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Bladder cancer (BlCa) is a highly immunogenic cancer. Bacillus Calmette-

Guérin (BCG) is the standard treatment for non-muscle invasive bladder

cancer (NMIBC) patients and, recently, second-line immunotherapies have

arisen to treat metastatic BlCa patients. Understanding the interactions

between tumor cells, immune cells and soluble factors in bladder tumor

microenvironment (TME) is crucial. Cytokines and chemokines released in

the TME have a dual role, since they can exhibit both a pro-inflammatory

and anti-inflammatory potential, driving infiltration and inflammation, and also

promoting evasion of immune system and pro-tumoral effects. In BlCa disease,

70–80% are non-muscle invasive bladder cancer, while 20–30% are muscle-

invasive bladder cancer (MIBC) at the time of diagnosis. However, during the

follow up, about half of treated NMIBC patients recur once ormore, with 5–25%

progressing to muscle-invasive bladder cancer, which represents a significant

concern to the clinic. Epithelial-mesenchymal transition (EMT) is one biological

process associated with tumor progression. Specific cytokines present in

bladder TME have been related with signaling pathways activation and EMT-

related molecules regulation. In this review, we summarized the immune

landscape in BlCa TME, along with the most relevant cytokines and their

putative role in driving EMT processes, tumor progression, invasion,

migration and metastasis formation.
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Introduction

Urothelial cell carcinoma is the most frequent type of bladder

cancer (BlCa), corresponding to approximately 90% of the total

cases (Cao et al., 2019). 70–80% of the cases are non-muscle

invasive bladder cancer (NMIBC), while the remaining 20–30%

are muscle-invasive bladder cancer (MIBC) at the time of

diagnosis (Yun and Kim, 2013; Chandrasekar et al., 2018).

After receiving surgical treatment, almost half of NMIBC

patients experience recurrences once or more, with 5–25% of

these patients eventually developing to MIBC, the most severe

form of the disease (Kamat et al., 2017). Also, a fraction of

patients can show metastases at the time of diagnosis, or develop

metastatic disease during follow-up, mainly to the bone (Stellato

et al., 2021), distant lymph nodes, lung (Dong et al., 2017) and

liver (Wang et al., 2020).

BlCa has the highest cumulative treatment cost, compared to

other types of cancers (Bryan, 2015). The standard treatment for

NMIBCs, except for carcinoma in situ (CIS), is transurethral

resection of bladder tumor (TURBT). After TURBT, intravesical

immunotherapy Bacillus Calmette-Guérin (BCG) is usually

applied in order to reduce the risk of recurrence and

progression (Kamat et al., 2017; Chandrasekar et al., 2018).

BCG has a dual role, since it promotes the activation of the

immune system and can directly kill tumor cells (Han et al.,

2020). Although the mechanisms of BCG-induced

immunotherapy are still incompletely understood (Song et al.,

2019), it is known that the immune system is triggered when

pathogen-associated molecule patterns (PAMPs), located at the

bacterium cell wall, are recognized by pattern recognition

receptors (PRRs) expressed by antigen-presenting cells (APCs)

and bladder tumor cells. This binding promotes

MyD88 signaling pathway stimulation, resulting in nuclear

factor kappa-B (NF-kB) activation that promotes cytokine

transcription (Han et al., 2020). Additionally, BCG-activated

skin dendritic cells (DCs) migrate to the draining lymph

nodes to activate adaptive CD4+ and CD8+ T cells, and

activation of B cells leads to the production of antibodies and

memory cells in response to the presence of BCG antigens

(Covián et al., 2019).

When tumors progress or are diagnosed as localized MIBC,

the recommended treatment is cisplatin-based neoadjuvant

chemotherapy (NAC) followed by radical cystectomy (Yafi

and Kassouf, 2009; Chandrasekar et al., 2018). Moreover,

cisplatin-based chemotherapy is the suggested treatment for

individuals who have metastases at the time of diagnosis or

develop later on (Chandrasekar et al., 2018). However, most of

the times, patients do not respond (Galsky et al., 2012; Minoli

et al., 2020) or present several comorbidities impeding the usage

of neoadjuvant or adjuvant chemotherapy (Inman et al., 2017).

This, alongside with the fact that BlCa is considered as an

immunogenic cancer, due to its high tumor mutation burden

(TMB) and neoantigens (Hu et al., 2021), led to the Food and

Drug Administration (FDA) approving several forms of

immunotherapy as second-line treatments for metastatic BlCa

patients who had not responded to cisplatin-based chemotherapy

(Wołącewicz et al., 2020; Du et al., 2021a). Immune checkpoint

blockade (ICB) therapies against PD-L1 (such as atezolizumab,

durvalumab and avelumab) or against PD-1 (nivolumab and

pembrolizumab) are increasingly promising targets in BlCa

(Song et al., 2019; Wołącewicz et al., 2020).

Tumor microenvironment (TME) in
BlCa

Bladder tumor microenvironment (TME) has a crucial role

in immunotherapy responses (Du et al., 2021a). TME comprise

non-cellular components, such as extracellular matrix (ECM)

and soluble biological factors or mediators, as cytokines/

chemokines, and cellular components, including tumor cells,

endothelial cells, stromal cells, and tumor-infiltrating immune

cells (TIICs) (Du et al., 2021a; Liu et al., 2021). According to the

ESTIMATE algorithm (Yoshihara et al., 2013), patients with high

immune score had better prognosis, while patients with high

stromal score were associated with shorter survival (Liu et al.,

2021). The development of new immunotherapeutic strategies or

an improvement in their effectiveness may be aided by a greater

comprehension of the bladder TME (Nair et al., 2020).

TME immune cells in BlCa

Macrophages are one the most abundant immune cells in the

TME, including in BlCa (Miyake et al., 2016; Du et al., 2021b).

Tumor-associated macrophages (TAMs) secrete several soluble

molecules, such as cytokines and chemokines, that directly

influence tumor growth, metastasis, and drug resistance

(Hanada et al., 2000; Pan et al., 2020). In BlCa, higher

amounts of CD68+ (pan-macrophage marker) cells, were

associated with higher grade and advanced tumors (Huang

et al., 2020; Harras and Abo Safia, 2021). Specifically, TAMs

(CD68+) number was significantly higher in MIBCs comparing

with NMIBCs (Hanada et al., 2000; Viveiros et al., 2022) and

higher amounts of CD68+ cells were significantly associated with

poorer disease specific survival (DSS) in bladder peritumoral

regions and with worse overall survival (OS) and DSS in bladder

intratumoral regions (Viveiros et al., 2022). Co-cultures between

macrophages and BlCa cell lines showed an increase in colony

formation, cell migration and cell invasion (Huang et al., 2020).

TME influence macrophage polarization and, consequently,

macrophage function (Miyake et al., 2016). Macrophages can

be classified in anti-tumor/proinflammatory (M1) and pro-

tumor/anti-inflammatory (M2) (Miyake et al., 2016).

M2 macrophages (CD163+) are associated with tumorigenesis,

tumor growth, angiogenesis, inhibition of immunosurveillance
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and ECM degradation (Miyake et al., 2016; Du et al., 2021b;

Harras and Abo Safia, 2021). TAMs usually display a bias

towards an M2-like phenotype (Takeuchi et al., 2016), as

observed in BlCa (Viveiros et al., 2022). Indeed, higher ratio

of CD163+/CD68+ macrophages was correlated with advanced

BlCa stage and grade (Takeuchi et al., 2016) and higher amounts

of CD163+ were significantly associated with worse DSS and OS

(Viveiros et al., 2022).

Fibroblasts are one of the most abundant and active cells in

the stroma, performing tissue repair functions (Miyake et al.,

2016). Cancer-associated fibroblasts (CAFs) contribute to tumor

growth, angiogenesis and treatment resistance by secreting

specific cytokines (Miyake et al., 2016). Additionally, CAFs

secrete several factors, such as collagen, matrix

metalloproteinases (MMPs), chemokines and proteases

(Miyake et al., 2016; Du et al., 2021b). Du Y et al.

demonstrated, in silico, that CAFs were abundant in bladder

TME. Moreover, the authors showed that higher CAF levels

enhanced BlCa progression and were associated with lower OS

Du et al. (2021b). Other study demonstrated that co-culture

between fibroblasts and BlCa cell lines (UMUC3, T24 and 5637)

improved tumor cell invasion (Yeh et al., 2015) and have been

associated with cisplatin resistance (Long et al., 2019).

Overall T cells (CD3+) were significant increase in MIBC

tumors, comparing with high-grade NMIBCs, although no

differences were found in bladder peritumoral areas (Viveiros

et al., 2022). It was shown that CD3+ in tumor infiltrating

lymphocytes (TILs) were related with poor outcome in BlCa

patients (Russo et al., 2022). However, Viveiros N et al. proved

that an enrichment of CD3+ cells, in the intratumoral area,

significantly associated with higher disease-free survival (DFS)

(Viveiros et al., 2022) and Sjödahl G et al. showed that infiltrating

CD3+ cells were significantly associated with good prognosis in

the MIBC cases (Sjödahl et al., 2014).

In silico, cytotoxic CD8+ T cells correlated with better patient

outcome, being observed a decrease of CD8+ levels in higher BlCa

stages (Cao et al., 2019; Zhang et al., 2020). In patient tissues,

Zhang S et al. and Jóźwicki W et al. reported that CD8+ TILs was

found mostly in pTa-pT1, comparing with pT2 tumors Jóźwicki

et al. (2016), Zhang et al. (2017). Specifically, in Zhang S et al.

study, higher CD8+ was associated with better OS in non-organ

confined disease, but with worse OS in organ-confined disease

patients, suggesting that cytotoxic T cells might have anti-

tumor activity in non-organ confined disease and a pro-

tumor activity in organ-confined disease Zhang et al.

(2017). Viveiros N et al. observed that MIBC patients

presented higher CD8+ expression, comparing with NMIBC

high-grade, but, specifically, MIBC tumors with high

intratumoral CD8 expression demonstrated higher DFS and

OS Viveiros et al. (2022). Additionally, it was shown that poor

CD8+ T cell expression, along with type I IFN signature and

IFN-inducible inhibitory factors, characterize a non-T cell

inflamed bladder TME (Trujillo et al., 2018), usually

correlated with poor prognosis and resistance to

immunotherapies (Sweis et al., 2016).

In silico, Cao J et al. observed that CD4+ memory resting cells

decreased with higher BlCa stage, while CD4+ memory activated

T cells increased Cao et al. (2019). Zhang Y et al. showed, in silico,

that activated memory CD4+ cells were significantly associated

with better outcome, while resting memory CD4+ cells were

associated with poor outcome in BlCa patients Zhang et al.

(2020). In BlCa tissues, CD4+ levels were significantly higher

in pTa-pT1 patients, comparing with most aggressive tumors

(Jóźwicki et al., 2016; Viveiros et al., 2022). However, stratifying

the tumoral areas, it was observed that CD4+ cells were

significantly enriched in high-grade NMIBCs in peritumoral

area, while CD4+ levels were significantly abundant in MIBCs

in intratumoral area (Viveiros et al., 2022).

Regulatory T (Treg) cells are a subpopulation of CD4+ T cells,

characterized by the expression forkhead box protein P3

(FOXP3) transcription factor (Winerdal et al., 2011; Ariafar

et al., 2020). Tregs are known to trigger several

immunosuppressive mechanisms, both by contact-dependent

manner, or indirectly through the secretion of several

cytokines, capable of promoting tumor progression (Ariafar

et al., 2020). Ariafar A et al., detected a Treg population

(CD4+CD25+FOXP3+CD127low/neg) in lymph nodes from BlCa

patients, representing about 10% of all CD4+ T cells Ariafar et al.

(2020). In this study, Treg cells were significantly higher in

patients with at least one involved node, comparing with

negative-node patients, although no impact was observed in

the survival time (Ariafar et al., 2020), suggesting that Tregs

might play a role in tumor metastasis formation (Ariafar et al.,

2020). Viveiros N et al. observed that Treg cells were significantly

lower in the peritumoral area in more advanced stages (pT3 and

pT4), but were significantly higher in the intratumoral areas in

pTa-pT1 (Viveiros et al., 2022). Moreover, higher Treg amounts

in intratumoral areas of high-grade NMIBCs were associated

with poor OS and DSS (Viveiros et al., 2022). Jóźwicki W et al.

showed that Treg amounts were significantly higher in BlCa

patients peripheral blood before the surgery, comparing with

after surgery (Jóźwicki et al., 2016).

In BlCa, NK cells have been proved to be important in BCG-

treatment (Brandau et al., 2001; Esteso et al., 2021), however less

is known regarding the role of NK cells in bladder tumor immune

surveillance (Sun et al., 2021a). Krpina K et al. demonstrated that

NMIBC patients with recurrent disease presented significantly

higher levels of stromal NK cells, compared with NMIBC

patients without recurrence disease (Krpina et al., 2014).

Additionally, NMIBC patients with recurrent pTa tumors,

recurrent smaller tumors, and recurrent single tumors,

presented significantly higher levels of stromal NK cells, than

no reccurent NMIBC patients (Krpina et al., 2014). NK cells can

be divided in CD56dim NK cells (CD3−CD56dimCD16+),

presenting higher cytolytic activity, and in CD56bright NK cells

(CD3−CD56brightCD16−), presenting immunoregulatory function
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through abundant cytokine production (Lin et al., 2004; Poli

et al., 2009; Moretta, 2010). In BlCa patients, it was demonstrated

that most NK cells were dim NK cells and the proportion of

intratumoral dim NK cells were significantly higher in most

advanced stages (Mukherjee et al., 2018). Furthermore, higher

amounts of CD56bright NK cells were significantly associated with

better OS and cancer-specific survival (CSS) (Mukherjee et al.,

2018).

DCs are specialized APCs that comprise a rare immune cell

population in tumors and in lymphoid organs (Gallo and

Gallucci, 2013; Wculek et al., 2020). DCs are essential in

trigging antigen-specific immunity and tolerance, since present

antigens to T cells and produce immunomodulatory signals by

cytokines and cell-cell contacts (Wculek et al., 2020). DCs can be

stratified in plasmacytoid (pDC) and in myeloid (mDC) DCs

(Martin-Gayo and Yu, 2019). Although DCs are in very low

amounts in peripheral blood, Rossi R et al. showed a significant

decrease of mDCs and pDCs levels in NMIBC patients peripheral

blood before TURBT, comparing with healthy donors (Rossi

et al., 2013). Also, the authors showed a significant decrease of

mDCs in low-grade NMIBC patients before TURBT, compared

with high-grade NMIBC patients, while for pDCs no significant

differences were observed (Rossi et al., 2013). Patients who

received BCG instillations showed peripheral blood evidence

of mDC recovery, especially from the third instillation until

the completion of the treatment, but no appreciable

alterations were detected for pDCs (Rossi et al., 2013). While

urine samples did not present mDCs or pDCs before, from third

week of BCG instillations mDCs were detected (Rossi et al.,

2013). DC cells previously co-cultured with the pumc-91 BlCa

cell line resulted in an impaired induction of T cell proliferation.

Additionally, a decrease in the levels of T cell-derived cytokines

(IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ and IL-17A) was observed,
compared to control DCs (Xiu et al., 2016), indicating that BlCa

cells might induce DC dysfunction, failing to induce T cell

responses (Xiu et al., 2016). In patient tissues, high-grade

NMIBC and MIBC patients showed similar mature DCs

(CD83+) levels in bladder peritumoral area and absent

expression in intratumoral area (Viveiros et al., 2022).

B cells are important molecules in the adaptive immune

response capable of produce both pro- and anti-

inflammatory cytokines (Magatti et al., 2020). In silico

analysis demonstrated that naive B cells were significantly

lower in BlCa tumors than in control samples (Zhang et al.,

2020). However, Ou Z et al. demonstrated that BlCa tissues

had more B cells (CD20+), than the adjacent normal tissue

samples (Ou et al. 2015). Considering high-grade NMIBC

and MIBC patients, B cells were only present in bladder

peritumoral areas (Viveiros et al., 2022). B cells were

significanlty increased in MIBCs, and higher B cell levels

were statistically associated with poor DSS (Viveiros et al.,

2022). Moreover, Ou Z et al. showed that BlCa cell lines’

migration and invasion significantly increase after co-culture

with B cells and in vivo, tumor infiltrating B cells could

promote BlCa metastasis Ou et al. (2015).

Immune cells are major cytokines/chemokine producers,

playing a role in initiating and triggering immune responses

and recruitment of other cell populations to the tumor site. Thus,

dysregulations in immune populations in the tumor, can then

reflect in the cytokine production in the TME. Those alterations

will not only impact in the recruitment and shaping of other

immune cells, but also in shaping tumor cells. The impact of

TME on driving tumor cell mechanisms that lead to evasion will

define tumor development.

Epithelial-mesenchymal transition
(EMT) in BlCa

Epithelial-mesenchymal transition (EMT) is a process

involved in tumor progression. EMT can be divided in three

different types, according to the biological context (Kalluri and

Weinberg, 2009). EMT type 1, occurs during embryogenesis,

while EMT type 2 relates with inflammation process, wound

healing and tissue regeneration (Kalluri and Weinberg, 2009;

Yun and Kim, 2013). EMT type 3 is usually associated with tumor

progression, particularly in NMIBC to MIBC progression

(Kalluri and Weinberg, 2009; Cao et al., 2020). Traditional

EMT involves cellular transdifferentiation, which causes

changes in desmosomes, adherens junctions, and tight

junctions in epithelial cells. A change in the actin cytoskeletal

architecture during this phase results in phenotypical changes

where front-rear polarity replaces apical-basal polarity. (Koo

et al., 2010; Lu and Kang, 2019). Molecularly, it occurs a

decrease in epithelial-related genes, such as CDH1, TJP1,

CLDN1 and specific cytokeratin genes, and an increase in

mesenchymal-related genes, such as VIM, CDH2, ITGB1 and

ITGB2 (Koo et al., 2010; Lu and Kang, 2019). Additionally, cells

exhibiting EMT characteristics can degrade the extracellular

matrix by MMPs (Xu et al., 2009; Lu and Kang, 2019). As a

result, these cells increase motility, develop resistance to

apoptosis, and become isolated, which culminates in cell

invasion and migration (Xu et al., 2009; Koo et al., 2010).

According to in silico analysis, EMT signaling pathways were

shown to be significantly activated fromNMIBCs to MIBCs (Cao

et al., 2020). In this same study, low-risk score patients (based on

EMT-related gene signature) showed significantly higher OS and

DFS rates than high-risk score, and MIBC samples showed a

higher risk-score, comparing with NMIBC patients (Cao et al.,

2020). Indeed, in BlCa patient samples, CDH1 and TP63

transcript levels were significantly higher in superficial tumors,

comparing with MIBCs, while in the most aggressive tumors,

VIM, ZEB1, ZEB2, MMP2 and MMP9 transcript levels were

significantly enhanced (Choi et al., 2012).

It is becoming increasingly evident that cells can undergo

rather a partial EMT, exhibiting hybrid epithelial and
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mesenchymal features (Lu and Kang, 2019). EMT plasticity

involves several epigenetic and genetic alterations, resulting in

alterations in the expression of epithelial and mesenchymal

markers (Sinha et al., 2020). Cells under partial EMT

demonstrate several advantages, comparing with cells with

complete EMT phenotypes, such as higher survival

mechanisms, tumor-initiating and metastatic potential, which

might enhance immune-resistance and chemo-tolerance and

increase tumor aggressiveness (Jolly et al., 2015). Indeed, it

was shown that there is a “cadherin modulation” in advanced

BlCa, where the epithelial marker E-cadherin is expressed at

lower levels, simultaneously with high levels of mesenchymal-

associated P-cadherin and/or R-cadherin (Martins-Lima et al.,

2022).

According to the literature, partial EMT is maintained by

phenotypic stability factors (PSFs) and several EMT-inducing

transcription factors (EMT-TFs) (Bocci et al., 2019; Sinha et al.,

2020). The most well-known EMT-TFs are the zinc-finger-

binding transcription factors Snail and Slug, the basic helix-

loop-helix (bHLH) factor TWIST1, and the zinc-finger E-box-

binding homeobox factors ZEB1 and ZEB2 (Kalluri and

Weinberg, 2009; Jolly et al., 2015). Usually, these EMT-TFs

are responsible for CDH1 repression and CDH2 expression

(Wendt et al., 2009). There are specific signaling pathways

related with EMT induction, such as transforming growth

factor β (TGF-β), bone morphogenetic protein (BMP), Notch,

Wnt, hepatocyte growth factor (HGF), epidermal growth factor

(EGF), fibroblast growth factor (FGF), platelet-derived growth

factor (PDGF), sonic hedehog (Shh), and integrin signaling (Xu

et al., 2009; Gonzalez and Medici, 2014; Jolly et al., 2015; Lu and

Kang, 2019).

TME cytokines/chemokines in BlCa
and impact in EMT modulation

TME has been described to have an important role, not only

in EMT induction, but also in the reversion process,

mesenchymal-epithelial transition (MET), in distant metastasis

(Sinha et al., 2020). Immune cells, besides playing fundamental

direct anti-tumoral and pro-tumoral roles, can also display their

function through the secretion of cytokines (Zhang and An, 2007;

Shelton et al., 2021). Moreover, other types of cells, as endothelial

cells, tumor cells, and fibroblasts, are able to produce cytokines

(Dunlop and Campbell, 2000; Zhang and An, 2007; Van Linthout

et al., 2014). Cytokines are small secreted proteins that participate

in cell-cell interaction and communication (Zhang and An,

2007). Cytokine-target cells can be cells that secrete them, in

an autocrine action, or the distant cells, in an endocrine action

(Zhang and An, 2007). Several cytokines can display both anti-

inflammatory and pro-inflammatory potential (Ramesh et al.,

2013). Although cytokines participates in tissue damage control

and repair (Suarez-Carmona et al., 2017), these soluble molecules

can also modulate the TME and, consequently, shape tumor

biology (Morizawa et al., 2018), promoting tumor cell survival,

proliferation, angiogenesis and immunosuppression (Suarez-

Carmona et al., 2017). According to their function and

structure, cytokines can be stratified into interferons (IFNs),

interleukins (ILs), tumor necrosis factor-alpha (TNFs),

transforming growth factors (TGFs), chemotactic cytokines

(chemokines), and colony-stimulating factors (CSFs)

(Kartikasari et al., 2021).

Chemokines play important roles in inflammatory responses,

promoting the recruitment of immune cells responsible for

innate and adaptive immune responses (Miyake et al., 2013).

There are four chemokine groups, based on two cysteine residue

positions, XC, CC, CX3C and CXC (Sokol and Luster, 2015;

Kohli et al., 2022). CXC chemokine family can be stratified based

on the presence of three amino acid residues (Glu-Leu-Arg; ELR

motif), comprising CXCL1, CXCL2, CXCL3, CXCL5, CXCL6,

CXCL7, and CXCL8, which are powerful angiogenic molecules

and presenting neutrophils chemoattraction abilities (Kawanishi

et al., 2008). On the other hand, CXCL4, CXCL9 and CXCL10 are

chemokines without ELR motif, displaying chemoattraction

capacities for mononuclear cells and can inhibit angiogenesis

(Addison et al., 2000; Kawanishi et al., 2008). Chemokines can be

cleaved by several molecules, such as, MMPS, cathepsins,

thrombin, plasmin and elastase (Hughes and Nibbs, 2018).

Chemokines and their receptors can play anti-tumor roles,

since these molecules are responsible for the recruitment of

immune cells to TME, such as CD8+ T cells, T helper cells

and NK (Chow and Luster, 2014; Bule et al., 2021; Kohli et al.,

2022). However, chemokine ligands and receptors can play pro-

tumoral roles, namely by recruiting pro-tumorigenic immune,

such as tumor-associated neutrophils (TAN), TAMs and Treg

cells (Bule et al., 2021). Thus, cytokines might also be implicated

in the tumor initiation, growth, progression and involved in

metastasis formation (Chow and Luster, 2014; Burnier et al.,

2015; Kohli et al., 2022).

According to the literature, specific cytokines have been

described to be responsible for the transcriptional activation

of several genes, including EMT-related genes (Sistigu et al.,

2017), consequently contributing to promote BlCa progression,

invasion, migration, metastasis formation and angiogenesis

(Inoue et al., 2000; Mian et al., 2003; Tsui et al., 2013; Goulet

et al., 2019; Zou et al., 2019). Herein, we will focus on some of the

most relevant cytokines/chemokines described to be involved in

BlCa tumorigenesis and progression and their putative roles in

driving EMT processes.

IL-8/CXCL8

IL-8, also known as CXCL8, is an angiogenic factor

associated with inflammation and tumorigenesis and it is

considered a pro-inflammatory cytokine (Urquidi et al., 2012;
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Yao et al., 2020). This chemokine has a powerful leukocyte

chemoattraction (Koçak et al., 2004; Jovanović et al., 2010),

specially neutrophils attraction (Jovanović et al., 2010).

Indeed, in inflammatory regions, IL-8 is responsible to

attract and activate neutrophils (Bickel, 1993).

Additionally, IL-8 promotes the adhesion of monocytes

and neutrophils to endothelial cells, facilitating

translocation to inflamed tissues (Gonzalez-Aparicio and

Alfaro, 2018). IL-8 can be secreted by lymphocytes,

neutrophils, macrophages and by several types of tumor

cells (Ou et al., 2015). Furthermore, IL-8 plays an

important role in promoting angiogenesis, since

contributes to the growth and survival of endothelial cells

(Tseng-Rogenski and Liebert, 2009). CXC chemokine

receptor 1 (CXCR1) and CXC chemokine receptor 2

(CXCR2), also known as interleukin-8 receptor type beta

(IL8RB), are IL-8 receptors, usually expressed in

neutrophils and granulocytic myeloid-derived suppressor

cells (GR-MDSC) (Miyake et al., 2019; Teijeira et al.,

2020). When IL-8 binds to CXCR1 and CXCR2 activates

serine/threonine kinases, protein tyrosines and Rho-

GTPases, stimulating the expression of proteins related

with cell proliferation, survival and cell invasion

(Escudero-Lourdes et al., 2012).

In silico GSE32894 database, lower IL8 levels were associated

with improved DSS (Chen et al., 2022). However, in The Cancer

Genome Atlas (TCGA) database, it was demonstrated that higher

IL8 levels were significantly associated with basal subtype

(usually associated with advanced stage tumors and metastatic

disease), comparing with luminal subtype (predominantly

associated with papillary histopathological features)

(McConkey and Choi, 2018; Chen et al., 2022) (Table 1).

IL-8 urinary protein concentration was found to be

significantly higher in bladder tumor patients, comparing with

healthy controls (Urquidi et al., 2012; Al-biaty, 2015; Kumari

et al., 2017). Furthermore, a significant IL-8 increase was assessed

in higher grade and in MIBC tumors, where recurrent disease

showed higher IL-8 protein levels, compared with healthy control

or newly diagnosed patients (Al-biaty, 2015; Kumari et al., 2017)

(Table 1).

Reis ST et al. demonstrated that the majority of bladder

tumors tissues underexpressed IL-8, comparing with controls

(Reis et al., 2012). However, a significant association was

established between high-grade tumors and higher IL8 levels

(Reis et al., 2012). Moreover, pT1 and pT2 showed higher IL8

levels expression than pTa tumors, and recurrent disease patients

demonstrated significant higher IL8 levels, compared to patients

that not recurred (Reis et al., 2012) (Table 1).

It was also demonstrated in vitro that IL-8 is actually

expressed by normal urothelial cells and promotes not only

cellular growth, through AKT pathway, but also cellular

survival in normal urothelial cells (Tseng-Rogenski and

Liebert, 2009). Additionally, IL8/IL-8 levels were significantly

higher in BlCa cell lines (J82 and TCCSUP) after co-culture with

macrophages (Huang et al., 2020). Furthermore, studies in vitro

suggest a relationship between IL-8 and BCG treatment, since

this treatment promotes Ca2+ signaling stimulation and NF-kB

activation, being responsible for an increase of IL-8 secretion

(Ibarra et al., 2019) (Table 1).

According to the literature, in serum samples, IL-8

expression was significantly associated with poor CSS and

shorter OS (Morizawa et al., 2018) (Table 1).

In vivo studies demonstrated that IL-8 is able to regulate BlCa

tumorigenicity and metastasis formation, and higher IL-8

expression was correlated with higher tumor-induced

neovascularization (Inoue et al., 2000). Furthermore, when

nude mice implanted with 253J B-V and UMUC3 cell lines in

the bladder cell wall were treated with ABX-IL8, an inhibitor of

IL-8, it was observed a significant suppression in tumor growth

(Mian et al., 2003) (Table 1).

Since IL-8 is upregulated in MIBC tumors (Al-biaty, 2015),

and seems to promote tumor growth (Mian et al., 2003) and

metastasis formation (Inoue et al., 2000), it suggests that it might

play a crucial role in driving EMT. Until now, there are some

studies focusing on how deregulation of IL-8 in BlCa might

promote alterations in EMT-related molecules and which

signaling pathways might be involved in BlCa. It is established

that arsenic (As) exposure is a risk factor of BlCa (Escudero-

Lourdes et al., 2012). UROtsa, an urothelial cell line, exposed to

the arsenic metabolite monomethylarsonous [MMA (III)]

undergo malignant transformation. MMA (III) exposure

induced IL8/IL-8 overexpression, followed by an increase of

CCND1, BCL2 and MMP9 (Escudero-Lourdes et al., 2012). In

vivo, IL8 silencing induced a significant decrease of cell

proliferation and of tumor formation, while, in vitro, was

observed a downregulation of CCND1, BCL2 and MMP9

(Escudero-Lourdes et al., 2012). Furthermore, SVHUC1, a

non-malignant BlCa cell line, demonstrated

HER2 overexpression and an IL8/IL-8 activation upon

exposure to As (Zhou et al., 2021). Consequently, IL-8

promoted extracellular signal-regulated kinase (ERK), AKT,

and signal transducer and activator of transcription (STAT) 3

signaling activation, resulting in an evident influence in EMT,

since the E-cadherin decreased, while Vimentin, Snail, Slug and

Twist increased (Zhou et al., 2021). It was shown that a tight

junction protein family member, occludin, regulated

angiogenesis by controlling IL-8/STAT3 signaling pathway by

STAT4 activation (Yang et al., 2022). Retz MM et al. showed that

co-culture of B cells with the BlCa cell lines, TCCSUP, T24 and

J82, increased bladder cell invasion and migration (Ou et al.,

2015). The authors suggested that infiltrating B cells can promote

IL-8 increase and, consequently, an increase of androgen

receptor (AR), leading to MMP-1 and MMP-13 increase (Ou

et al., 2015). Corroborating these findings, in vivo experiments

showed that infiltrating B cells could increase BlCa cell invasion

via increasing AR signal (Ou et al., 2015). Furthermore, it was

Frontiers in Molecular Biosciences frontiersin.org06

Martins-Lima et al. 10.3389/fmolb.2022.1070383

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1070383


TABLE 1 Cytokines/chemokines levels are deregulated during BlCa progression, growth, invasion, and metastases formation.

IL-8/CXCL8 CCL2 CXCL1 CXCL12 IL-6 TGF-β1

Receptors CXCR1; CXCR2/IL8RB (Miyake et al., 2019;

Teijeira et al., 2020)

CCR2; CCR4 (Zhang et al., 2010; Gao et al.,

2019)

CXCR2 (Kawanishi et al., 2008) CXCR4; CXCR7 (Shen et al., 2013; Zhang et al., 2018) IL-6R (Andrews et al., 2002) TGF-βRI; TGF-βRII (Kim et al., 2001)

Major

producing

cells

Tumor cells; Lymphocytes; Neutrophils;

Macrophages (Ou et al., 2015)

Tumor cells; Macrophages; Fibroblasts;

Lymphocytes; Vascular Smooth Muscle

(Amann et al., 1998)

Macrophages; Mast cells (De Filippo et al.,

2013)

Cancer associated fibroblasts (Du et al., 2021c) T lymphocytes; Macrophages; Tumor cells;

Endothelial cells; Epithelial cells; Muscle cells

(Andrews et al., 2002; Rossi et al., 2015;

Schuettfort et al., 2022)

Regulatory T cells; Cancer-associated fibroblasts; M2

macrophages; MDSC (Ao et al., 2007; Yu et al., 2014;

Yeh et al., 2015; Groth et al., 2019; Efiloğlu et al.,

2020; Horibe et al., 2021)

Urine ↑ in BlCa patients than controls (Urquidi

et al., 2012; Al-biaty, 2015; Kumari et al.,

2017); ↑ in MIBC tumors (Al-biaty, 2015);

↑ in undifferentiated tumors (Al-biaty, 2015;

Kumari et al., 2017); ↑ in recurrent disease

(Al-biaty, 2015; Kumari et al., 2017)

↑ in pT2-pT4 than pT1 (Amann et al., 1998) ↑ in BlCa patients than controls (Kawanishi

et al., 2008; Burnier et al., 2015); ↑ in pT1-

pT4 than pTa (Kawanishi et al., 2008)

↓ CXCL12A in lower grade (Gosalbez et al., 2014);

↑ CXCL12B in higher grade (Gosalbez et al., 2014);

CXCL12G was not detected (Gosalbez et al., 2014)

↑ in pT3-pT4 than patients with early stages or

than non-malignant disease (Chen et al., 2013);

↑ IL-6 in lower grades (Kumari et al., 2017);

↑ IL-6 associated with ↓ OS (Morizawa et al.,

2018)

↑ in BlCa patients than controls or chronic cystitis

disease (Helmy et al., 2007)

In vitro IL-8 promotes cellular growth and cellular

survival in normal urothelial cells (Tseng-

Rogenski and Liebert, 2009)

↑ in high-grade BlCa cell lines (Chiu et al.,

2012); ↓ in low-grade BlCa cell lines (Chiu et
al., 2012)

↑ in most aggressive BlCa cell lines

(Kawanishi et al., 2008); ↑ CXCL1 increases

invasive abilities of BlCa cell lines

(Kawanishi et al., 2008; Miyake et al., 2019);

↑ CXCL1 increases angiogenesis abilities of

BlCa cell lines (Miyake et al., 2019)

Regulates BlCa cell invasion abilities (Shen et al.,

2013); Regulates BlCa cell migration abilities (Retz

et al., 2005)

IL-6 was associated with BlCa cell line invasion

(Yeh et al., 2015); IL-6 was associated with BlCa

cell line growth/proliferation (Okamoto et al.,

1997; Miyake et al., 2019)

TGF-β1 was associated ↑ BlCa cell line

proliferation; TGF-β1 was associated ↑ BlCa cell
line colony formation; TGF-β1 was associated

↑ BlCa cell line invasion; TGF-β1 was associated

↑ BlCa cell line migration (Bian et al., 2013;

Zhang et al., 2016; Zou et al., 2019)

Patient tissues ↓ in BlCa patients (Reis et al., 2012);

↑ in undifferentiated tumors (Reis et al., 2012);

↑ in pT1-pT2 than pTa (Reis et al., 2012);

↑ in recurrent disease (Reis et al., 2012)

↑ in BlCa patients than normal/adjacent

tissues (Wang et al., 2017); ↑ in

undifferentiated tumors (Gao et al., 2019);

↑ in higher stage tumors (Gao et al., 2019);

↑ in lymph node metastasis (Gao et al.,

2019); In MIBC patients, ↑ CCL2 in tumor

cells was associated with ↓ OS, ↓ DSS and

↓RFS (Eckstein et al., 2020)

Normal or benign tissues did not express

CXCL1 (Kawanishi et al., 2008; Miyake

et al., 2013); ↑ in undifferentiated tumors

(Miyake et al., 2013); ↑ in higher stage

tumors (Kawanishi et al., 2008; Miyake

et al., 2013); ↑ CXCL1 was associated with ↓
OS (Miyake et al., 2013); ↑ CXCL1 was

associated with ↓ DSS (Miyake et al., 2013)

↑ in BlCa patients (Yang et al., 2015) vs. ↓ in BlCa

patients (Du et al., 2021c);

↑ in undifferentiated tumors (Batsi et al., 2014); ↑ in

higher stage tumors (Batsi et al., 2014); ↑ in recurrent

disease (Batsi et al., 2014); Normal tissue did not

express CXCL12 (Yang et al., 2015)

↑ IL-6/IL6 in BlCa patients than normal tissues

or cystitis patients (Chen et al., 2013); ↑ in early

stages than non-malignant disease (Chen et al.,

2013); ↑ was mostly associated in MIBC tissues

(Chen et al., 2013); IL-6 is expressed in non-

malignant tissues (Chen et al., 2013)

↓ in normal urothelium (Yang et al., 2018; Zou et al.,

2019); ↑ in higher stage tumors (Kim et al., 2001;

Yang et al., 2018; Stojnev et al., 2019; Zou et al., 2019);

↑ in undifferentiated tumors (Zou et al., 2019; Stojnev

et al., 2019); ↑ was correlated with ↑ cancer-specific

death (Stojnev et al., 2019)

vs.

↑ TGFB1 in lower stage tumors (Miyamoto et al.,

1995); ↑ TGFB1 in well-differentiated tumors

(Miyamoto et al., 1995); ↑ TGF-β1 in BlCa tumors

than normal tissues (Miyamoto et al., 1995)

In silico ↓ IL8 was associated with ↑ DSS (Chen et al.,

2022); ↑IL8 was associated with basal subtype

(Chen et al., 2022)

↓ CCL2 in BlCa patients than the controls

(Li et al., 2021); ↑ CCL2 associated with

better DFS (Li et al., 2021)

↑ CXCL1 in BlCa tumors than controls (Sun

et al., 2021b); ↑ CXCL1 was associated with

↓ OS (Sun et al., 2021b)

↓ CXCL12 in BlCa tumors than controls (Sun et al.,

2021b; Du et al., 2021c)

vs.

In tumors, ↑ CXCL12 was associated with ↑ stage (Sun
et al., 2021b; Liu et al., 2021); In tumors, ↑ CXCL12

was associated with ↑ lymph node (N2 than N0) (Liu

et al., 2021); In tumors, ↑ CXCL12 was associated with
↓ prognosis (Sun et al., 2021b; Liu et al., 2021)

↑ in undifferentiated tumors (Goulet et al.,

2019); ↑ in advanced tumors (Goulet et al.,

2019)

↑ TGFB1 in MIBCs, comparing with NMIBCs (Zou

et al., 2019); ↑ TGFB1 was associated with ↑ risk of

death (Zou et al., 2019); ↑ TGFB1 was associated with
↓DFS (Zou et al., 2019); ↑ TGFB1was associated with
↓ OS (Zou et al., 2019)

In vivo IL-8 regulates tumor growth (Mian et al.,

2003); IL-8 regulates BlCa tumorigenicity

(Inoue et al., 2000); IL-8 regulates metastasis

formation (Inoue et al., 2000); IL-8 regulates

neovascularization (Inoue et al., 2000)

Not reported CXCL1 promotes tumor growth (Miyake

et al., 2016); CXCL1 promotes bladder

tumor cells attachment to the bladder wall

(Miyake et al., 2016); CXCL1 influences

proliferation (Miyake et al., 2019);

CXCL1 influences angiogenesis (Miyake

et al., 2019); CXCL1 influences apoptosis

(Miyake et al., 2019)

Influences BlCa cell growth (Zhang et al., 2018) IL-6 was associated with tumor growth/

proliferation (Chen et al., 2013); IL-6 was

associated with tumor invasion (Chen et al.,

2013); IL-6 was associated with angiogenesis

(Chen et al., 2013)

TGF-β1 was associated with ↑ tumor size (Zou et al.,

2019); TGF-β1 was associated with ↑ tumor weight

(Zou et al., 2019)

(Continued on following page)
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TABLE 1 (Continued) Cytokines/chemokines levels are deregulated during BlCa progression, growth, invasion, and metastases formation.

IL-8/CXCL8 CCL2 CXCL1 CXCL12 IL-6 TGF-β1

Serum IL-8 expression was associated with ↓ CSS

(Morizawa et al., 2018); IL-8 expression was

associated with ↓ OS (Morizawa et al., 2018)

Not reported Not reported Not reported ↑ IL-6 in recurrent patients than non-recurrent

patients (Kumari et al., 2017); ↑ IL-6 in poor

RFS (Kumari et al., 2017); IL-6 was associated

with ↓ CSS (Morizawa et al., 2018); ↓ T2-T4

patients than Ta-T1 patients and controls

(Yang et al., 2017)

↑ TGF-β1 related with ↓ risk tumor progression

(Efiloğlu et al., 2020); ↓ TGF-β1 in pT4 than

superficial and invasive tumors (pT2-pT3)

(Eder et al., 1996)

vs.

↑ TGF-β1 related with ↑ tumor grade and

aggressiveness (Eder et al., 1997); ↑ TGF-β1 related

with superficial tumors (pTa-pT1) than normal

samples (Eder et al., 1997)

Plasma Not reported Not reported Not reported Not reported ↑ IL-6/IL-6sR median levels in advanced

patients (Andrews et al., 2002; Schuettfort et al.,

2022); ↑ IL-6/IL-6sR median levels in lymph

vascular invasion (Andrews et al., 2002;

Schuettfort et al., 2022); ↑ IL-6/IL-6sR median

levels in lymph node metastasis (Andrews et al.,

2002; Schuettfort et al., 2022); ↑ IL-6/IL-6sR

median levels in recurrent disease (Schuettfort

et al., 2022); ↑ IL-6/IL-6sR median levels in

patients who deceased from BlCa (Schuettfort

et al., 2022); ↑ IL-6/IL-6sR median levels

associated with ↓ OS, ↓ RFS and ↓CSS
(Schuettfort et al., 2022); ↑ IL-6 in BlCa patients
than healthy patients (Andrews et al., 2002)

↑ in MIBC patients (Shariat et al., 2001); ↑ in MIBC

patients with regional and distant lymph node

(Shariat et al., 2001); ↑ related with ↑ risk of disease

recurrence (Shariat et al., 2001); ↑ related with ↑
mortality (Shariat et al., 2001)

EMT-related

molecules

IL8 silencing promoted ↓ MMP9 (Escudero-

Lourdes et al., 2012); IL-8 treatment

suppresses E-cadherin, while ↑ Vimentin, ↑
Snail, ↑ Slug and ↑ Twist (Zhou et al., 2021); ↑
IL-8 promoted ↑ MMP-1 and ↑ MMP-13 (Ou

et al., 2015); IL-8 regulates MMP9/MMP-9

and MMP-2 (Inoue et al., 2000; Mian et al.,

2003)

↑ CCL2 promoted ↑ MMP-9, ↑ N-cadherin,

↑ Twist, ↑ Snail and ↑ Vimentin (Rao et al.,

2016)

Overexpression of CXCL1 in TAMs and

CAFs, promoted ↓ E-cadherin and ↑MMP-

2 (Miyake et al., 2016); A significant

correlation was established between CXCL1

and MMP-13 (Kawanishi et al., 2008)

Inhibition of CXCR4 promoted ↓ β-catenin, ↓ MMP-

2 and ↓ c-Myc and ↑ E-cadherin levels (Zhang et al.,

2018); CXCL12/CXCR4 inhibition promoted ↓ E-

cadherin and ↑ c-Myc (Zhang et al., 2018); CXCL12/

CXCR4 seems to be important in β-catenin regulation

(Zhang et al., 2018)

↑ IL6 promoted ↓ N-cadherin and ↓ Vimentin

levels (Tsui et al., 2013);

↓ IL6 led to ↓ E-cadherin, but ↑N-cadherin and

↑ Vimentin levels (Tsui et al., 2013)

vs.

↓ IL6 led to ↑ E-cadherin, but ↓ MMP9 (Chen

et al., 2013)

↑ TGF-β1 levels promoted ↓ E-cadherin (Chen et al.,

2014, Zou et al., 2019), ↓ miR-200b (Chen et al.,

2014), ↑ N-cadherin (Chen et al., 2014), ↑ Vimentin

(Chen et al., 2014, Zou et al., 2019), ↑ MMP-2

(Zou et al., 2019), ↑MMP-9 (Zou et al., 2019), ↑ Snail
(Zou et al., 2019), and ↑MMP-16 (Chen et al., 2014)

EMT-related

signaling

pathways

Overexpression of IL-8 promoted ERK, AKT

and STAT3 pathways activation (Zhou et al.,

2021); IL-8 regulates the expression of MMPs

by NF-kB (Mian et al., 2003)

CCL2-CCR2 interaction may facilitate

migration by phosphorylating paxillin y118

through a protein kinase C (PKC)-

dependent mechanism (Chiu et al., 2012)

Not reported CXCL12/CXCR4 promotes STAT3 phosphorylation,

resulting in BlCa invasion (Shen et al., 2013)

EMT-player alterations, induced by IL-6, might

be regulated by STAT3 signaling pathway

activation (Chen et al., 2013);

TGF-β1 promoted an increase in p-Smad2/3 levels

(Geng et al., 2014)

E-cadherin expression might be inhibited by

IL6-STAT3 signaling pathways (Chen et al.,

2020);

IL-6-induced STAT3 activation, being able to

target TWIST promoter (Yao et al., 2020)
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demonstrated that IL-8 regulates MMP9 expression in 253J-P

and 253J-BV cells lines (Inoue et al., 2000). Indeed, Mian BM el

al. showed, in vitro, that IL-8 neutralization resulted in a decrease

of MMP-2 and MMP-9 expression, in part, through NF-kB, and,

consequently, promoted cell invasion decrease (Mian et al., 2003)

(Table 1).

CCL2

Monocyte chemoattractant protein -1/chemokine (C-C

motif) ligand 2 (MCP-1/CCL2) plays a crucial role in immune

responses, regulating infiltration and migration of several

immune cells (Xu et al., 2021). CCL2 is a potent

chemoattractant for monocytes/macrophages (Li and Tai,

2013) and can activate dendritic cells, memory T cells and

basophils (Chiu et al., 2012; Xu et al., 2021). CCL2 is secreted

by activated macrophages, fibroblasts, vascular smooth muscle,

lymphocytes, and tumor cells (Amann et al., 1998). Usually binds

to C-C chemokine receptor type 2 (CCR2), but it also binds to

CCR4 (Zhang et al., 2010; Gao et al., 2019). CCL2 expression can

be activated by several growth factors and cytokines, such as

platelet-derived growth factor (PDGF), TNF-α, IL-1β and IFN-γ
(Li and Tai, 2013). Overall, according to the literature, CCL2 in

the TME seems to mainly contributes for tumor progression and

metastasis formation (Jin et al., 2021).

In silico data analysis showed that CCL2 expression was

significantly lower in BlCa patients than the controls (Li et al.,

2021). Additionally, higher CCL2 levels were associated with

better DFS (Li et al., 2021). In patient tissues, CCL2/CCL2 was

described to be significantly higher in tumors, compared with

normal and adjacent tissues (Wang et al., 2017). Considering

NMIBC and MIBC patients, higher CCL2 levels significantly

correlated with higher grade, stage and lymph node metastasis

(Gao et al., 2019). Particularly, considering only MIBC patients, a

positive CCL2 expression in tumor cells was associated with poor

mean OS, DSS and recurrence-free survival (RFS), while

expression of CCL2 in immune cells, was associated with

longer OS, DSS, and RFS (Eckstein et al., 2020). The role of

CCL2 in immune cells is dependent on the lymph node patient’s

status, as CCL2 in N0 was linked to a good prognosis while

N1+N2 was associated with poor prognosis (Eckstein et al., 2020)

(Table 1).

In urine samples from BlCa patients, advanced stages

(pT2-pT4) presented three to fourfold higher mean

concentration, comparing with pT1 stage tumors (Amann

et al., 1998) (Table 1).

In vitro, it was demonstrated that higher CCL2 levels were

associated with high-grade BlCa cell lines (T24 and J82), while low-

grade BlCa cell lines (SVHUC1, RT4 andTSGH8301), showed lower

CCL2 levels (Chiu et al., 2012). In addition, higher CCL2 levels were

produced in MB49 and MBT-2 cisplatin-resistant cells lines,

comparing with parental BlCa cell lines (Takeyama et al., 2020).

So far, there is a lack of information about CCL2 expression in

plasma, in in vivo and in serum of BlCa patients (Table 1).

Besides, in BlCa, the knowledge about the impact of CCL2 in

EMT induction and the signaling pathways activated by

CCL2 promoting EMT, is still poor, although some studies have

been arising. Co-culture of mast cells (HMC-1) with the BlCa cell

lines, T24 and 647V, resulted in an increase of the estrogen receptor

beta (ERβ) levels and of CCL2 levels in both cell types (Rao et al.,

2016). After co-culture, higher CCL2 levels promoted EMT, driving

stimulation of MMP-9 expression and enhanced N-cadherin, Twist,

Snail and Vimentin expression levels, resulting in higher BlCa cell

lines invasion abilities (Rao et al., 2016) (Table 1). Long noncoding

RNA Lymph Node Metastasis Associated Transcript 1 (LNMAT1),

overexpressed in BlCa tissues comparing with normal adjacent

tissues, can directly interact with heterogeneous nuclear

ribonucleoprotein L (hnRNPL), resulting in an increase of the

H3 lysine four trimethylation (H3K4me3) of the CCL2 promoter

(Chen et al., 2018). CCL2 overexpression resulted in increased TAM

recruitment. Macrophage activation resulted in secretion of

lymphangiogenic growth factor (VEGF-C) to the bladder TME,

promoting lymphangiogenic and lymphatic metastasis (Chen et al.,

2018). In mouse BlCa cell line MBT2, CCL2-CCR2 interaction may

facilitate migration by phosphorylating paxillin y118 through a

protein kinase C (PKC)-dependent mechanism (Chiu et al., 2012).

CXCL1

CXCL1, also known as MGSA, is a powerful neutrophil

chemoattractant chemokine (De Filippo et al., 2013; Boro and

Balaji, 2017), interacting with the CXCR2 receptor (Kawanishi

et al., 2008). CXCL1 plays a double role in immune responses,

since it can recruit and activate neutrophils to the infection area,

but can also activate the release of several proteases and reactive

oxygen species (ROS) that will result in cell death (Sawant et al.,

2016). This chemokine plays important roles in several tumor

models, promoting cell migration and invasion (Cheng et al.,

2011; Wang et al., 2018). Mast cells, alongside with macrophages

are able to produce CXCL1 (De Filippo et al., 2013).

In silico,UALCAN analysis showed higher CXCL1 transcript

levels in BlCa samples compared with normal bladder mucosa

tissues, and, according to GEPIA and GEO database analysis,

higher CXCL1 was significantly associated with shorter OS (Sun

et al., 2021b) (Table 1).

While benign or normal bladder tissues showed absent

CXCL1 levels, higher CXCL1 levels were significantly

associated with more undifferentiated tumors and MIBC

(Kawanishi et al., 2008; Miyake et al., 2013). Consequently,

high amounts of CXCL1 contributed to poor DSS and poor

OS (Miyake et al., 2013). Additionally, increased CXCL1 levels in

the tumors promoted the recruitment of CAFs and were

associated with higher number of TAMs (Miyake et al., 2016)

(Table 1).
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In in vitro studies, higher CXCL1 expression was observed in

the most aggressive BlCa cell lines (UMUC3, 5637 and T24)

(Kawanishi et al., 2008). Moreover, CXCL1 could enhance the

invasive ability of BlCa cell lines (Kawanishi et al., 2008; Miyake

et al., 2019). Additionally, CXCL1 influenced the angiogenesis

process and tumor vasculature, since tube structures were

significantly lower after treatment with conditioned media

from CXCL1-knockdown T24 cells (Miyake et al., 2019).

Furthermore, higher CXCL1 amounts were obtained with

MB49, MBT-2 and T24 cisplatin-resistant cells lines, in

comparison with parental BlCa cell lines (Takeyama et al.,

2020) (Table 1).

In vivo, it was shown that CXCL1 secreted by TAMs and

CAFs enhanced bladder tumor cell attachment to the bladder

wall, consequently inducing tumor growth (Miyake et al., 2016).

Moreover, by using T24 cell xenografts treated with HL2401, a

CXCL1 inhibitor, it was observed a significant increase in the

apoptotic index, but a significant decrease in microvessel density

and a reduction in proliferation (Miyake et al., 2019).

In liquid biopsies, CXCL1 urinary protein concentrations

were significantly higher in BlCa patients comparing with

patients without BlCa (Kawanishi et al., 2008; Burnier et al.,

2015). Importantly, a significant increase was obtained in stages

pT1-pT4, comparing with pTa (Kawanishi et al., 2008) (Table 1).

Information regarding CXCL1 expression in serum and in

plasma of BlCa patients is still lacking (Table 1). Also, the role

that CXCL1 might have in driving EMT is little explored, as well

as the signaling pathways activated by CXCL1 to induce EMT in

BlCa. However, it is known, that in vivo, overexpression of

CXCL1 by TAMs and CAFs, promoted alterations in BLCa

EMT, decreasing E-cadherin membrane expression, while

increasing MMP-2 expression (Miyake et al., 2016) (Table 1).

Furthermore, in tissues, a significant correlation was established

between CXCL1 and MMP-13 (Kawanishi et al., 2008) (Table 1).

In silico analysis, using LinkedOmics database, also showed that

microRNA (miR)-200a, an important hallmark in EMT (Adam

et al., 2009), interacts with CXCL1 (Sun et al., 2021b) (Table 1).

CXCL12

CXCL12, also known as stromal cell-derived factor 1 (SDF-

1), or pre-B cell stimulating factor (PBSF) (Yang et al., 2015),

interacts with CXCR4 and CXCR7 receptors (Shen et al., 2013;

Zhang et al., 2018). CAFs are able to secrete CXCL12, being

essential for CD8+ T cells recruitment (Du et al., 2021c). This

chemokine participates in the homeostatic regulation of

leukocyte trafficking and tissue regeneration (Barinov et al.,

2017). CXCL12 is also described to be involved in tumor

growth, angiogenesis and tumor cell intravasation (Chang

et al., 2020).

in silico analyses (GEO, TCGA, ONCOMINE andUALCAN)

showed that CXCL12 was significantly decreased in BlCa

samples, comparing with the controls (Sun et al., 2021b; Du

et al., 2021c). On the other hand, higher CXCL12 expression was

significantly associated with more advanced stages, worse

prognosis, and more lymph node metastasis (N2 showed

higher CXCL12 than N0) (Sun et al., 2021b; Liu et al., 2021).

In accordance with in silico data, Du Y et al. showed a

CXCL12 reduction in BlCa patient tissues comparing with the

normal tissues Du et al. (2021c), while Yang DL et al. showed a

significantly higher expression of CXCR4/CXCL12 in BlCa

tissues and no expression in normal tissues Yang et al. (2015).

It was demonstrated that CXCL12 positively associated with

tumor grade and stage in BlCa patient tissues, being

CXCL12 expression more intense in recurrent patients (Batsi

et al., 2014). Moreover, Yang DL et al. showed that CXCR4/

CXCL12 levels strongly associated with tumor progression and

invasion, and CXCL12 transcript levels in tumor tissues increased

with tumor aggressiveness.

There are several CXCL12 mRNA variants depending on

alternative splicing (Gosalbez et al., 2014; Chang et al., 2020).

CXCL12-α, CXCL12-β and CXCL12-γ are some of the variants,

presenting the same first three exons (Chang et al., 2020).

According to the literature, CXCL12-α has the strongest

affinity to CXCR4, followed by CXCL12-β and CXCL12-γ
(Chang et al., 2020). By qPCR, it was demonstrated that

CXCL12-α and CXCL12-β levels were higher in metastatic

patient tissues compared to non-metastatic patient tissues

(Gosalbez et al., 2014). Moreover, only CXCL12-β was

significantly higher in tumor patients than normal samples

(Gosalbez et al., 2014). In urine, CXCL12-γ was not detected,

but CXCL12-α levels were significantly lower in patients with

low-grade compared to controls, while CXCL12-β levels were

significantly higher in high-grade than the controls (Gosalbez

et al., 2014).

There is no information regarding CXCL12 expression in

plasma and in serum, similarly to CCL2 and CXCL1 (Table 1).

Up till now, CXCL12 has been described to have an important

role in regulating some EMT-related molecules in BlCa.

Additionally, studies on the signaling pathways that might

be activated by this chemokine started to arise. In vitro, it

was shown that CXCL12 was involved in cell invasion and

migration (Retz et al., 2005; Shen et al., 2013). CXCR4 and

CXCL12 binding drives the induction of

STAT3 phosphorylation (Shen et al., 2013), an important

molecule in promoting BlCa growth and survival, and able

to work as a transcription factor regulating EMT (Chen et al.,

2008; Jin, 2020) (Table 1). This alteration in migration might

occur due to an association of CXCR4/CXCL12 with

cytoskeletal reorganization, specifically, with a redistribution

of F-actin stress fibers (Retz et al., 2005). A study from Zhang T

et al. reinforced these findings, since SW780 treated with

AMD34635, a CXCR4 inhibitor, exhibited growth and

colony formation supression, as well as, inhibiton on

migration and invasion (Zhang et al., 2018). In addition, in
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vivo, it was demonstrated that tumors with AMD3465-

treatment showed slower growth and lower weight than

tumors treated with the vehicle (Zhang et al., 2018).

Additionally, in vitro, it was also demonstrated that

molecular alterations occurred, with a decrease of β-catenin,
MMP-2 and c-Myc expression and with an increase in

E-cadherin levels (Zhang et al., 2018) (Table 1). However,

the effect of AMD3465 was reversed when CXCL12 was

added, inducing E-cadherin downregulation and c-Myc

upregulation (Zhang et al., 2018) (Table 1). Moreover,

SW780 cells treated with FH535, a β-catenin antagonist,

also decrease cell proliferation, colony formation,

migration and invasion, being these effects once again

reverse by CXCL12 treatment. Thus, suggesting that

CXCR4/CXCL12 play an important role in regulated β-
catenin expression in BlCa progression (Zhang et al., 2018)

(Table 1).

IL-6

IL-6 is a pro-inflammatory interleukin (Chen et al., 2013;

Morizawa et al., 2018) known to play a major role in

inflammatory responses (Chen et al., 2013; Yao et al., 2020),

as well as in the maturation of B cells (Andrews et al., 2002;

Miyake et al., 2019). IL-6 binds to the receptor IL6-R, present in

the extracellular membrane, or secreted in a soluble form (IL-

6sR) (Andrews et al., 2002). IL-6 is mainly produced by tumor-

infiltrating immune cells, such as T cells and macrophages, by

tumor cells, by healthy endothelial tissues, by epithelial cells and

by muscle cells (Andrews et al., 2002; Rossi et al., 2015;

Schuettfort et al., 2022).

In tissues, Chen MF et al. showed that IL-6/IL6 expression

was higher in BlCa tissues, comparing with non-malignant

tissues (Chen et al., 2013). The authors demonstrated that

non-malignant tissues exhibited IL-6 expression, but in lower

levels, compared to early stages, while IL-6 higher levels were

mostly associated with MIBC tissues (Chen et al., 2013)

(Table 1).

In silico analysis, revealed that IL6 transcript levels were

significantly increased in higher stages (stages III and IV),

comparing with lower stages (stages I and II) (Goulet et al.,

2019). Moreover, IL6 was significantly enhanced in high-grade

patients, comparing with low-grade patients (Goulet et al., 2019)

(Table 1).

In urine samples, IL-6 levels were significantly higher in

advanced stage patients (pT3-pT4), comparing with patients

with early stage tumors or non-malignant samples (Chen

et al., 2013). Kumari N et al. showed that higher IL-6

concentration was significantly associated with lower disease

grade Kumari et al. (2017). Furthermore, it was demonstrated

that IL-6 levels in urine were associated with shorter OS

(Morizawa et al., 2018) (Table 1).

Using preoperative plasma samples, Schuettfort VM et al.

and Andrews B et al. demonstrated that IL-6 and IL-6sR were

significantly higher in patients with advanced stages, lymph

vascular invasion and lymph node metastasis Andrews et al.

(2002), Schuettfort et al. (2022). Dmytryk V et al. also observed

significantly higher IL-6 leveles in pT3-pT4 samples, comparing

with control samples Dmytryk et al. (2020). Moreover, patients

with recurrent disease or patients who deceased due to BlCa

disease presented higher IL-6 and IL-6sR levels (Schuettfort et al.,

2022). Higher IL-6 and IL-6sR levels were associated with poor

RFS, CSS and OS (Schuettfort et al., 2022). Andrews B et al.

showed that plasma IL-6 levels were significantly higher in BlCa

than in healthy patients, however IL-6sR levels did not present

statitiscal differences bteween the two groups (Andrews et al.,

2002) (Table 1).

In serum BlCa samples, collected prior to surgery, IL-6 levels

were significantly higher in recurrent patients, comparing with

non-recurrent patients and were significantly associated with

poor RFS (Kumari et al., 2017). Similar to IL-8, IL-6 expression

was significantly associated with shorter CSS (Morizawa et al.,

2018). However, Yang G et al. described a descrease of IL-6 levels

in T2-T4 patient samples, comparing with Ta-T1 samples and

healthly controls (Yang et al., 2017) (Table 1).

Regarding the literature, BlCa cell lines produced high IL-6

levels, while normal cell lines expressed only low IL-6 levels

(Okamoto et al., 1997). Upon IL-6 treatment, BlCa cell lines

(253J, RT4 and T24) presented enhanced cellular growth,

comparing with normal cell lines (Okamoto et al., 1997).

Moreover, the cell growth was significantly inhibited upon

anti-IL-6 neutralizing antibody treatment, suggesting that IL-6

provides autocrine growth advantages to the BlCa cell lines

(Okamoto et al., 1997). Additionally, Yeh CR et al. suggested

that, in vitro, ERα overexpression in fibroblasts may increase

BlCa cell invasion through IL-6 expression in BlCa cells (Yeh

et al., 2015). Miyake M et al. demonstrated, in vivo and in vitro,

that CXCL1 had an important impact in BlCa tumor growth,

since promoted IL-6 induction and repressed tissue inhibitor of

metalloproteinase 4 (TIMP4) inhibition Miyake et al. (2019).

Chen MF et al. showed that IL6 silencing contributed to a

decrease in tumor invasion and tumor growth/proliferation,

both in vivo and in vitro (HT1197 and HT1376 cell lines)

Chen et al. (2013).

Overall, IL-6 has been described to be upregulated in

advanced BlCa patients (Chen et al., 2013; Goulet et al., 2019)

and in lymph node metastasis (Andrews et al., 2002; Schuettfort

et al., 2022). Thus, the association between IL-6 and EMT

induction starts to be studied in BlCa, along with which

signaling pathways can be activated by IL-6. Indeed, IL6

overexpression in HT1376 cells promoted a decrease in

N-cadherin and Vimentin levels, while the IL6 knockdown in

T24 cells led to a decrease in E-cadherin, but an increase in

N-cadherin and Vimentin levels (Tsui et al., 2013) (Table 1).

However, it was demonstrated that IL6 silencing was able to
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increase E-cadherin levels, but decreased MMP-9 levels and

attenuated angiogenesis, since it led to a decrease of

CD31 and vascular endothelial growth factor (VEGF) levels

(Chen et al., 2013) (Table 1). EMT-player alterations, induced

by IL-6, might be regulated by STAT3 signaling pathway

activation (Chen et al., 2013) (Table 1). In patient tissues, it

was demonstrated a significant positive correlation between

p-STAT3 Y705 and IL-6, and a significant negative correlation

between p-STAT3 Y705 and E-cadherin, suggesting that

E-cadherin expression might be inhibited by IL6-STAT3

signaling pathway (Chen et al., 2020). In vitro, it was

demonstrated that IL-6-induced STAT3 is able to target

TWIST promoter, modulating EMT and BlCa cell invasion

(Yao et al., 2020).

TGF-β1

TGF-β1 is the most well studied isoform and its receptors are

membrane serine-threonine kinase receptors I and II (TGF-βRI
and TGF-βRII) (Kim et al., 2001). This cytokine has been

described as playing a dual role in tumorigenesis, displaying a

tumor suppressor role in normal cells or in early tumor stages,

inducing cell cycle arrest and apoptosis, while in late stages can

promote cell motility and invasion (Eder et al., 1997; Jakowlew,

2006; Lebrun, 2012; Stojnev et al., 2019). Overall, TGF-β1 is

mainly released by regulatory T cells (Efiloğlu et al., 2020) and

CAFs (Ao et al., 2007; Yu et al., 2014; Yeh et al., 2015),

M2 macrophages (Horibe et al., 2021) and MDSC (Groth

et al., 2019). TGF-β1 can activate both SMAD-dependent or

SMAD-independent signaling (Hata and Chen, 2016). TGFRβII
point mutations have been reported, not only in the BlCa cell line

T24, but also in BlCa patients, being associated with higher

pathologic T category and tumor grade (Bian et al., 2013).

In silico analysis, it was demonstrated that TGFB1 is

upregulated in MIBC compared to NMIBC and patients with

higher TGFB1 expression presented higher risk of death, lower

DFS and lower OS (Zou et al., 2019) (Table 1).

In BlCa patient samples, TGF-β1 is expressed in normal

urothelium, although at lower levels (Yang et al., 2018; Zou et al.,

2019). Within tumors, higher TGF-β1 levels were significantly

associated with higher tumor stage and grade and correlated with

cancer-specific death (Kim et al., 2001; Yang et al., 2018; Stojnev

et al., 2019; Zou et al., 2019). On the other hand, although

Miyamoto H et al. also found that TGFB1 transcript levels were

higher in tumor tissues, than in normal samples, TGFB1

transcript levels were significantly associated with low-grade

and stage Miyamoto et al. (1995) (Table 1).

In BlCa patient serum samples, Efiloğlu Ö et al. described that

higher TGF-β1 was associated with a low risk of tumor progression

(Efiloğlu et al., 2020). Indeed, Eder IE et al., using serum samples,

mentioned that TGF-β1 levels were significantly lower in T4 tumors

than superficial and invasive (T2-T3) tumors Eder et al. (1997).

However, Eder IE et al. demonstrated that superficial tumors (Ta-T1)

had significantly TGF-β1 higher levels, than normal samples (Eder

et al., 1997). Another study from Eder IE et al.mentioned that serum

TGF-β1 were elevated in themost aggressive BlCa cases compared to

controls, and in the most undifferentiated tumors, than with lower

grade tumors (Eder et al., 1996) (Table 1).

Also in preoperative plasma, TGF-β1 levels were significantly
higher in MIBC patients with regional and distant lymph node,

comparing with non-metastatic MIBC and controls (Shariat

et al., 2001). An increase of TGF-β1 was found in MIBC,

comparing with less aggressive tumors, with patients with

higher TGF-β1 demonstrating increased risk of disease

recurrence and mortality (Shariat et al., 2001). On the other

hand, no significant differences were found between controls and

patients with early stages (Shariat et al., 2001) (Table 1).

In urine samples, it was observed a significantly higher

number of BlCa samples expressing TGF-β1 comparing with

chronic cystitis disease cases or the control group (Helmy et al.,

2007) (Table 1).

In vivo, it was observed an increase of, not only in tumor size,

but also in tumor weight (Zou et al., 2019) when the 5637 cell line

overexpressing TGF-β1 was transplanted into mice, compared

with the parental cell line (Zou et al., 2019) (Table 1).

As mentioned above, TGF-β1 is an important inducer and

regulator of EMT (Stojnev et al., 2019). EMT-related molecules

regulated by TGF-β1 and the signaling pathways activated by this

cytokine have been well described in several models, including in

BlCa. Both in vitro and in vivo, an increase of TGF-β1 reflected in

an upregulation of EMT-related molecule levels, such as Slug,

Vimentin, Snail, MMP-2, MMP-9 and E-cadherin (Zou et al.,

2019). Additionally, TGF-β1 has been associated with

proliferation, colony formation, migration and invasion in BlCa

cell lines (Bian et al., 2013; Zhang et al., 2016; Zou et al., 2019).

HTB9 and T24 cell lines treated with TGF-β1 resulted in

E-cadherin/CDH1 decrease, and a N-cadherin/CDH2 and

Vimentin/VIM increase (Chen et al., 2014). Upon TGF-β1
treatment, it was shown miR-200b downregulation and MMP-16

upregulation, due to miR-200b targeting of MMP-16 (Chen et al.,

2014). TGF-β1 treatment of T24 and BIU87 BlCa cell lines resulted

in increased fascin1 levels, an important molecule in tumor

migration and invasion (Zhang et al., 2016). Finally, AY-27, a

rat cell line, treated with TGF-β1 resulted in alterations in

morphology, with the increase of spindle shaped cells, while the

polygonal shaped cells decreased, as well as cell-to-cell contact (Koo

et al., 2010). In Smad-dependent signaling, it occurs recruitment

and phosphorylation of SMAD2 and SMAD3 (Heldin et al., 2012;

Gonzalez and Medici, 2014; Papageorgis, 2015; Gupta et al., 2016).

Then, SMAD4 is recruited, forming a trimeric complex capable to

be translocated to the nucleus (Bian et al., 2013; Gonzalez and

Medici, 2014; Gupta et al., 2016). In BlCa samples, Smad2 and

Smad4 expression were associated with low-grade and superficial

tumors, and better overall survival of the patients (Stojnev et al.,

2019). However, it was observed an increase of p-SMAD2 in
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invasive bladder tumors (Gupta et al., 2016). Knockdown of

PPM1A, an antagonist of TGF-β signaling by dephosphorylating

TGF-β-activated Smad2/3, resulted in an increase in p-Smad2/

3 levels upon TGF-β1 treatment, in 5637 and T24 cell lines (Geng

et al., 2014).

Conclusion

In this review, we focused on the dysregulation of several immune

cells, and of key cytokines/chemokines in the bladder cancer TME. In

BlCa, IL-6, CCL2, CXCL1, CXCL12, IL-8 and TGF-β1 play putative
roles in promoting tumor progression, growth, invasion, and

metastases formation (Figure 1). The cytokine-driven modulation

of the transcription of specific EMT-relatedmolecules in BlCa starts to

be unravel (Figure 1). However, the mechanisms involved in the axis

TME-EMT signaling pathway activation inBlCa remains to be further

exploited. Therefore, finding novel cytokines/chemokines present in

bladder TME driving EMT induction and, simultaneously, decipher

crucial players involved in BlCa tumorigenesis and progression.
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FIGURE 1
Schematic representation of the impact of BlCa TME cytokines/chemokines in EMT induction in bladder tumor cells. Bladder tumor
microenvironment is comprised by tumor cells and several tumor-infiltrating immune cells, such as, M1 and M2 macrophages, dendritic cells,
regulatory T cells, cytotoxic T cells, helper T cells, B cells and NK cells. Furthermore, TME includes stromal cells, like fibroblasts, and non-cellular
components, including soluble biological factors or mediators, as cytokines/chemokines. Cytokines/chemokines are mainly produced by
several immune cells and fibroblasts, but they also can be produced by tumor cells. Tumor cells present several cytokine/chemokine receptors. IL-8
binds to CXCR1/CXCR2 receptors, CCL2 binds to CCR2/CCR4 receptor, TGF-β1 binds to TGF-βRI/II receptors, CXCL1 binds to CXCR2 receptor,
CXCL12 binds to CXCR4/7 receptors and IL-6 binds to IL-6R receptor. Cytokine/receptor binding on tumor cells can drive the deregulation of
specific molecules, including the triggering of EMT signaling pathways. Here, are depicted the most relevant signaling pathways involved in driving
EMT that have been described to be deregulated in BlCa upon cytokine binding. JAK-STAT, RAS-RAF-ERK and AKT signaling pathways and TGF-β
SMAD-dependent pathway are described to play roles in the activation of EMT-related molecules, driving EMT processes in tumor cells. Bladder
tumor cells presenting partial EMT demonstrate a higher survival mechanism and a higher tumor-initiating and metastatic potential. In this way,
bladder tumor cells are able to metastasize to the bones, lungs and liver (Created with BioRender.com).
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