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Multiscale systems biology is having an increasingly powerful impact on our

understanding of the interconnected molecular, cellular, and

microenvironmental drivers of tumor growth and the effects of novel drugs

and drug combinations for cancer therapy. Agent-based models (ABMs) that

treat cells as autonomous decision-makers, each with their own intrinsic

characteristics, are a natural platform for capturing intratumoral

heterogeneity. Agent-based models are also useful for integrating the

multiple time and spatial scales associated with vascular tumor growth and

response to treatment. Despite all their benefits, the computational costs of

solving agent-based models escalate and become prohibitive when simulating

millions of cells, making parameter exploration and model parameterization

from experimental data very challenging. Moreover, such data are typically

limited, coarse-grained and may lack any spatial resolution, compounding

these challenges. We address these issues by developing a first-of-its-kind

method that leverages explicitly formulated surrogate models (SMs) to bridge

the current computational divide between agent-based models and

experimental data. In our approach, Surrogate Modeling for Reconstructing

Parameter Surfaces (SMoRe ParS), we quantify the uncertainty in the

relationship between agent-based model inputs and surrogate model

parameters, and between surrogate model parameters and experimental

data. In this way, surrogate model parameters serve as intermediaries

between agent-based model input and data, making it possible to use them

for calibration and uncertainty quantification of agent-basedmodel parameters

that map directly onto an experimental data set. We illustrate the functionality

and novelty of Surrogate Modeling for Reconstructing Parameter Surfaces by

applying it to an agent-based model of 3D vascular tumor growth, and

experimental data in the form of tumor volume time-courses. Our method

is broadly applicable to situations where preserving underlying mechanistic

information is of interest, and where computational complexity and sparse,

noisy calibration data hinder model parameterization.
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1 Introduction

Validated mathematical models of tumor growth

mediated by complex microenvironmental interactions and

signals are increasingly being recognized as an invaluable aid

for elucidating mechanisms underpinning experimental and

clinical observations (Byrne, 2010; Franssen et al., 2019;

Butner et al., 2020; Butner et al., 2021). These models

often use continuum ordinary or partial differential

equations (ODEs/PDEs) to predict cancer cell number (or

densities) in time and/or space. Continuum approaches are a

common choice because they allow for rapid simulation and

open the door to advanced analyses (global sensitivity,

structural and practical identifiability, bifurcations, etc.)

that reveal key parameter relationships. They also enable

the use of time-course experimental data for parameter

estimation and model validation (Brouwer et al., 2017;

Eisenberg and Jain, 2017).

An alternative approach is a discretized method that

models cells as autonomous, decision making “agents,”

each with their own set of properties and behaviors. These

agent-based models (ABMs) have become a valuable tool in

translational systems oncology, which has goals of predicting

the effects of novel drugs and drug combinations on difficult-

to-treat tumors (Altrock et al., 2015; Wang et al., 2015;

Bergman et al., 2022). ABMs provide a logical structure for

capturing the multiple time and spatial scales associated with

cancer growth and progression because they allow for the

characterization of tumor heterogeneity at an individual cell

level that better reflects the complexity seen in vivo (Bergman

et al., 2022). One major advantage of ABMs over traditional

continuum ODE/PDE models is that they can generate

realistic 3-dimensional virtual tumors that current state-of-

art imaging technologies cannot infer from patient scans [for a

discussion on limitations of imaging in cancer, see for instance

(Bogdanovic et al., 2021; Ding et al., 2021; Martinez-Heras

et al., 2021)]. However, to make useful, reliable quantitative

predictions, ABMs need to relate to real-world data through

model parameterization and calibration (Byrne, 2010;

Eisenberg and Jain, 2017). Unfortunately, a significant

limitation of these models is that they can be

computationally expensive, especially as the number of

agents (cells) expands. Computational times and memory

requirements can become prohibitive when simulating

upwards of 106–107 agents (Ghaffarizadeh et al., 2018).

This is in direct opposition to the fact that just one cubic

centimeter of tissue will contain 108–109 cells and many in

vivo experiments begin with 104–106 cells (Del Monte, 2009).

These computational costs are exacerbated when ABMs

include molecular level details of cell signaling or targeted

therapeutics Ghaffarizadeh et al. (2018). The inherent

stochasticity and heavy computational requirements of an

ABM are significant obstacles for data-driven

parameterization and for conducting rigorous parameter

space exploration and sensitivity analyses (Norton and

Popel, 2016; Zhang et al., 2020; Broniec et al., 2021).

Moreover, experimental data is typically limited, coarse-

grained and may lack any spatial resolution, resulting in

issues of parameter identifiability (Eisenberg and Jain, 2017).

There is hence a need for developing new theoretical and

computational frameworks that can bridge this gap between

ABM parameters and real-world data. Estimating ABM

parameters from noisy experimental data is particularly

challenging because ABM behavior emerges from interactions

among many individuals and the computational expense scales

with the number of parameters (Broniec et al., 2021). One

approach for exploring ABMs is to run extensive Monte Carlo

simulations, but this is infeasible for complex models (Nardini

et al., 2021). Bayesian methods are not ideal because they rely on

prior knowledge about the probability distributions of the

components being modeled, which is rarely available (Broniec

et al., 2021). Some researchers have used genetic algorithms (GA)

together with agent-based models for parameter space

exploration and parameter estimation (Calvez and Hutzler,

2005; Lee et al., 2015); however, GAs require a very large

number of iterations to converge, thus exacerbating

computational expense issues (Broniec et al., 2021). Yet

another approach entails the derivation of coarse-grained

ODE/PDEs (mean-field models) to predict average outputs of

the ABM. However, such mean-field models typically fail to

accurately describe ABM dynamics in certain parameter regimes

(Klank et al., 2018; Nardini et al., 2021).

To address some of these challenges, we develop an approach

that uses an explicitly formulated surrogate model (SM) that will

bridge ABM simulations and experimental data. Surrogate

models (also called metamodels or response surfaces) are

computationally cheaper models designed to approximate the

dominant features of a complex model, here, the ABM (Blanning,

1975; Regis and Shoemaker, 2005; O’Hagan, 2006; Asher et al.,

2015). They have been used extensively in engineering

applications (see (Palar et al., 2019) for a review) and weather

forecasting [see (Vlahogianni, 2015; Schultz et al., 2021) for

recent reviews]. Specifically, we employ model selection to

infer an SM directly from both ABM output and experimental

data so that we accurately capture aggregate ABM dynamics. In

our approach, Surrogate Modeling for Reconstructing Parameter

Surfaces (SMoRe ParS), we quantify the relationship between

parameter values across the two types of models (ABM and SM)
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and between SM parameters and experimental data. Thus, SM

parameters act as interlocutors between ABM inputs and data

that can be used for calibration and uncertainty quantification of

ABM parameters.

Indeed, parameterizing ABMs with SMs that use machine

learning algorithms, where the SM does not have a closed

form, is becoming increasingly popular. Using examples from

finance, (Lamperti et al., 2018; Zhang et al., 2020) describe a

surrogate modeling method for ABM calibration that

combines supervised machine-learning and iterative

sampling. These methods can learn a surrogate model as

the approximation of the original system with a relatively

small number of training points by using an iterative sampling

algorithm that intelligently searches the response surface. In

(Perumal and van Zyl, 2020), different sampling methods and

SMs derived from machine learning algorithms are integrated

with a temporal ABM that describes infectious disease

epidemiology to test how these strategies affect parameter

space exploration. They show that surrogate assisted methods

perform better than standard sampling methods in that they

better identify the most likely parameter vector by matching

the synthetic data distribution it generates with a real data

distribution.

Our method differs from the approaches mentioned above

in several ways. Two major differentiators of our approach

are: 1) The SM equations are explicitly formulated, this

formulation being informed by the experimental data; and

2) SM parameters are distinctly mapped to both, the ABM the

input parameters, as well as the calibration data set. In this

way, our strategy enables the SM to be informed by both the

ABM output, and the experimental data. We also infer ABM

parameter regions that correspond to the data and propagate

uncertainty via SM parameters to ABM parameters. Finally,

by making such an explicit connection between ABM input,

SM parameters and the data, we can account for inherent

differences in dimensionality or physical units between ABM

output and experimental data.

In the sections belowwe describe the details of our newmethods

for narrowing the current divide between computationally intense,

difficult to analyze/parameterize computational modeling

approaches and experimental data. We then demonstrate the

usefulness and novelty of our approach by applying it to an

ABM of vascular tumor growth and experimental data in the

form of tumor volume time-courses.

2 Methods

2.1 Surrogate modeling for reconstructing
parameter surfaces (SMoRe ParS)

To accurately compare ABM output with real world data, we

propose our novel methodology, SMoRe ParS. A schematic

diagram of the full approach is provided in Figure 1. SMoRe

ParS is a six-step strategy that users can implement as follows.

Step 1: Use real-world data to inform SM formulation and

variables

First, determine the formulation of the SM from a real-world

(experimental) data set. In particular, the goal is to determine

both, the type of model to use (ODE, PDE, Boolean, etc.), and the

variables needed for the model formation. For instance, time-

course data would suggest a system of ODEs, whereas spatially

resolved data might accommodate a PDE SM. Additionally, the

quantities measured in the data set should inform the choice of

SM variables. For instance, tumor volume measurements would

suggest tumor cell numbers as a SM variable.

Step 2: Generate ABM data

In this step, identify a subset of ABM parameters of interest,

say �pABM, based on some predetermined criteria. For instance,

in a model of chemotherapy, one might select parameters such

as cancer cell proliferation rate and death rate, that is the input

parameters that are directly relevant to the treatment of interest.

Next, generate ABM output for a broad range of the chosen

parameter values. Specifically, vary ABM parameters one at a

time to sample along the boundary of the parameter space, and

also select several parameter combinations at non-boundary

points, to generate reference points in the interior. For each

parameter combination, the ABM should be simulated multiple

times to get meaningful average behavior. Finally, process the

generated ABM output for inherent differences in

dimensionality or physical units between ABM output and

SM variables, if necessary. For instance, if the ABM output

is a spatially resolved time-course of a growing tumor and a

variable in the SM is total number of tumor cells as a function of

time alone, then the number of tumor cells in the ABM

simulations should be integrated over its spatial domain.

Step 3: Perform SM model selection

Select several potential models as SM candidates and test

their ability to capture both the experimental data and the ABM

output. Then perform model selection to arrive at a “most likely”

SM. There are numerous model selection approaches to choose

from when selecting the best model to move forward with,

including probabilistic Information Criteria (Anderson and

Burnham, 2004; Burnham and Anderson, 2004) or resampling

methods (Efron, 1983; Shao, 1996). Others (Nardini et al., 2021)

have proposed learning equations directly from data as a method

to arrive at a consensus model.

Step 4: Reconstruct SM parameter surfaces from ABM

output

Next, infer a quantitative relationship between each of the

SM input parameters, �pSM � 〈pSM,1, . . . , pSM,i, . . . , pSM,n〉 and

selected ABM parameters, �pABM. This is done by fitting SM

parameters to ABM output generated in Step 2, for instance by

performing maximum likelihood estimation (MLE) (Millar,

2011). A key advantage of our method is that any uncertainty

in SM parameters is also quantified in this step. For example, if
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FIGURE 1
Schematic for implementing the SMoRe ParS method.
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MLE is used to estimate SM parameter values, then the profile

likelihood approach Eisenberg and Jain (2017) can be employed

to quantify this uncertainty.

At this stage, for a given SM parameter pSM,i, estimates for its

appropriate range of values (e.g., 95% confidence bounds) should

be calculated at each of the sampled ABM parameter

combinations. Assuming that pSM,i and its confidence bounds

(C.B.i) are continuous but unknown functions of the ABM

parameters �pABM, reconstruct these functions—or

hypersurfaces—as follows. The 95% confidence bound

estimates found above correspond to discrete points on the

upper and lower 95% confidence hypersurfaces (see Step 4 in

Figure 1). Now, “fill in” the unknown upper and lower

hypersurfaces, for instance, using polynomial or quadratic

interpolation [see (Smith, 2013) for an overview of these

methods]. That is, reconstruct parameter response surfaces

that pSM,i lies within. The completion of this step will result in

an explicit (numerical) relationship between SM parameters and

ABM parameters, that also preserves information on uncertainty

in the SM parameters. That is:

pSM,i � fi
�pABM( ) ±C.B.i �pABM( ). (1)

In the above hypersurface relationship, the function fi is not

explicitly determined, rather, it is numerically approximated.

Step 5: Estimate SM parameters from real-world data

In the next step, estimate values of SM input parameters
�pSM from the real-world data, for instance by performing

maximum likelihood estimation (MLE) as in the previous

step. Ideally at this stage, practical identifiability of the SM

model should be investigated to arrive at identifiable

combinations of SM input parameters. Practical

identifiability examines how real-world considerations, such

as noise or sampling frequency, affect one’s ability to uniquely

estimate model parameters from a given data set (Jacquez and

Greif, 1985). This additional step of finding the practically

identifiable combinations of SM parameters will help

constrain the desired ABM parameter space that maps to

real-world data in the next step.

Step 6: Infer regions of ABM parameter space that

correspond to real-world data

In the final step of SMoRe ParS, overlay the ranges on data-

derived SM parameters in the previous step on the inferred

relationship between SM parameters and ABM parameters

found in Step 4. This yields regions of ABM parameter space

that correspond to experimental data. Specifically, for each

data-informed choice of SM parameter vector �pSM, regions

in ABM parameter-hyperspace are obtained via projection

mapping for all its components, pSM,i. The intersection of

these regions yields ABM parameter ranges that correspond

to that specific choice of �pSM. Repeat this for several choices of
�pSM—constrained by the practical identifiability information

from Step 5—and take the union of the resulting ABM regions

to arrive at the desired ranges in parameter values that match

with the experimental data.

2.2 Proof of concept: Vascular tumor
growth

In this section we work through the set up of a detailed proof

of concept of our new method. To demonstrate the functionality

and originality of our approach, we apply it to a 3D, multi-grid,

on-lattice ABM of stem-cell driven vascular tumor growth.

2.2.1 SM formulation and variables
We use experimental data from the breast cancer literature in

the form of tumor volume time-courses [see Figure 5A in (Zhou

et al., 2019)]. These data suggest that a single ODE tracking the

number of tumor cells over time is an appropriate formulation

for the SM.

2.2.2 ABM formulation
The ABM of vascular tumor growth implemented here is a

simplified form of previous models (Norton et al., 2018; Ventoso

and Norton, 2020; Fischel et al., 2021). The simplified version

consists of two modules: a tumor module and a vasculature

module. Both modules are on-lattice, but they occupy different

grids. The overall simulation domain is a cube of side 1 mm. As in

(Norton et al., 2018), the tumor is initiated with cancer cells,

progenitor and stem, placed in one corner of the grid. Cells

cannot leave the boundary of the simulation domain. The

vascular network at tumor initiation consists of mature vessels,

each comprised of individual segments located along the grid

boundaries closest to the initial tumor. This initial set up is

visualized in Figure 2. The ABM simulates a tumor growing on

the surface of healthy, vascularized tissue, which acts as an additional

source of oxygen. The simulation is run for 300 iterations, each

iteration corresponding to ~ 6 h. For more information on model

assumptions, setup and simulationmethodology, we refer the reader

to (Norton et al., 2017; Ventoso and Norton, 2020; Fischel et al.,

2021). A list of parameter values used for baseline simulations of the

ABM is provided in Table 1 and an algorithm for simulating the

ABM is outlined in the Appendix and Figure 9 (adapted from

Ghaffarizadeh et al., 2018).

2.2.2.1 Tumor module

The tumor module resides on a 50 × 50 × 50 lattice, in which

each cancer cell can only occupy one lattice point. The cancer cells

have two proliferative phenotypes: stem cells and progenitor cells,

and two migratory phenotypes: high and low migration.

Proliferating stem cells have a certain probability of division that

remains fixed at predetermined values throughout our simulations.

Cancer stem cells are also assumed to have limitless replicative

potential (Hanahan andWeinberg, 2000). Progenitor cell behavior is

determined by two main input parameters: pdiv, the division
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FIGURE 2
Storyboard showing a typical ABM simulation of vascular tumor growth, depicting the locations in space of normoxic (teal circles) and hypoxic
(purple circles) tumor cells, along with vasculature (red curves).

TABLE 1 Baseline parameter values used for ABM simulations. For a complete list, see (Norton et al., 2017).

Parameter description Parameter value Source

Progenitor cell division limit (divlim) 8–15 See text

Progenitor division probability (pdiv) 0.05–0.245 per iteration See text

Stem cell division probability 0.05 per iteration Norton et al. (2017)

Stem cell symmetric division probability 0.05 Norton et al. (2017)

Initial number of mature vessels 8 Ghaffarizadeh et al. (2018)

Initial number of stem cells 20 Norton et al. (2017)

Initial number of progenitor cells 80 Norton et al. (2017)

High migration rate 8.3 μm per hour Norton et al. (2017)

Low migration rate 0.83 μm per hour Norton et al. (2017)

Probability of daughter cell to be a high migratory cell 5% Norton et al. (2017)

Maximum vessel branching probability 0.2 per iteration Norton and Popel (2016)

Senescent cell death probability 0.1 per iteration Norton et al. (2017)
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probability of the cell; and divlim, the number of times a cell can

divide before becoming senescent. A stem cell proliferates less often

than a progenitor cell and can divide symmetrically into two stem

cells or asymmetrically into a stem cell and a progenitor cell.

Progenitor cells can only divide symmetrically into two

progenitor cells. Each daughter cell, whether stem or progenitor,

has a certain fixed probability of being a high migratory cell.

2.2.2.2 Vasculature module

The vasculature module resides on a 500 × 500 × 500 lattice,

which is 10-fold finer than the tumor module lattice because

microvessel diameter is typically smaller than the size of a tumor

cell (Tsuji et al., 2002; Hao et al., 2018). The initial vasculature is

made up of mature segments which are oxygenated. In each

simulation step, a new branch or sprout can form at a random

location along amature segment with a certain probability, if there is

a hypoxic tumor cell within a certain distance of the vessel. The

sprout’s movement is dictated by a tip cell and its length, by

proliferating stalk cells. Tip cells migrate towards the nearest

source of vascular endothelial growth factor (VEGF) (Gerhardt

et al., 2003), which in our model are breast cancer cells

(Linderholm et al., 2009). A sprout can fuse with another sprout

if the two tips cells are close to one another, or with a stalk cell if the

tip cell is close enough to it, through a process called anastomosis.

Blood can only flow in new vasculature when such loops are

completed (Chaplain et al., 2006). Blood-bearing vessels release

oxygen and thus govern normoxic and hypoxic regions within

the tumor. Cancer cells in hypoxic regions have a reduced

proliferation probability and an increased migration rate (Lin

et al., 2012).

2.2.2.3 ABM parameters of interest

Although the ABM has a number of input parameters, those

governing progenitor cell proliferation emerge as a natural choice

for several reasons. The experimental data comprises tumor

volume time-courses, and the bulk of a growing tumor is due

to non-stem cancer cells (Morton et al., 2011). Further, since this

is a proof of concept study, we wanted to minimize the degrees of

freedom, and emphasize ease of visualization. We therefore select

pdiv and divlim, defined earlier, as ABM parameters of interest.

2.2.2.4 ABM output

From each ABM simulation run at specific values of pdiv and

divlim, we record the number of cancer cells, the number of

hypoxic cells, the number of stem cells, and the number of cell

divisions, at each iteration. We also collect additional

information at the final iteration of the simulation including

the locations of all cancer cells and the location of the vasculature

within their respective grids. Values of ABM parameters at which

we generate output are all possible pairwise combinations from

pdiv = {0.05, 0.125, 0.245} and divlim = {8, 12, 15}.

2.2.3 Model selection
We consider three classical models of tumor growth as

candidates for our SM, namely, generalized Gompertz,

generalized logistic, and Von Bertalanffy. The equations for

each of these models can be found in Table 2. To assess

goodness of fit and parsimony for each of the models we use

AIC (Akaike Information Criterion) and BIC (Bayesian

Information Criterion) (Burnham and Anderson, 2004). These

are statistical techniques that involve a scoring method that uses

the maximum of a log-likelihood function or the residual sum of

squares (RSS) to choose the best among candidate models.

2.2.4 SM parameter surface reconstruction
For every sampled combination of ABM parameters pdiv and

divlim, we fit the SM model parameters to ABM output by

minimizing the weighted sum of squared residuals:

χ2 �pSM( ) � ∑
i

zi − yi
�pSM( )

σ i
⎛⎝ ⎞⎠2

, (2)

where: zi denotes averaged ABM output generated at time point i; σi,

the corresponding standard error; and yi( �pSM), the SM output at

time point i as predicted by parameters �pSM. We then use the profile

likelihood method outlined in (Eisenberg and Jain, 2017), which

exploits uncertainty in data (here, ABM output) to infer information

on estimated parameters. Specifically, each estimated SM parameter

pSM,i is “profiled” by fixing it across a range of values and the

remaining parameters are estimated for each fixed value of pSM,i

(Venzon and Moolgavkar, 1988; Murphy and Van der Vaart, 2000).

The maximum value of the likelihood function for each parameter

value yields the likelihood profile for that parameter (Eisenberg and

Jain, 2017). The likelihood profiles are also used to calculate

confidence bounds based on a likelihood threshold. The

parameter values at which the profile crosses the threshold (on

either side of the optimal parameter value) define the confidence

interval at a particular level of significance (Eisenberg and Jain, 2017),

here taken to be 95%. Bilinear interpolation—followed by a

coordinate transformation for ease of visualization—is used to

infer upper and lower bounding hypersurfaces as functions of

ABM parameters, for each SM parameter pSM,i.

2.2.5 Estimate SM parameters from experimental
data

We now fit the SM model parameters to the xenograft time-

course data in (Zhou et al., 2019) by once again minimizing a

weighted sum of squared residuals as described in the previous

step. Next, we repeat the profile likelihood method described above,

but now, with the experimental data. We additionally uncover

practically identifiable combinations of SM input parameters,

following the approach outlined in (Eisenberg and Jain, 2017).

This is done by fitting rational functions (for instance) to the
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parameter relationships inferred from the profile likelihood graphs

(Eisenberg and Hayashi, 2014).

2.2.6 Infer regions of ABM parameters space that
correspond to experimental data

Lastly, the identifiable ranges for the data-derived SM parameters

found in Step 5 are overlaid on the interpolatedmap between SM and

ABM parameters generated in Step 4 giving us the specific regions of

ABM parameter space that correlate with the experimental data.

Specifically, for each of our chosen SM parameters, we generate

regions in the pdiv−divlim (ABM) parameter-plane. The intersection of

these regions yield ranges for pdiv and divlim that correspond to a

specific choice of our SM parameters. We repeat this process for

multiple choices of our SM parameters and take the union of the

resultingABMregions to arrive at the desired ranges for pdiv and divlim
that match with the experimental data.

2.2.7 Applying knowledge gained from SMoRe
ParS to compare inferred tumor characteristics

Two distinct sets of ABM parameters are chosen from the

experimental data-informed region computed in the previous step,

namely, pdiv = 0.18, divlim = 9 and pdiv = 0.24, divlim = 11. At each

parameter combination, ABMsimulations are repeated six times, and

used to calculate several metrics to distinguish between the resulting

virtual tumors: 1) The Euclidean distance of the farthest cancer cell

from the tumor at initiation; 2) the fractal dimension of the tumor

vasculature [using MATLAB Central File Exchange file boxcount

from F. Moisy (Moisy, 2008)]; 3) the surface area to volume ratio of

the tumor; and 4) the compactness of the tumor [using the formula

Comp � (Vol)1/3p(36π)1/6/ 			
SA

√
from (Limkin et al., 2019)]. Here,

SA refers to the surface area of the tumor andVol refers to the volume

of the tumor, calculated as follows. We use the Matlab function

alphaShape to find the volume and surface area that encloses all

points at which tumor cells are located in the 3D simulation domain.

To eliminate confounding effects from tumor cells that havemigrated

away from the primary tumor mass, any regions of tumor cells

smaller than a cutoff threshold of pixel volume = 50 are first removed

using the Matlab function RegionThreshold.

3 Results

3.1 ABM simulations

To illustrate our ABM of 3D vascular tumor growth, we select

representative values of pdiv and divlim at which we generate ABM

output. Figure 2 depicts the progression over time of the resultant

tumor, showing normoxic (cyan) and hypoxic (purple) tumor

cells. Starting from a few cells in the corner of the grid, the tumor

expands within the simulation domain as cells proliferate and

tumor vasculature evolves. Figure 3 shows the concomitant

evolution of tumor vasculature.

3.2 Surrogate model selection

The candidate surrogate models are shown in Table 2

along with their information criterion (AIC/BIC) values

FIGURE 3
Storyboard showing vasculature evolution within the tumor shown in Figure 2.
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associated with both ABM output and experimental data.

These results show that experimental data alone may not

distinguish between the models. However, when fitting to

ABM output, the generalized Gompertz (GG) and Logisitic

(GL) equations are e−1875 and e−942 times as probable as the von

Bertalanffy (vB) model to minimize information loss,

respectively. This means that GG and GL cannot explain

the ABM data better than vB. Our results confirm that

comparatively the vB growth model provides a better fit to

the ABM data. Therefore we select the vB model as our

surrogate. This agrees with findings in (Ghaffari Laleh

et al., 2022) where these and other test models were fit to

tumor volume time-courses from five different data sets.

The vB model has three input parameters (α, β, γ) of which α

is related to the environmental carrying capacity. This differs

significantly between the ABM (1 mm3) and the experimental

system (~2,000 mm3). Since the two carrying capacities are

uncorrelated, α cannot function as an interlocutor between

FIGURE 4
Surrogate model parameter surface reconstruction from ABM output. (A) Best fit of surrogate model to averaged ABM output generated with
pdiv= 0.245 and divlim = 8. (B,C) Profile likelihoods (solid blue lines) for estimated surrogatemodel parameters: (B) β, and (C) γ. Thresholds for the 95%
confidence intervals are shown as red lines and RSS stands for residual sum of squares. The left and right points of intersection of the blue and red
curves give the lower and upper bounds, respectively, for the estimated surrogate model parameter, corresponding to these specific values of
ABM parameters (pdiv = 0.245 and divlim = 8). (D–F) Lower and upper surface reconstruction for β. (D) Lower bounds for β obtained from 95%
confidence thresholds like those shown in panel (B), for various choice of ABM parameters pdiv and divlim. (E) Lower bound surface for β
reconstructed from the discrete points shown in panel (D). (F) Final lower (blue) and similarly reconstructed upper (orange) surfaces for β. (G–I)
Lower and upper surface reconstruction for γ, following similar steps.

TABLE 2 Information Criteria (AIC and BIC) for candidate surrogate models. Exp refers to experimental data.

Model Equation ABM Exp

AIC BIC AIC BIC

Generalized Gompertz dN
dt � Nλ(δ − γ lnN) 45,696 61,629 5483.8 6793.1

Generalized Logistic dN
dt � γN(1 − Nλ

K ) 43,839 59,771 5483.3 6792.6

von Bertalanffy dN
dt � αNγ − βN 41,947 57,880 5483.7 6793.0
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the ABM and the experimental data. Therefore, we select β and γ

as our SM parameters of interest.

3.3 Parameter surface reconstruction

Figure 4 shows the results of the SM parameter surface

reconstruction from ABM output. Figure 4A depicts the best

fit of SM output (time-course of # of tumor cells) to ABM

output (time-course of # of tumor cells integrated over space)

for one specific combination of pdiv and divlim. The results of

the profile likelihood analysis, quantifying uncertainty in SM

parameters β and γ for this choice of pdiv and divlim, are shown

in Figures 4B,C. Both parameters are identifiable from the

ABM output, as evidenced by u-shaped profiles. The 95%

confidence bounds for these fits correspond to discrete points

on the upper and lower 95% confidence hypersurfaces in (pdiv,

divlim, β) and (pdiv, divlim, γ) space. Repeating this for all

sampled combinations of pdiv and divlim yields the sets of

discrete points that lie on the upper and lower hypersurfaces

of each SM parameter. As an illustration, Figures 4D,G show

the discrete points on the lower hypersurfaces for β and γ,

respectively. Next, the surfaces are “filled in” using

interpolation, as shown in Figures 4E,H. Finally, Figures

4F,I show the fully reconstructed upper (orange) and lower

(blue) hypersurfaces for β and γ, respectively. For this region

of ABM parameter space, we are 95% confident that the SM

parameters lie in between these hypersurfaces.

3.4 SM parameter estimation from
experimental data

Figure 5A shows the results from fitting the SM parameters β

and γ to the experimental data for breast cancer xenografts taken

from (Zhou et al., 2019). From the subset profiles for each

parameter graphed in Figures 5C,D, we see that both

parameters are practically unidentifiable (or inestimatable)

from the experimental data set. Although each parameter on

its own is not estimable, the following practically identifiable

combination is inferred from parameter relationships between β

and γ, shown in Figure 5B:

γ � β + 0.0164
β + 0.0392

. (3)

We remark that the values for β and γ depicted in Figure 5B

are from within their respective 95% confidence bounds inferred

from Figures 5C,D.

3.5 Inferring regions of ABM parameter
space that correspond to experimental
data

For any pair of admissible values of β and γ as determined

by Eq. 3, a corresponding region of ABM parameter space is

inferred from Figure 4F for β, and Figure 4I for γ. The

intersection of these two regions gives the region of ABM

FIGURE 5
Surrogate model parameter estimation and practical identifiability analysis using breast cancer xenograft data from (Zhou et al., 2019). (A)
Surrogate model fit to experimental tumor volume time-courses. (B) Inferred relationship between γ and β using the profile-likelihood method
(Eisenberg and Jain, 2017), with combinations plotted as blue squares, and potential combination form plotted as a red curve. (C,D) Profile likelihoods
(solid blue lines) for estimated surrogate model parameters: (C) β, and (D) γ. Thresholds for the 95% confidence intervals are shown as red lines
and RSS stands for residual sum of squares.
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parameter space that maps to the experimental data for this

specific β-γ combination. Figure 6 shows these inferred

regions for three representative pairs of values of β and γ.

Along each row, the first panel shows the ABM parameter

region corresponding to that value of β, the second panel

shows the ABM parameter region corresponding to that value

of γ, and the third panel shows the intersection of these two

regions. Finally, Figure 7 shows the union of several such

common regions, for the range of possible values of β and γ.

This is the desired region of ABM parameter space inferred

from the experimental data.

3.6 Comparing metrics from the ABM
parameter space

Two distinct sets of parameters from within the inferred ABM

parameter space are chosen to illustrate how the same xenograft

volume time-course may come from tumors with very different

spatial microstructure. For each parameter set, ABM simulations are

repeated six times, and the number of tumor cells, the number of

hypoxic cells and the number of cancer cell divisions are recorded at

each time step. Additionally, we also calculate the compactness of

the tumor, the surface area to volume ratio of the tumor, the fractal

FIGURE 6
Regions in ABM parameter space corresponding to various choices of surrogate model parameter combinations that were inferred by fitting to
experimental data. Orange tinted areas represent regions in ABM parameter space for which that surrogate model parameter lies between its upper
and lower reconstructed surfaces. Purple and yellow tinted areas represent (inadmissible) regions when the surrogate model parameter is outside
these bounds. The first and second columns represent ABM regions corresponding to various choices of β and γ, respectively. The third column
graphs the intersection of the admissible ABM parameter regions, with each entry corresponding to the pair of β-γ values from that row. The β-γ pairs
in each row are points that lie on the practically identifiable combination form plotted in Figure 5B.
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dimension of the 3D vasculature, and the distance of the farthest

cancer cell from the original tumor, at the end of simulations

(iterations = 300). Figure 8 shows how these features compare

between the two sets of simulations.

As can be seen from Figure 8A, themean number of cancer cells

of parameter set 2 is consistently larger than parameter set 1, with a

difference of about a thousand cells. Parameter set 1 has a relatively

small variation between runs as compared to parameter space 2.

Similarly, Figure 8B shows that the mean number of hypoxic cells is

consistently larger for parameter set 2 than 1. On the other hand,

although the number of cancer cell divisions is initially higher for

parameter set 2, both sets of simulations stabilize at a similar number

(Figure 8C). These findings are unsurprising, given that parameter

set 2 allows for a higher probability of division as well as number of

allowed divisions, than parameter set 1.

Interestingly, tumors generated from parameter set 2 are

significantly more compact than those generated from parameter

set 1 (p-value = .0357 using a two sample t-test, see Figure 8D).

This makes sense as parameter set 2 has a larger division

probability and cells can divide more times than parameter set

1. Therefore, they should generally reproduce more often and

longer before they become senescent, creating a larger, more

compact tumor. Although we do see that the variance for

parameter space 2 is much larger than parameter space 1,

meaning that while they tend to be more compact, there are

also cases in which they are less compact, similarly to parameter

space 1. In contrast, the surface area to volume ratio is

significantly lower for tumors from parameter set 1 than

parameter set 2, with a p-value of .0149 (see Figure 8E). The

average fractal dimensions of the final tumor vasculature are

FIGURE 7
Region in ABM parameter space inferred from all possible
surrogate model parameter combinations that fit experimental
data equally well. The yellow and blue stars denote parameter sets
1 and 2 (pdiv = 0.18, divlim = 9 and pdiv = 0.24, divlim = 11;
respectively, as discussed in Section 3.6 and Figure 8.

FIGURE 8
Metrics distinguishing ABM-simulated tumors using parameter set 1 (pdiv=0.18 and divlim=9, yellow curves and bars) and parameter set 2 (pdiv=
0.24 and divlim= 11, blue curves and bars). (A)Mean and standard deviation of total cancer numbers at each iteration. (B)Mean and standard deviation
of total number of hypoxic cells at each iteration. (C) Mean and standard deviation of total number of cancer cell divisions at each iteration. (D–G)
Metrics calculated at simulation end-point (iterations = 300), with statistically significant differences indicated. (D) Compactness of the
simulated tumors. (E) Surface area-to-Volume ratio of the simulated tumors. (F) Fractal dimension of tumor vasculature. (G) Distance of the farthest
cancer cell from the origin (location of tumor cells at iteration 0).
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similar between the two parameter sets, with values within

1.93 and 1.97 (see Figure 8F). This is in line with

experimental results that found vessels from whole tumor

xenografts had fractal dimensions between 1.94 and 2.04 (Kim

et al., 2012). Finally, the distance from the original tumor of the

farthest cell at the end of the simulations, is also similar between

the two parameter sets (see Figure 8G).

4 Discussion

There is an unmet need to develop new theoretical and

computational frameworks that advance current efforts for

making critical connections between computationally complex

model (CCM) parameters and real-world data, which can be

sparse and highly variable. To that end, we developed SMoRe

ParS, which is a potentially paradigm-shifting method for

parameter surface reconstruction that tackles this problem.

SMoRe ParS envisages an explicitly formulated, data-informed,

simpler, surrogate model (SM) as an intermediary that is used to

quantify the uncertainty in the relationship between CCM inputs

and SM parameters, and also between SM parameters and real-

world data. SM parameters, thus, serve as a link between difficult-to-

estimate CCM inputs and noisy data and enable calibration and

uncertainty quantification of CCM parameters that map directly

onto an experimental data set.

To illustrate the capability of SMoRe ParS to connect CCM

output and real-world data, we applied it to anABMof 3Dvascular

tumor growth as the CCM, and data from tumor xenograft growth

experiments as real-world data. Our method allowed us to

FIGURE 9
Flowchart for implementing the Agent Based Model adapted from (Norton, 2018).
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construct an explicit mapping between ABM parameters and

tumor volume time-courses, which encodes within it

information on uncertainty in inferred parameter values. We

then selected two distinct sets of ABM parameters that map

onto the same data set, to investigate any differences between

the resultant simulated tumors. Indeed, several trends

distinguished the two sets of simulations. Variances in tumor

cell number time-courses shown in Figure 8 suggest that parameter

set 1 (lower probability of cell division and fewer number of

allowed cell divisions) is consistent with a slow growing tumor,

whereas parameter set 2 (higher probability of cell division and

greater number of allowed cell divisions) allows for both slower

and faster growing tumors. In fact, the variation within parameter

set 1 was consistently smaller than within parameter set 2 across all

metrics, except surface area to volume ratio (Figure 8). This

suggests that while in parameter set 1 all tumors grew relatively

similarly, in parameter set 2 the randomness of which cells could

proliferate or move could lead to a substantial difference in the

growth rate of the tumor. This is consistent with previous results

that showed if cells are surrounded by other cells, even if their

proliferation probability is high, they will not be able to divide

because there is not enough space, thus limiting the overall growth

of the tumor (Norton et al., 2017). Therefore, tumors that have the

capability of excessive growth may not be able to do so under

certain conditions where their growth is limited by spatial

inhibition. This also explains the trends in compactness and

surface area to volume ratio of the parameter sets. Tumors

generated from parameter set 1 were less compact than those

from parameter set 2, with a higher surface area-to-volume ratio,

indicating more space to grow. Both these metrics have been

suggested as predictors of malignancy in lung and head and neck

cancers Aerts et al. (2014), Bogowicz et al. (2017), He et al. (2014),

Wang et al. (2016). Our results suggest that tumors with very

distinct malignant potential could be “hiding” within aggregate,

macroscopic data.

In this paper, we chose to select the SM from a set of

phenomenological models because our main concern was

providing an easy to follow proof of concept example for

cellular-level tumor growth. In other applications, where for

example molecular or microenvironmental drivers of tumor

progression and treatment response are of interest, it is possible

to choose a mechanistic formulation of the surrogate. There are

several advantages to doing so, including being able to more fully

leverage the SM’s ability to directly connect the ABM to the

experimental data. A mechanistic SM would also have stand

alone value as it provides a more complete characterization of

the system and can be used for long term forecasting with

greater confidence. We remark that in our approach, only a

handful of ABM parameters can be considered at a time. In

general, the precise number would depend on the computational

complexity of the ABM and SM and howmuch experimental data is

available. Further, deriving a mechanistic SM that can match both

the experimental data and the ABM output may prove time-

consuming. While we use cancer as an illustrative example and

as the subject of our future studies, SMoRe ParS can easily be applied

to a wide range of CCMs for basic biology and translational systems

biology investigations.
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Appendix A

Agent based model

The cancer agent-based model is made up of two main

modules: the vascular module and the cancer cell module, as

described in Section 2.2.2. Figure 9 shows a flow chart of how the

ABM is implemented.

Model setup

The cancer module is initialized with 100 cells, of which

20 are stem cells and 80 are progenitor cells. 5% of all cells are

assumed to have a higher migratory speed. Each progenitor

cell may divide at most divlim times before undergoing

senescence, and the initial pool of progenitor cells are

randomly assigned a division cycle count between 1 and

divlim. The vascular module is initialized with eight

capillaries that are aligned along the edges of the simulation

grid, with two capillaries branching off of another. The floor of

the simulation domain is assumed to rest on healthy tissue and

acts as a constant source of oxygen.

Vascular module

The vascular module starts to evolve once hypoxic cancer

cells appear in the simulation. These are an assumed source of

angiogenic factors such as VEGF. A cancer cell becomes

hypoxic once it is 200 microns away from a source of

oxygen, namely a mature capillary or the floor of the

simulation domain. The vascular network evolves as

follows. In each iteration, a cell lining a capillary has a

chance to generate a new tip cell, determined by local

hypoxic conditions. Each active tip cell determines whether

it migrates or proliferates. A tip cell can only proliferate if

there is no stalk cell in the sprout, in which case the tip cell

proliferates to produce a stalk cell behind it. Tip cells with stalk

cells behind them do not proliferate. Once a tip cell has

proliferated, we test whether it is adjacent to another tip

cell or vascular segment and if so, the two tip cells or the

tip cell and vascular segment anastomose. This results in the

formation of a closed loop which represents a blood-bearing

vessel that is a source of oxygen. All segments in such a vessel

are then marked as mature and can no longer proliferate or

migrate. If the tip cell does not proliferate, it checks whether it

can migrate. We introduce a variable migdist, which

determines how far the tip cell migrates. migdist cannot

exceed more than 1.5 times the length of the tip cell, and is

calculated based on the local VEGF concentration. This, in

turn, is a function of the number of neighboring cancer cells.

Details on how migdist is computed are provided in (Norton

and Popel, 2016). The tip cell randomly migrates towards one

of its neighboring cancer cells, excluding cells that would cause

the tip cell to migrate backwards. The tip cell does not migrate

if it would cause it to leave the vascular grid. After migration,

the tip cell checks whether it can anastomose, as described

previously.

The second step of the vascular module involves stalk

cell decisions. Stalks cells’ main function is to proliferate

and push the tip cell forward. A stalk cell only proliferates

when it reaches the end of its cell cycle, and if there is

enough space. If a stalk cell proliferates, a new stalk cell

is created replacing the old tip cell. Afterwards a new tip

cell is created of 1 micron length in the direction of the old tip

cell. The old stalk cell then becomes a quiescent phalanx

cell which cannot proliferate or migrate. The new stalk cell

resets its cell cycle and the tip cell checks if it should

anastomose.

The last step of the vascular module allows for

vessel branching of phalanx cells. Neither tip cells nor stalk

cells are allowed to branch. Branching occurs due to the

presence of nearby hypoxic cells. Specifically, the phalanx

cell can only branch if there are hypoxic cells within

250 microns of it. The new branch creates a tip cell that is

extended in the direction of the nearest hypoxic cancer cell.

Once a phalanx cell has branched the two cells next to it cannot

branch.

Cancer module

The cancer module runs through each cancer cell in a

random order so as not to introduce bias. Each cancer cell

can migrate, proliferate, quiesce, senesce and/or die in each

iteration. First, the cell determines whether it is normoxic or

hypoxic by checking whether it is less than 200 microns from a

mature vessel. Hypoxic cells are more migratory, increasing

the speed they migrate 3-fold, and are less proliferative,

decreasing their chances to proliferate by half. In order for

the cancer cell to migrate or proliferate there must be available

space. If there is no available space, the cell becomes quiescent.

The cell decides whether it will migrate based on its migration

probability. The number of voxels the cell migrates is based on

its migration speed. Therefore, each migrating cell randomly

chooses an open space to migrate into and repeats this as many

times as its migration speed.

The next decision the cancer cell makes is whether it can

proliferate. Each cancer cell has its own proliferation rate
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depending on whether it is a stem cell or a progenitor cell and

whether it is hypoxic or not. If it is a progenitor cell, it can only

proliferate if it has not reached its division limit, divlim. In this

case, the progenitor cell decides whether it will divide based on

its proliferation probability pdiv. If it decides to proliferate, the

progenitor creates a new progenitor cell in a random adjacent

grid space and increases its division number by 1. The new

progenitor cell inherits the parent cell’s division number and

has a 5% probability of being highly migratory. Once a

progenitor cell has reached its division limit, it becomes

senescent. Alternatively, if the current cancer cell is a stem

cell, it first decides whether it will divide based on its

proliferation probability. Then it decides whether it will

divide symmetrically into another stem cell or

asymmetrically into a progenitor cell. Stem cells have no

division limit but if a stem cell creates a new progenitor

cell, the new progenitor cell has a full division limit of

divlim. At the end of the simulation, any cell that has been

hypoxic for 40 iterations dies. Each senescent cell has a 10%

probability of dying in each iteration.
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