA, and

Glut2 expression levels and increases glucose-stimulated

insulin secretion consistent with the upregulation of insulin-

associated TFs. Moreover, in the condition of high glucose

exposure this overexpression partially reversed the inhibitory

effect of glucotoxicity on PDX1 expression, and, as a

consequence, the glucose-stimulated insulin secretion (GSIS)

function was restored (Ruan et al., 2018). PDX1 and MAFA

expression are also affected by GAS5 (growth arrest-specific

transcript 5) (Jin et al., 2017; Esguerra et al., 2020) and

HOTAIR lncRNAs (Zhu, 2020). GAS5 is a key regulatory

factor in mammalian cell growth, proliferation, and apoptosis

(Lander et al., 2001). It is known for repressing the glucocorticoid

receptor function (Kino et al., 2010) and its low levels in human

serum are associated with T2D (Carter et al., 2015). Knockdown

of lncRNA GAS5 expression resulted in decreased expression of

PDX1 and MAFA (Jin et al., 2017), and a similar effect was

observed for HOTAIR knockdown (Zhu, 2020). Under

glucocorticoid-caused GAS5 downregulation, both PDX1 and

NKX6-1 levels were affected (Esguerra et al., 2020).

Although the ncRNA MALAT1 is associated with the

regulation of alternative splicing (Tripathi et al., 2010)

(Figure 1D), recently it has been reported that MALAT1

decreases the expression of PDX1 by suppressing histone

acetylation of the Pdx1 promoter in MIN6 cells (Ding et al.,

2020).

RNA-dependent regulation of PDX1 expression also involves

short non-coding RNAs. For example, miRNA-765 targets the

PDX1 gene and reduces its products on both the mRNA and

protein levels, which results in impaired survival and function of

pancreatic β-cells (Zheng et al., 2021).

Taken together, this data indicates that the participation of

ncRNAs in PDX1 regulation makes them a potential target for

T2D treatment procedures and use in protocols directing

transdifferentiation into β-cells.
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4 Role of PDX1 in pancreas
organogenesis and β-cells maturity

The human pancreas is composed of exocrine and endocrine

compartments. The orchestration of differentiation and

acquisition of cell identity requires the intricate and

coordinated expression of different transcription factors

during pancreas development.

4.1 Role of PDX1 during early pancreatic
development

The pancreas originates from a flat sheet of cells known as the

definitive endoderm (Figure 2). The definitive endoderm shares a

common progenitor with mesoderm called mesendoderm.

Specification of the endoderm is affected by many factors

including Wnt and Nodal signaling, both of which favor

endoderm formation at high levels (Lickert et al., 2002;

Vincent et al., 2003). The definitive endoderm then folds into

a primitive gut tube, which in turn develops into foregut

endoderm (Wells and Melton, 1999). Fibroblast growth factor

(FGF), retinoic acid (RA), and the Wnt, and Sonic hedgehog

signaling (Shh) pathways have been implicated in foregut

endoderm formation (Spence and Wells, 2007). At this stage,

the expression of PDX1 is detected making it one of the earliest

transcription factors to be expressed in the developing pancreas

(Jennings et al., 2013). The fate of the foregut endoderm is

determined by Shh signaling. Repression of Shh is necessary

for the development of the foregut endoderm into pancreatic

progenitor, meanwhile, expression of Shh causes loss of

pancreatic gene expression (Apelqvist et al., 1997; Kim et al.,

1997). Repression of Shh marks the primary pancreas

specification at around 29 days post-conception in humans.

The molecular events underlying the primary specification are

still not clear, one study has suggested that secretion of FGF2 by

the notochord represses Shh signaling and thereby induces

expression of pancreatic genes including PDX1 (Hebrok et al.,

1998). Moreover, RA signaling at this stage induces several

transcription factors including PDX1 (Kumar et al., 2003).

The early expression of PDX1 is accompanied by the

expression of SOX9, GATA4, FOXA2, and SOX17, however,

approximately 30–33 days post-conception, the expression of

SOX17 is later lost and replaced with that of NKX6.1. This

expression profile of PDX1, SOX9, NKX6.1, and FOXA2 is a

hallmark of multipotent pancreatic progenitors (Jennings et al.,

FIGURE 2
Schematic representation of human β-cell maturation stages. β-Cell differentiation is a complex multistage process. In each stage cell
populations have distinctive markers and require both activation (green upward arrows) and repression (red downward arrows) of different signaling
pathways, transcription factors, hormones and small molecules.
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2013). Pancreatic progenitors can give rise to a variety of

pancreatic cells including exocrine and endocrine cells (Aydin

et al., 2020). NKX6.1 is a critical transcription factor in pancreatic

β-cell function and proliferation. NKX6.1 expression increases

throughout pancreas development where it engages in endocrine

commitment and later become restricted to β-cell (Al-Khawaga
et al., 2018). The balance between NKX6.1 and PTF1A

determines the fate of pancreatic progenitors into exocrine

and endocrine commitment. Studies have suggested an

antagonistic mechanism between these 2 TFs, in which

overexpression of NKX6.1 reduced PTF1A expression and

subsequently acinar cell generation, while reduced expression

of NKX6.1 showed high expression of PTF1A and a substantial

reduction in endocrine progenitors (Schaffer et al., 2010). The

simultaneous co-expression of PDX1 and NKX6.1 in pancreatic

progenitors warrants their commitment to mono-hormonal,

glucose-responsive β-cells (Aigha and Abdelalim, 2020;

Memon and Abdelalim, 2020). On the other hand, pancreatic

progenitors expressing PDX1 without NKX6.1 (PDX1+/NKX6.1-

) develop into poly-hormonal β-cell that fail to function properly

in vivo (Aigha and Abdelalim, 2020). Interestingly, Memon et al.

(2021) have demonstrated that PDX1-/NKX6.1+ progenitors can

give rise to insulin producing glucose-responsive β-cells.
By the end of the embryonic period, NGN3 detection marks

the endocrine commitment and the appearance of pancreatic

endocrine cells including fetal β-cells with subsequent detection

of nuclear NKX2.2, NKX6.1, PDX1, FOXA2, and ISL1 (Jennings

et al., 2013). NGN3 is downregulated by the Notch signaling

pathway and upregulated by a cross-regulatory transcription

factor network composed of four transcription factors (SOX9,

HNF6, HNF1b, FOXa2) (Apelqvist et al., 1999; Lynn et al., 2007).

Studies have shown that PDX1 is a member of this cross-

regulatory network and it participates directly in the

expression of NGN3, which leads to the upregulation of

NEUROD1 pushing the cells toward endocrine differentiation

(Oliver-Krasinski et al., 2009). A different study has shown a

cooperative connection between PDX1 and HNF6 in the early

pancreatic bud and their role in the activation of NGN3,

subsequent endocrine specification, and the functional

maturation of β-cells (Henley et al., 2016). On the other hand,

activation of NGN3 leads to the activation of HES-1 in

neighboring cells, which inhibits endocrine differentiation

through its actions on NGN3 (Jensen et al., 2000). This lateral

inhibition model ensures that some progenitors undergo a

programmed downregulation of NGN3 and PDX1, which is

required for the formation of the exocrine compartment of

the pancreas (Kaneto et al., 2007).

PDX1 also plays a crucial role in cell fate determination, this

is manifested in several aspects. The relationship between

PDX1 and MAFA is one example, MAFA upregulates PDX1

expression in adult islets (Samaras et al., 2003), however, it is not

necessary for primary PDX1 induction. Meanwhile, PDX1 is

expressed in cells before MAFA and it induces MAFA−MAFB+ to

MAFA+MAFB− transition in the late stages of embryogenesis

(Nishimura et al., 2006). This transition contributes to the

differentiation and maturation of pancreatic β-cells while

concurrently pushing cells away from α-cell commitment,

where MAFB plays a pivotal role (Nishimura et al., 2006;

Hang and Stein, 2011; Conrad et al., 2016).

The role of PDX1 in pancreatic fate determination is also

seen by its repression of the intestinal progenitors in the gut tube.

PDX1 in cooperation with SOX9 represses the intestinal master

transcription factor CDX2 in the pancreatic domain of the gut

tube, thus preventing intestinal fate conversion while

upregulating pancreas-restricted TFs like PTF1α and NKX6.1

(Shih et al., 2013; Shih et al., 2015). Moreover, PDX1 also

downregulates hepatic-specific genes by its actions on HNF1α.

The human HNF4α gene contains two promoters P1 and P2 that

drive the expression of two sets of isoforms, HNF4α one to six

and HNF4α seven to nine, respectively. The P1- and P2-derived

isoforms have different functions and different affinity toHNF4α

targets (Thomas et al., 2001). PDX1 upregulates HNF1α P2

transcripts with weaker transactivation potential than P1

transcripts, causing them to compete for targets and

eventually reducing the activation of target liver-specific genes

by the P1 transcripts (Donelan et al., 2015).

4.2 Role of PDX1 in pancreatic islets

During embryogenesis, β-cells are multihormonal immature

cells with high proliferative ability; the features of functional β-
cells are gained after birth, particularly around weaning time, as

demonstrated by their robust GSIS with simultaneous loss of

proliferative ability (Sun et al., 2021). The maturation of β-cells is
controlled by many transcription factors, the most important of

which is MAFA—a TF that plays a role in insulin granule

synthesis and secretion (Hang et al., 2014). PDX1 induces

MAFB to MAFA transition in later stages of embryogenesis

(discussed above). Furthermore, PDX1 plays a significant role

in the maturation and identity perseveration of β-cells after birth
as it controls the activation of insulin and other genes responsible

for glucose sensing and metabolism like GLUT2 and glucokinase

(Kaneto et al., 2008). In addition, Kropp et al. (2018) showed that

the cooperative function of PDX1 and osteocalcin 1 (OC1) is

necessary for the specification and differentiation of pancreatic

endocrine cells and postnatal islet maturation.

Interestingly, some degree of β-cell heterogeneity has been

reported in normal adult islets (Szabat et al., 2009). Nasteska et al.

(2021) have shown that β-cells exist in different stages of

maturation in adult islets. Adult islets house highly plastic,

immature β-cells with low expression of PDX1 and MAFA

alongside highly mature β-cells with high expression of both

PDX1 and MAFA. Presumably low levels of PDX1 promote

insulin expression during the maturation process, while higher

PDX1 levels in mature cells maintain β-cells in differentiated
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state promoting increased expression of GLUT2 and glucokinase

(Szabat et al., 2009). This heterogeneity of β-cells is crucial for
proper islet function since it constitutes a reservoir of cells that

can be mobilized under stress conditions (Nasteska et al., 2021).

There’s combinatorial effect of PDX1 and FOXA2 in

postnatal maturation of β-cells, we mentioned before that

both TFs cooperate to promote downstream gene regulation

(Lee et al., 2019). MAFA, Ins1, and Slc2a2 are among the genes

activated by both TFs in the islets and they are involved β-cells
maturation, function, insulin secretion and MODY (Bastidas-

Ponce et al., 2017). One study generated mice with reduced

expression of both TFs which resulted in upregulation of genes

responsible for α-cell fate like MAFB with alterations in β-cells
numbers and developed hyperglycemia at weaning time.

Moreover, the deletion of PDX1 in mature β-cells led to them

losing multiple β-cell markers, combined with either loss of

hormone expression or to their adapting of a glucagon-

secreting ⍺-cell phenotype since PDX1 binds and inhibits

several ⍺-cell genes like MAFB, as was mentioned before

(Ritz-Laser et al., 2003; Gao et al., 2014).

5 PDX1 and diabetes

Mutations of the PDX1 gene lead to different outcomes that

affect pancreas structure, functions or both. Homozygous

mutations in the PDX1 gene and other mutations that impair

the functionality of the PDX1 protein during embryonic

development cause pancreas agenesis in mice and humans

and eventually lead to fatal perinatal hyperglycemia (Jonsson

et al., 1994; Stoffers et al., 1997; Hui and Perfetti, 2002). While

heterozygous mutations in PDX1 cause maturity-onset diabetes

of the young 4 (MODY4) (Abreu et al., 2021). MODY four is a

rare monogenic subtype of diabetes mellitus, it is caused by

different various mutations in PDX1 gene and its transactivation

domain (Anik et al., 2015; Deng et al., 2019; Abreu et al., 2021;

Yoshiji et al., 2022).

Studies have shown that a decrease in PDX1 expression in

PDX1 knockout mice concurred with poor maturation of β-cells
after birth, impaired expression of several β-cells genes, and the

appearance of poly-hormonal cells within the islets (Bastidas-

Ponce et al., 2017; Spaeth et al., 2017; Jara et al., 2020). In mature

β-cells, pdx1 haploinsufficiency leads to diabetes in mice and

humans through adapting ⍺-cell phenotype (discussed above).

In fact, a lot of diabetes phenotypes are associated with

mutations in the PDX1 gene. The nature of the phenotype

and severity of the condition depends on the type and

location of the mutation. Missense mutations in the

transactivator domain of PDX1 can reduce the ability of the

PDX1 protein to activate the expression of its target genes during

β-cell development and maturation. As an example of the

severity of different mutations, the substitution Pro-Thr in the

33 position (P33 T) causes a greater impact on β-cell formation

and function than Cys-Arg in the 18 position (Wang et al., 2019).

The P33 T mutation not only impairs binding with DNA targets

and transcriptional activation functions, but also predisposes to

reduced birth weight, miscarriage, and early postnatal death

(Gragnoli et al., 2005). Proline insertions have also been

shown to be pathogenic and associated with MODY (Karim

et al., 2005; Elbein et al., 2006). Several cases of the PDX1-mutant

MODY are reported, where glutamic acid in position 178 of

PDX1 was substituted with other amino acids (Schwitzgebel

et al., 2003; Nicolino et al., 2010; Abreu et al., 2021).

Glutamic acid in that position in the homeodomain is

evolutionarily conserved among several species, and this

mutation seems to decrease PDX1 half-life, which could

prevent the proper self-activation of PDX1 and consequently

decreases protein levels (Schwitzgebel et al., 2003; Abreu et al.,

2021). In some cases, different point mutations in the PDX1 gene

impair endocrine progenitor and β-cell development, leading to

the downregulation of several PDX1 target genes responsible for

insulin synthesis and secretion, which gives rise to non-

functional differentiated β-cells with poor responses to glucose

changes (Wang et al., 2019).

PDX1 is also linked to both type 1 and type 2 diabetes

pathogenesis; in type 1 diabetes (T1D) PDX1 autoantibodies

have been detected (Li et al., 2010). Interestingly, these

autoantibodies can be used in screening high-risk population

susceptible for developing T1D (Donelan et al., 2013). While in

type 2 diabetes (T2D), PDX1 expression levels are compromised

(Li et al., 2010; Guo et al., 2013; Abreu et al., 2021). One study

found an enrichment of T2D-associated SNPs in PDX1 occupied

sites located in the intronic regions of TCF7L2 and HNF1B.

Hnf1β is involved in controlling proliferation and survival of

multipotent pancreatic progenitors and deletion of the gene

causes pancreatic hypoplasia (De Vas et al., 2015), while

TCF7L2 has been identified as the locus conveying the highest

risk for developing T2DM (McCarthy and Zeggini, 2009).

Mutations in their cis-regulatory regions of these two genes

predispose to diabetes (Wang et al., 2018). A recent study has

found that selected genetic SNPs in PDX1 and MC4R could

modify the risk of T2D (Wang et al., 2021).

A number of studies have found a connection between DNA

methylation of PDX1 and reduced activity in T2D islets (Liu

et al., 2021). Yang et al. (2012) found out that PDX1 was one of

15 genes with CpG islands within the promoter that were

methylation-susceptible in T2D (Yang et al., 2012). DNA

methylation leads to reduced levels of PDX1 protein and

mRNA, resulting in impaired expression of both GLUT2 and

insulin and causing development of hyperglycemia (Ahlgren

et al., 1998). Under high glucose concentration, DNA

methylation level may increase abnormally which results in

decreased insulin secretion and subsequently leads to diabetes

(Pinzon-Cortes et al., 2017).

Normal pancreas development with β-cell formation and

maturation is a complex multilayered process that can provide a
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TABLE 1 Summary of studies using PDX1 in obtaining β-cells (full version Supplementary Material).

Study Cell source Transcription
factors

Small molecules Outcome

Differentiated adult cells

(Ferber et al. 2000) mouse liver cells PDX1 N/A Insulin secretion

(Ber et al. 2003) mouse liver cells PDX1 N/A Induction of pancreatic
Exocrine and endocrine
genes, insulin secretion

(Imai et al., 2005, Kaneto et al.,
2005, Cao et al., 2004, Tang
et al., 2006)

mouse liver cells PDX1-VP16 PDX1 N/A Expression of pancreatic
markers, insulin secretion

(Wang et al. 2007) mouse liver cells PDX1-NGN3 N/A Insulin secretion, near
normal GSIT function

(Zhou et al. 2008) mouse pancreatic exocrine
cells

PDX1- MAFA-NGN3 N/A Adoption of β-cells
morphology and marker
expression, insulin secretion

(Banga et al. 2012) mouse hepatic duct-like cells PDX1-MAFA- NGN3 N/A Adoption of β-cells
morphology and marker
expression, insulin secretion

(Cim et al. 2012) rat liver cells PDX1-NGN3-MAFA N/A Expression of insulin mRNA

(Hickey et al. 2013) mouse gall bladder epithelial
cells

PDX1-MAFA-NGN3 retinoic acid, dibenzazepine Upregulation of β-cells genes,
insulin secretion

(Akinci et al. 2013) rat pancreatic exocrine cells
and hepatocytes mouse
hepatocyte-derived small
cells

PDX1-MAFA-NGN3 DAPT, BIX-01294, NECA Increased expression of β-cell
markers, insulin secretion

(Chen et al. 2014) mouse intestine crypts cells PDX1-MAFA-NGN3 N/A Adoption of β-cells
morphology, insulin
secretion

(Cardinale et al. 2015) human biliary tree stem cells PDX1 bFGF, PDX-1 peptide Increased expression of β-
cells markers, insulin and
C-peptide secretion

(Lima et al. 2016) human exocrine pancreatic
cells

PDX1-NGN3-MAFA-
PAX4

ITS, 5-aza-2′-deoxycytidine, sodium
butyrate, SB431542, Y27632, betacellulin,
exendin-4, nicotinamide

Insulin packaging and
secretion

(Xiao et al. 2018) mouse pancreatic alpha cells PDX1-MAFA N/A Increased β-cell mass, insulin
secretion

Embryonic stem cells

(Xu et al. 2013) mouse ESCs PDX1-MAFA-
NEUROD-NGN3

β-mercaptoethanol, activin A, retinoic
acid, ITS, bFGF, EGF, N2, B27,
nicotinamide

Increased expression of β-
cells markers, insulin
secretion

(Salguero-Aranda et al. 2016) mouse ESCs increased PDX1
expression by small
molecules

DETA-NO, valproic acid, P300 inhibitor
C646, β-mercaptoethanol

Increased expression of β-
cells markers, glucose
responsivity, insulin secretion

Induced pluripotent stem cells

(Saxena et al. 2016) human iPSCs PDX1-MAFA- NGN3 Activin A, wnt3A, bFGF, BMP4, VEGF,
noggin, FGF10, KGF, EGF, B27, ascorbic
acid, KAAD-cyclopamine, retinoic acid, Y-
27632, vitamin A, T3, Alk5 inhibitor,
dibenzazepine

Adoption of β-cells
morphology, insulin
secretion

(Continued on following page)
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guideline for the induction of insulin-producing cells from non-β
cells using various transcription factors in a way mimicking the

natural process.

6 Role of PDX1 in reprogramming
different cell types into pancreatic β-
cells

The most promising way to synthesize β-cells from non-β-
cells appears to be by mimicking the natural process in which

β-cells are developed during pancreas genesis. Based on

evidence from years of studies of developmental biology, β-
like-cells or at least insulin-producing cells, can be obtained

from pluripotent cells, multipotent cells, or mature cell types.

Since PDX1 is a master regulator of β-cell differentiation and

maturation, a lot of differentiation approaches use PDX1 as

the main factor or as a part of multifactorial protocols. In this

section, we will review the research in which PDX1 has been

used to obtain insulin-producing β-like cells from non-β-cells
(Table 1).

Early efforts directed towards obtaining β-cells, focused on

embryonic stem cells (ESCs), taking advantage of the robust

pluripotency of ECSs and established knowledge about natural β-
cell genesis (Lumelsky et al., 2001). ESCs are guided towards

definitive endoderm, then pancreatic progenitors, followed by

endocrine progenitors, and finally mature β-cells. These

protocols exploit culture conditions to guide the

differentiation process into insulin-producing cells while

concurrently using forced expression of the transcriptional

factors regulating β-cell identity (Hebrok, 2012). D’Amour

et al. (2005) was one of the first groups that differentiated

ESCs into endoderm derivatives using Activin A in low serum

content. Since then, various protocols have emerged with

different modifications, changing signaling molecules,

transcription factors, and culture conditions. Cho et al. (2008)

have shown that exposure of human ESCs to betacellulin and

nicotinamide alongside other factors sustains PDX1 expression

and further induces β-cell differentiation. This approach of

stimulating PDX1 expression indirectly was also adapted by

Salguero-Aranda et al. (2016). Exposing mouse ESCs to

diethylenetriamine nitric oxide adduct leads to enhanced

expression of Pdx1 when combined with valproic acid, and

p300 inhibitor, enhanced pancreatic lineage specification and

the generation of glucose-responsive insulin-producing cells

(Salguero-Aranda et al., 2016). Another approach is the forced

expression of PDX1 by viral transduction, using adenoviral

transduction of PDX1+MAFA and either NGN3 or NEUROD

alongside small molecules in a three-step protocol that guided the

differentiation of mouse ESCs into insulin- and

C-peptide—producing cells with elevated expression of β-cell
markers (Xu et al., 2013). However, many of the obtained cells are

not considered “true” β-cells mainly because they are immature,

multihormonal, and unable to regulate glucose levels.

TABLE 1 (Continued) Summary of studies using PDX1 in obtaining β-cells (full version Supplementary Material).

Study Cell source Transcription
factors

Small molecules Outcome

(Rajaei et al. 2018) human iPSCs PDX1 activin A, Wnt3a, KGF, EGF, SB431542,
B27, KAAD cyclopamine, retinoic acid,
noggin, IBMX

Insulin and C-peptide
secretion, adoption of β-cells
morphology

Mesenchymal stem cells

(Yuan et al. 2010) rat bone marrow-derived
MSCs

PDX1 N/A Acquisition of β-cells
phenotype, insulin secretion

(He et al. 2011) human umbilical cordMSCs PDX1 EGF, B27, GLP-1, betacellulin, HGF,
nicotinamide, β-mercaptoethanol

Adoption of β-cells
morphology and marker
expression, insulin and
C-peptide secretion

(Lima et al. 2013) human exocrine pancreas-
derived MSCs

PDX1-MAFA-NGN3-
PAX4

betacellulin, exendin-4, nicotinamide Insulin secretion

(Chun et al. 2015) human amniotic fluid-
derived MSCs

PDX1 activin A, β-mercaptoethanol, N2, B27,
bFGF, nicotinamide

Expression of β-cells
markers, insulin, and
C-peptide secretion

(Xu et al. 2017) human umbilical
cord MSCs

PDX1-PAX4 B27 Acquisition of β-cells
phenotype, expression of
endocrine markers, insulin
secretion

(Gao et al. 2018) human adipose tissue-
derived MSCs

PDX1 N/A Insulin secretion
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The emergence of induced pluripotent stem cells (iPSCs),

circumvented ethical considerations related to ESCs and

opened doors to generate patient-specific therapeutic cells.

As with ESCs, differentiation protocols for iPSCs follow the

same developmental stages as β-cells, beginning with

definitive endoderm and moving towards pancreatic

progenitors and differentiated β-cells. PDX1 plays a

significant role in the differentiation of iPSCs into islet β
cells, manifested by its activation of NGN3 and PAX6

expression after binding to their promoter regions and

activating downstream gene networks (Qin et al., 2015).

(Walczak et al., 2016) showed that lentiviral transduction

of iPSCs with PDX1 and NKX6.1 induced the formation of

insulin-producing cells with a morphology resembling β-cells,
moreover, the derived cells secreted C-peptide in a glucose-

responsive manner (Rajaei et al., 2018). Alongside PDX1, two

other factors are usually used to push cells into β-cell
differentiation. These are MAFA and NGN3. Together all

three factors: PDX1, MAFA, and NGN3 are known as the

PMN factors and play a critical role in β-cell differentiation
and maturation. They have been used together in many

research projects to obtain β-cells (Zhu Y. et al., 2017). For

example, one study used a system to express the PMN factors

in iPSCs under the control of a vanillic acid-dependent switch,

coupled with a synthetic signaling cascade. Doing so allowed

precise replication of the dynamics of endogenous expression

and resulted in β-like cells comparable to human pancreatic

islets in GSIS (Saxena et al., 2016). Differentiation protocols

have witnessed many variations allowing the generation of cell

populations called stem cell-derived islets (SC-islets)

(Hogrebe et al., 2020; Maxwell and Millman, 2021).

Although promising, generating human iPSCs remains

inefficient and expensive, thus hindering the generation of

large numbers of patient-specific lines.

Another promising source from which to obtain β-cells is

mesenchymal stem cells (MSCs). MSCs have manifold

advantages, like immunomodulation, which reduce immune

system activation and anti-inflammatory factor release after

transplantation (Scuteri and Monfrini, 2018). Transfection of

bone marrow-derived MSCs with a recombinant plasmid

harboring PDX1 prompted islet-like structure formation,

insulin secretion, and the adoption of β-cell morphology

(Yuan et al., 2010). Furthermore, the level of PDX1 expression

is closely correlated with the level of insulin mRNA and the level

of insulin secretion in differentiated, stable MSC cell lines (Yuan

et al., 2012). Similar results have been shown in amniotic-fluid-

derived MSCs upon adenoviral transduction with PDX1 in

controlled culture conditions. Such MSCs were able to express

β-cell markers, and secrete insulin and C-peptide (Chun et al.,

2015). Similarly, umbilical-cord-derived-MSCs formed islet-like

structures containing β-like cells that produced insulin,

C-peptide, and other endocrine markers after delivery of

PDX1 (He et al., 2011) or the co-delivery of PDX1 and PAX4

using recombinant adenovirus under controlled media

conditions (Xu et al., 2017).

Using small molecules and controlled culture conditions are

of great importance in obtaining β-cells from other cell types.

Lima et al. (2013) obtained functional β-like-cells from

pancreatic-exocrine-tissue-derived MSCs after transduction

with adenovirus harboring PMN + PAX4. Interestingly, the

removal of serum from the media, stopping epithelial to

mesenchymal transition (EMT), with Rho-associated kinase

(ROCK), and the addition of small molecules like betacellulin,

exendin-4 and nicotinamide resulted in better insulin expression

and glucose regulation (Lima et al., 2013). Human adipose-

tissue-derived-MSCs could also be differentiated into

functional islet-like cells after transduction with adenovirus

harboring PDX1. Differentiated cells secreted insulin and

could regulate glucose in diabetic mice (Gao et al., 2018). All

things considered, MSCs are great candidates for the treatment of

diabetes, however, more studies are needed to evaluate the long-

term differentiative capabilities of MSCs and their safety in

application.

Soon after breaking the rigidity of adult differentiated cell

types, new research focused on reprogramming mature cells

directly into insulin-producing cells without inducing

pluripotency. Obtaining β-cells from terminally differentiated

cells might be a well-rounded alternative to the use of stem cells,

considering their abundance and low risk of tumorigenesis,

especially when sharing common progenitors with β-cells.
Akinci et al. (2012) introduced the PMN factors using an

adenoviral vector into 8 cell types, and demonstrated a bigger

likelihood of developmentally related cells to transdifferentiate

into β-cells. Of the 8 cell types studied, pancreatic exocrine and

SOX9+ hepatic cells upregulated β-cell markers and secreted

insulin (Akinci et al., 2012; Akinci et al., 2013).

Liver cells are developmentally related to β-cells and they

could be reprogrammed to adopt β-cell morphology and

markers. Much research has attempted to carry out in vivo

differentiation in animal subjects starting from liver cells. For

example, Ferber et al. (2000) identified the role of PDX1 in

transforming murine liver cells into insulin-secreting cells after

adenoviral transduction. The same results were repeated by

Wang et al. (2007) who used plasmids harboring PDX1 or

NGN3 with an unrelated adenovirus expressing the human

coagulation factor IX gene (AdVhFIX). Diabetic mice treated

with either of the two plasmids showed reduced hyperglycemia.

Interestingly, when either of the two transcription factors was

administrated in adeno-associated viral construct (AAV) there

was no response in glucose levels. Later, when another group

evaluated the effect of the hydrodynamic delivery of different

plasmids carrying PMN factors in the livers of rats, they found

that some plasmids like CpG-depleted plasmid (pCpG) and

increased the levels of insulin mRNA up to 50 fold. Moreover,

they detected signs of differentiation towards β-cells that were
able to control glucose in hyperglycemic rats for 1 week (Cim
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et al., 2012). Similar results were obtained by Banga et al. (2012),

who delivered PMN factors into murine livers by adenoviral

transduction and obtained glucose-sensitive cells that

ameliorated diabetes in mice. Hepatic to pancreatic

differentiation could also be achieved by ectopic expression of

PDX1 by recombinant adenovirus (Ber et al., 2003).

Some studies have used the active form of PDX1 (PDX1-

VP16) in which the activation domain from herpes simplex virus

(VP16) is fused to the C-terminus of PDX1, which allows

PDX1 to activate target genes without association with other

co-factors (Horb et al., 2003). Compared to PDX1, PDX1-VP16

is more efficient in initiating liver-to-endocrine pancreas

differentiation, however, both of them upregulated β-cell
genes and reversed hyperglycemia in diabetic mice upon

lentiviral transduction (Tang et al., 2006). Imai et al. (2005)

showed that adenoviral transduction with PDX1-VP16 induced

murine hepatocytes to produce insulin and to regulate

hyperglycemia in diabetic mice, however, the expression

pattern of the hepatocyte was maintained. Kaneto et al. (2005)

also showed that PDX1-VP16 increased insulin and other

pancreatic factors in the livers of mice and controlled

hyperglycemia, especially when combined with NEUROD or

NGN3. Cao et al. (2004) showed that the complete

transdifferentiation of hepatic cells into insulin-producing cells

by PDX1-VP16 requires additional external factors like high

glucose and hyperglycemia. Introducing exogenous PDX1-VP16

protein into definitive endoderm cells generated from ESCs,

mimicking the natural pattern of PDX1 expression, induced

an endocrine pancreas-like cell phenotype, in which 30% of

the cells were β-like cells (Bernardo et al., 2009). Taking into

account that the PDX1-VP16 approach showed convincing

results in the conversion of ESCs and hepatic cells into β-like
cells, perhaps this approach can be also adapted for the

transdifferentiation of other adult cells into β-cells.
In vivo studies have also been performed on other cell types.

Zhou et al. (2008) used adenovirus to deliver PMN into

differentiated pancreatic exocrine cells. The reprogrammed

cells resembled β-cells morphologically and functionally.

Another study screened the effect of PMN factors in a variety

of tissues. They found that expression of PMN in the intestinal

crypts gives them β-like features including glucose sensitivity and
insulin secretion ability (Chen et al., 2014).

α-cells have been particularly well-studied as sources for β-cell
compensation due to their sharing of a close progenitor. The

differential plasticity between alpha and β-cells was proven to be

subject to the effects of PDX1. Introducing PDX1 in NGN3+

endocrine progenitors in the embryonic period in mice resulted in

rapid postnatal reprogramming of α-cells to insulin-positive cells

resembling β-cells (Yang et al., 2011). Transduction of AAV

carrying PDX1 and MAFA into the pancreas of diabetic mice

leads to increased α-to β-cell transdifferentiation, increased glucose
responsiveness, and normalized blood sugar (Xiao et al., 2018).

Moreover, repression of α-cell genes like ARX while upregulating

PAX4 is another approach to guide α-to β-cells differentiation.

Lima et al. (2016) used PMN factors alongside PAX4 and siRNA

against ARX in the exocrine pancreas to favor the formation of β-
over α-cells. The obtained β-like cells efficiently processed and

secreted insulin and were able to respond to glucose and normalize

its levels in diabetic mice.

Gall bladder epithelial cells have also been studied in this

regard, after adenoviral transduction with PMN factors. The

reprogrammed cells upregulated β-cell genes while

downregulating epithelial genes, however, they were not true

functional β-cells because they were non-responsive to glucose

despite their insulin secretion ability (Hickey et al., 2013).

Cardinale et al. (2015) identified a heterogeneous stem/

progenitor cell population in the human biliary tree that,

when exposed to PDX1 protein in the media, internalized the

protein and started insulin and C-peptide production, indicating

endocrine differentiation. Another group upregulated the

expression of PDX1 indirectly by identifying an

andrographolide named C1037 that can stimulate PDX1

expression in both its resulting mRNA and protein levels.

Pancreatic duct cells treated with C1307 increased expression

of insulin while decreasing glucagon levels compared to control

groups (Zhang et al., 2020).

The numerous variations of differentiation protocols rule out

the existence of a unifiedmethod and source for obtaining β-cells.
Although promising, this numerosity indicates the need for more

studies and clinical trials to find a unified protocol involving the

least amount of genetic and cellular manipulation. All the

protocols summarized in this review have focused on the

activation of important β-cell genes, primarily PDX1. The

methods of activation alongside culture conditions and added

small molecules can vary and affect the differentiation outcome.

Some protocols rely solely on small molecules to provide

conditions similar to β-cell formation in vivo, which avoids

problems associated with viral transduction. Choosing the

right cell of origin can mean the difference between a

complex or a simple protocol. As mentioned before, cells that

share a common progenitor with β-cells are easier to transform.

Stem cells have great pluripotency potential but this raises the

risk of tumorigenesis. In conclusion, this data shows the

importance of PDX1 in obtaining β-cells considering its role

as a master regulator of β-cell function and identity.

7 Conclusion

Numerous studies on PDX1 have demonstrated its critical role

in organogenesis, differentiation, maturation, and in maintaining,

and preserving β-cell identity. Moreover, much research has

accomplished the differentiation of non-β-cells into insulin-

producing cells with the aid of PDX1 as a master regulator in

the differentiation protocols, or alongside other factors and soluble

molecules. This property of PDX1 makes it a particularly
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important target for gene or replacement therapy approaches to

the treatment of diabetes. Our increased knowledge of PDX1 and

other pancreatic endocrine factors provides the cornerstone for

optimizing differentiation protocols. Through the years, these

protocols have witnessed many advances and variations,

including various combinations of transcription factors, culture

media components, and different source cells. However, we are still

far from finding a bona fide alternative to human β-cells, but our
understanding of the role of transcription factors, their interactions

and intricate regulation by each other together with the further

impact of small molecules and epigenetic factors should eventually

allow us to obtain functional β-cells that would be suitable for

transplantation therapy in the treatment of diabetes.
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Nomenclature

Abbreviations

AAV Adeno-associated virus

bFGF basic fibroblast growth factor

EMT Epithelial–mesenchymal transition

ESC embryonic stem cells

GPCR G protein-coupled receptor

HSS Nuclease hypersensitive site

iPSCs induced pluripotent stem cells

ITS insulin–transferrin–selenium

lncRNA long non-coding RNA

MODY Maturity-onset diabetes of the young

MSC mesenchymal stem cells

ncRNA non-coding RNA

PMN PDX1, MAFA, NGN3

RA retinoic acid

ROCK Rho-associated kinase

SC-islets stem cells–derived islets

Shh Sonic hedgehog

siRNA Small interfering RNA

SIRT sirtuin

T1D Type 1 diabetes

T2D Type 2 diabetes

TF Transcription factor

Genes and proteins

AdVhFIX Human coagulation factor IX gene

AKT RAC-alpha serine/threonine-protein kinase

ARX Aristaless related homeobox

CDX2 Caudal Type Homeobox 2

CK2 Casein kinase II

FAM3A FAM3 metabolism regulating signaling molecule A

FGF Fibroblast growth factor

FGF2 Fibroblast growth factor 2

FOXA1 Forkhead box A1

FOXA2 Forkhead box A2

GAS5 growth arrest-specific transcript 5

GATA4 GATA Binding Protein 4

GCK Glucokinase

GLUT2 Glucose transporter 2

GRG3 Groucho-related gene 3

GSIS Glucose-stimulated insulin secretion

HDAC1 Histone deacetylase 1

HDAC2 Histone deacetylases 2

HES1 hes family bHLH transcription factor 1

HNF1α Hepatocyte nuclear factor 1 α
HNF3β Hepatocyte nuclear factor 3 β
HNF4β Hepatocyte nuclear factor 4 β
HNF6 Hepatocyte nuclear factor 6

IAPP Islet amyloid polypeptide

IGF1 Insulin-like growth factor 1

INS1 Insulin I

IPF1 Insulin-promoting factor 1

MAFA MAF bZIP transcription factor A

MAFB MAF bZIP transcription factor B

NEUROD Neuronal differentiation 1

NGN3 Neurogenin-3

NKX2.2 NK2 Homeobox 2

NKX6.1 NK6 Homeobox 1

OC1 One Cut Homeobox 1

PAX4 Paired box 4

PAX6 Paired box 6

PDX1 Pancreatic and duodenal homeobox 1

PLUTO PDX1 locus upstream transcript

PTF1α Pancreas-specific transcription factor 1α
RFX6 Regulatory factor X6

SLC2A Solute carrier family 2 member 9

SOX17 SRY-Box transcription factor 17

SOX9 SRY-Box transcription factor 9

SST Somatostatin

UCN3 Urocortin 3

USF1 Upstream stimulatory factor 1
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