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Bioorthogonal chemistry represents plenty of highly efficient and

biocompatible reactions that proceed selectively and rapidly in biological

situations without unexpected side reactions towards miscellaneous

endogenous functional groups. Arise from the strict demands of

physiological reactions, bioorthogonal chemical reactions are natively

selective transformations that are rarely found in biological environments.

Bioorthogonal chemistry has long been applied to tracking and real-time

imaging of biomolecules in their physiological environments. Thereinto,

tetrazine bioorthogonal reactions are particularly important and have

increasing applications in these fields owing to their unique properties of

easily controlled fluorescence or radiation off-on mechanism, which greatly

facilitate the tracking of real signals without been disturbed by background. In

this mini review, tetrazine bioorthogonal chemistry for in vivo imaging

applications will be attentively appraised to raise some guidelines for prior

tetrazine bioorthogonal chemical studies.
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Introduction

The aspiration to keep track of life processes from the molecular and protein level has

resulted in a convergence of chemistry and biology. Under the circumstances, chemical

reactions that occur under physiological conditions gain diverse applications in biological

sciences. As early as 2000, Bertozzi and coworkers developed the modified Staudinger

reaction within cell surface (Saxon and Bertozzi, 2000). This creative study opened up a

wholly new field, bioorthogonal chemistry, wherein unnatural partners be able to react

rapidly and selectively under the selected physiological situations in a nonintrusive

manner. For more than 20 years, bioorthogonal chemistry has evolved as a highly

powerful technique to functionalize and image biological molecules including glycans,

nucleic acids, lipids, and proteins in biological systems (Lo, 2020). Encouragingly, the

Nobel Prize in Chemistry 2022 has been awarded to Carolyn R. Bertozzi, Morten Meldal,
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and K. Barry Sharpless, for the development of click chemistry

and bioorthogonal chemistry.

Key reactions of bioorthogonal chemistry include Staudinger

ligation or native chemical ligation, strain-promoted [3 + 2]

cycloaddition reactions, copper-mediated azide—alkyne

cycloaddition, metal-mediated coupling reactions, tetrazine

ligation, oxime and hydrazone ligations along with

photoinducible bioorthogonal reactions (Scinto et al., 2021).

Among those reactions, tetrazine bioorthogonal reactions are

widely studied in recently years and represent the most

significant toolbox for imaging applications. Reasons

underlying this should be the rapid kinetics and high

selectivity which ensure highly efficient modification even at

extraordinary low concentrations normally proceed in vivo (Wu

and Devaraj, 2018). Tetrazine bioorthogonal reaction refers to

inverse electrondemand Diels—Alder chemical reaction between

tetrazine derivatives and various dienophiles. This technique was

reported by two groups in 2008 independently (Blackman et al.,

2008; Devaraj et al., 2008). With continuous efforts, TBC has

been applied to numerous chemical biology areas (Oliveira et al.,

2017) including biological functionalization and imaging of

interested biomolecules (Wu and Devaraj, 2018), metabolic

probes development (Rieder and Luedtke, 2014; Agarwal

et al., 2015), and bioorthogonal chemistry driven

nanotechnologies (Jiang et al., 2021b; Chen et al., 2021).

To facilitate the study of biological functions of biomolecules

in their target natural environment, it is inevitable to elaborate

highly selective labeling tactics that enable tracking and imaging

of the specific biomolecules in vivo. The imaging of target

biomolecules in selected intrinsically environments may offer

a great deal of highly important knowledge on the subcellular

localization, changes in expression resulting from diverse stimuli,

and interactions with pathogens and neighboring cells (Meineke

et al., 2021; Bian et al., 2022). Though constructed genetic fusions

bearing fluorescent proteins can regard as a strategy, however,

this manipulation may interfere the structure and function of the

proteins or glycans, and moreover, lipids cannot be modified

with such techniques. Classical bioconjugation approaches can

represent alternative strategies but these techniques are mostly

confined to in vitro manipulations together with low complexity

levels (Jiang et al., 2022a; Jiang et al., 2022b). Since bioorthogonal

chemistry development, this tactic quickly turns into primary

choice for imaging of the specific biomolecules in vivo.

Bioorthogonal chemistry-based methodologies for in vivo

imaging rely on the installation of chemical anchor onto the

specific biomolecules, which will further react with the

bioorthogonal reagents. In this strategy, a precursor

functionalized with a bioorthogonal reaction group is

delivered to the target biomolecules in selected cell or

organism through metabolic, enzymatic, chemical or

nanotechnological approaches. Subsequently, those target

biomolecules can be shaped by covalent ligation with probe

molecules embodying a complemental bioorthogonal reaction

group. Among all the bioorthogonal chemical approaches, TBC

has been wildly applied in various areas and represent the mostly

significant and efficient tactic in this area (Wu and Devaraj,

2018). Reasons that bioorthogonal chemistry is suitable choice

include 1) no cross-reactivity or interference with intrinsically

occurring functionalities take place; 2) it show moderate to high

reactivity under physiological situations; and 3) those employed

reactions do not induce severe toxicity (Borrmann and van Hest,

2014). In this mini review, a selection of state-of-the-art TBC for

animal in vivo imaging and their target promising application in

biological situations is summarized. We will appraise in detail the

newly developed methodologies in the recent years. This review

also endeavors to demonstrate the detailed mechanisms to help

researchers inspire the development of future tetrazine

bioorthogonal methodologies.

Building blocks applied in TBC

Most of the biologically utilized tetrazines are 1,2,4,5-

tetrazine derivatives, the molecules that are developed long

ago, whose first synthetic route was reported 110 years ago by

Hofmann and coworkers (Hofmann and Ehrhart, 1912). Over

the years, very few groups that turned interest toward the 1,2,4,5-

tetrazine preparation. Driven by TBC, the preparation of tailored

molecules with broad applications in Diels-Alder cycloaddition

reactions to make new pyridazines is thriving in recent decades.

Devaraj group has made a lot of contributions to 1,2,4,5-tetrazine

preparation, modification and biological applications (Wu et al.,

2016; Wu and Devaraj, 2018). They firstly developed lewis acid-

metal complex promoted one-pot synthesis method for the

preparation of some benzyl-1,2,4,5-tetrazines (Yang et al.,

2012a). To continue their efforts to avoid the limitations of

metal catalyzed de novo tetrazine preparation, Devaraj group

sought to utilize Heck coupling to prepare tetrazine building

blocks for TBC applications which could be linked to selected

functional molecules efficiently via very mild reaction condition.

This one-pot elimination-Heck cascade coupling methodology

has contributed a lot to functionalized 1,2,4,5-tetrazine

bioorthogonal probe preparation (Wu et al., 2014).

Tetrazine bioorthogonal reactions generally include Diels-

Alder cycloaddition with dienophiles and [4 + 1] cycloaddition

with isonitriles. For in vivo applications, Diels-Alder

cycloaddition is much more popular attributed to its fast and

tunable kinetics and can be used in vivo with nanomolar

concentrations (Oliveira et al., 2017). Present endeavors of

researchers mainly focus on preparing novel 1,2,4,5-tetrazine

derivatives (Figure 1A) with useful functional groups (Figure 1B)

as well as screening of suitable dienophile substrates (Figure 1C).

Commonly used dienophiles include the axially and equatorially

linked equatorial and trans-cyclooct-2-ene isomers (eq.-TCO*S
and ax.-TCO*a-d) (Hoffmann et al., 2015), endo-bicyclo [6.1.0]

non-4-yne (endo-BCNa-c) (Dommerholt et al., 2010), mono- and
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dimethylcyclopropene derivatives (MMCya-d along with

DMCya-d) with selected linear amino acids of different length

via a carbamate (Yang et al., 2012b), cycloct-2-yn-1-ol (SCOS)

derivatives (Plass et al., 2011), 2Z or 4Z isomers of cis-

cyclooctenol (CCOS) (Zhou et al., 2020) and norbornene

substrate (NorbS) (Best et al., 2015). Incorporating the most

frequently used 1,2,4,5-tetrazine and dienophile moieties from

literature, the entire reactivity (k2) range from 10−2 m−1s−1 to

105 m−1s−1 (Lang and Chin, 2014).

Investigation into the optimization of 1,2,4,5-tetrazine motifs

to optimize and expand their biological applications, researchers

have organized various 1,2,4,5-tetrazine derivatives with

functional groups at the C-3 or C-6 position. Several research

groups, including Devaraj group (Devaraj, 2018; Wu and

Devaraj, 2018), Prescher group (Row and Prescher, 2018) and

Wu group (Mao et al., 2021) have made large and significant

contributions to developing new routes to 1,2,4,5-tetrazines and

expanding the range of valuable functional groups, with specific

focus on the development of functional groups with off-on

mechanisms (Figure 1B). Derivatization approaches of

tetrazine require the functionalization of electron-donating

groups to balance the electrondeficient skeleton or electron-

withdrawing groups to improve the reaction kinetics (Maggi

et al., 2016). Under the circumstance, various of alkyl and aryl

tetrazines have been organized and prepared for selected

purpose. The 1,2,4,5-tetrazine motifs with different dyes at C-

3 or C-6 position can act as reporters in vivo, while the

substituted groups of carboxyl, amino or biotin are reactive

sites and can be further modified to fulfill the target biological

application requirements. Mechanisms underlying the tetrazine

Diels-Alder cycloaddition has been presented in Figure 1D, in

which the 1,2,4,5-tetrazine and dienophile (ethyne as example)

comprise of the cycloaddition reaction to give tetraazabarrelene

as an intermediate, consequently, the elimination of N2 will form

the final product pyridazine.

Glycan-based TBC for in vivo imaging

Along with the rapid development of genomics and

proteomics, glycomic analysis is gaining increasing attention

in biological and biomedical studies of glycans. Glycans on

cell surface or protein mediate numerous of critical biological

functions, such as viral along and bacterial infection,

inflammation, angiocardiopathy, embryogenesis and cancer

(Jiang et al., 2021a; Tabang et al., 2021). On account of

intricate structures as well as non-template-driven

preparation, the glycans are usually hard to interrogate and

manipulate compared with the other biomolecules, for

instance, oligonucleotides and proteins. What’s more, the

physiological significance of many glycans has induced the

requirement for in vivo imaging technologies in their native

physiological conditions. Antibodies and lectins targeting

selected glycan epitopes can detect glycans in vitro but are ill-

suited for in vivo imaging owing to their low affinity for glycans

and poor tissue penetrance (Laughlin and Bertozzi, 2009).

As an alternative to these affinity-based approaches, using

biorthogonal chemical reporter strategy to manipulate and image

glycans is very promising. An exciting strategy by Bertozzi group

incorporates the metabolic incorporation of functionalized-

cyclooctyne- sialic acid analogs with ligation reaction of

fluorogenically tetrazine derivatives, fullfilling the imaging of

glycans and glycoconjugates inside living zebrafish embryos

(Figure 2A). It is worth to mention that normal technique to

the system-wide modification of cell-surface glycan analogs is to

combine the selected metabolic labeling reagent and the target

FIGURE 1
General information of the building blocks applied in TBC. (A) Reactivity of selected tetrazines in Diels-Alder cycloaddition. (B) Selected
fluoresce reporter on tetrazinemotif with off/onmechanism. (C)Commonly utilized dienophiles in Diels-Alder cycloaddition. (D)Mechanisms of the
Diels-Alder cycloaddition.
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imaging reporter into a developing embryo through injection.

Nevertheless, the excess probe can be visualized inside the

organism, resulting in strong background fluorescence that

would mask signals from glycan analogs of interest. The issue

was obviated by the use of a 1,2,4,5-tetrazine-based fluorogenic

probe whose fluorescence signal was activated in the system of

the target ligation reaction with cyclooctyne motif, which were

initiated by Devaraj and coworkers and exhibit up to 400-fold

fluorescence turn-on properties (Agarwal et al., 2015). Ahead of

bioorthogonal ligation process, metabolic incorporation of the

target bicyclononyne-functionalized sialic acid (BCNSia) was

carried out. Following was the reaction with a fluorescence

turn-off Oregon Green 488 functionalized tetrazine to enable

the systemic visualization of sialylation during the zebrafish

embryogenesis progress (Figure 2A1). The studies suggested

that sialylation was plentiful within a few structures, the

FIGURE 2
Applications of TBC for animal in vivo imaging. (A) Glycan-TBC for in vivo imaging. (A1): Metabolic route for functionalization of BCNSia into
cell-surface glycan analogs and its functionalization with tetrazine reporter; (A2): projection images of 30 or 48 hpf embryos deal with BCNSia or
vehicle; A3: projection images (20×) of 48 hpf embryos from a number of viewpoints (Copyright 2015 Wiley-VCH). (B) TBC for nucleic acids in vivo
imaging. (B1–B2): Schematic of Diels−Alder reaction between BODIPY−tetrazine with VrU acted as the light-up reporter method; (B3): in vivo
imagination of mice from buffer along with VrU groups, tumor tissues are labelled with arrows (Copyright 2019 American Chemical Society). (C)
Lipid-TBC for in vivo imaging. (C1): Development of bioorthogonal building blocks for “click” ligation for the preparation of 68Ga-labelled MBs. (C2):
PET imagination of Balb/c nude mice after intravenous injection of 68Ga (left), 68Ga-labelled PE (middle) and, 68Ga-labelled MBs (right) at different
time intervals (Copyright 2019 Royal Society of Chemistry). (D) Pretargeted immuno-PET rely on TPC for imaging EGFR positive colorectal cancer
(Copyright 2018 American Chemical Society).
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situations were investigated in detail in embryos injected at 30 to

48 hpf (hours post fertilization) with tetrazine probe

(Figure 2A2). The BCNSia dependence of modification was

especially striking in higher-magnification imaginations of its

head acquired from the lateral, rostral ventral, and dorsal views

(Figure 2A3).

Antibody-based bioorthogonal pretargeting strategy for in

vivo nuclear imaging has been developed by Zeglis group. The

work combined bioorthogonal pretargeting strategy and site-

selective bioconjugation tactic to formulate a pretargeted

positron emission tomography (PET) imaging strategy

depending on the fast and bioorthogonal inverse electron

demand Diels−Alder cycloaddition among the 64Cu-modified

tetrazine ligand (64CuTz-SarAr) and the site-selectively

functionalized trans-cyclooctene- huA33 immunoconjugate

(PEG-TCO- huA33). Eventually, mice were incorporated with

PEG-TCO- huA33 through tail vein injection followed by

accumulation intervals of about 24–48 h Cu-Tz-SarAr. In

addition, PET imaging and biodistribution investigations

unveiled that the technique very well delineates tumor tissues

as early as 1 h post-injection, formulatingimages with

outstanding contrast as well as distinct tumor-to-background

activity concentration ratios (Cook et al., 2016; Sarrett et al.,

2021). This strategy has a similarity with Brindle’s work whose

tetrazine reporter was fluorescent dye functionalized tetrazine

derivatives (Neves et al., 2013).

TBC for nucleic acids in vivo imaging

Accurate assessment of the distinctness in tumor

associatednucleic acid expression levels presents meaningful

information for tumor.

Expression levels presents meaningful information for tumor

treatment and diagnosis. Up to now, some strategies, such as

genetically encoded sensors, molecular beacons, together with

spherical nucleic acids are developed and have been applied to

detect nucleic acids in living cells (Gao et al., 2021; Zhao et al.,

2022). These strategies mainly rely on the hybridization with the

selected nucleic acid and deliver the corresponding inadequate

signal output, which would disturb the detection of cellular

nucleic acid with very low copy numbers. Eventually, the

DNA cascade circuits based on toehold-depended strand

displacement to fulfil highly potent nonenzymatic signal

amplification have been developed for sensitive RNA imaging

in live cells (Wei et al., 2020; Wu et al., 2020). Despite these

significant progresses, the conventional cascades with selected

fluorophores and quenchers might be degraded by the

endogenous nucleases within cellular environments and

causing high background signals or even false the real positive

results (Wu et al., 2015; George and Srivatsan, 2020).

Nucleic acid-templated bioorthogonal reactions, mainly the

tetrazine ligation, have been regared as a very promising method

for the monitoring or imaging of nucleic acids in vivo. 5-

Ethynyluridine (EU) and 5-ethynyl-2′-deoxyuridine (EdU)

derivatives were utilized to monitor RNA and DNA,

respectively, in live cells. Liu and coworkers developed a

nucleoside analog 5-vinyluridine (VrU) for modification of

during cell division along with for tumor tissue imaging in

the living mice (Liu et al., 2019). In this work, functional

nucleosides bearing a VrU was metabolically incorporated to

RNA inside cell, which can be applied to the imagination of RNA

using a 1,2,4,5-tetrazine mediated bioorthogonal Diels−Alder

reaction (Figures 2B1–B2). They further spreaded this tactic to

observation of RNA together with DNA behaviors in a group of

primary stages of the cell division as well as for tumor tissue

imagination in living mice (Figure 2B3). In addition, the study

applied the VrU and EdU to observe RNA together with DNA

simultaneously at single-cell resolution. Instead of using 1,2,4,5-

tetrazine probe as the reporter, Zhang group designed several

coumarin-fused 1,2,3,4-tetrazoles for the realization of

“photoclick” labeling and imaging of DNA in vivo. They

demonstrated very rapid (up to 19.5 M−1 s−1) fluorogenic

imagination of DNA in vivo depending on rationally devised

coumarin-modified tetrazole derivatives under the UV LED

photoirradiation. Based on a water-soluble and nuclear-

selective coumarin-fused tetrazole analog (CTz-SO3), the

metabolically organized DNA in live cells was efficiently

modified and visualized through “photoclick” reaction and

without fixation. Subsequently, the photoclickable CTz-SO3

building block enabled spatially regulated imagination of DNA

in the live zebrafish (Wu et al., 2019).

Lipid-based TBC for in vivo imaging

Lipids are significant and valuable building blocks of cells,

they play critical roles in energy storage, membrane formation,

and signaling. Lipids are greatly diverse in chemical structure,

furthermore, their distribution varies with different organisms.

Despite the vital relevance and intrinsic in vivo functions, lipids

are still less investigated than equally essential biomolecules. One

important reason should be the relative shortage of strategies to

interrogate their manipulation as well as visualize them

(Williams and Grant, 2019). Furthermore, it is quite difficult

to accommodate all species of them with normal strategies of

extraction, purification, and analysis owing to the high structural

diversity of lipid families. Over the last decades, probes target

lipid have become powerful tools in synthetic biology and new

bioorthogonal tactics have been demonstrated for imaging lipids

in their physiological conditions (Flores et al., 2020).

Lipids are the basic building blocks for microbubbles (MBs),

the contrast agents that play a critical role in fields of anatomical

and molecular imaging and can be utilized pre-clinically and

clinically. In those applications, MBs act as driving force which

can prevent drawbacks inherent to the already developed
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imaging modalities (Mewis and Archibald, 2010; Abou-Elkacem

et al., 2015; Wang et al., 2021). Nevertheless, its inability to

supply whole-body imagination can severely obstruct the

exploitation of novel MB formulations. Long group described

a rapid and highly efficient strategy for achieving the labeling of

MBs by using 68Ga (Hernandez-Gil et al., 2019). The approach

produced 68Ga-labeled MBs in excellent isolated yields by means

of the bioorthogonal inverse-electron-demand Diel–Alder

cycloaddition between cyclooctene-functionalized phospholipid

and the novel tetrazine-fused CC-HBED chelator. Bioorthogonal

reaction of TCO and phospholipids was simple, efficient and

reproducible. In addition, the novel CC-HBED-tetrazine chelator

supplied quite efficient 68Ga-labeling with high yields, this

method produced reproducible preparation of 68Ga-MBs

under mild and controllable conditions (Figure 2C1). In

addition, this strategy offered real-time imaging along with

the ability of easily customising tunable phospholipid-based

formulations. Furthermore, they confirmed that the

corresponding 68Ga-MBs permit non-invasive investigation of

the in vivo whole-body distribution of MBs in mice (Figure 2C2).

As promising vehicles for controlled release of cytotoxins and

drugs, liposomes have a very long-standing history in clinical

practice and medical study. Moreover, liposomes possessseveral

advantageous capabilities in molecular imaging applications,

such as improved stability and the capability to be modified

with radioisotopes, along with paramagnetic or fluorescent

contrast analogs. Emmetiere and coworkers applied

bioorthogonal liposomes for in vivo imaging study. They

coated radiolabeled liposomes with trans-cyclooctene and

pretargeting with a tetrazine coupled to selected polypeptide,

which were capable to improve the retention of the liposomes

and combine them with tumor in live animals. Subsequently, the

bioorthogonally driven tumor-targeting of liposomes through in

vivo click reaction was very attractive and was able to be explored

for more sensitive delivery of radiodiagnostics and

radiotherapeutic (Emmetiere et al., 2013).

Protein-based TBC for in vivo imaging

Uncovering the secret of protein structure and function is

essential for understanding various biology processes, but it

remains very challenging owing to the high intricacy of

protein networks. In addition, the daunting assignment of

elucidating these complicated interconnections demands the

concerted application of strategies derived from various

disciplines. Site-selective protein modification with functional

agents, for instance, spin probes, fluorophors, and affinity tags

has considerably assisted both in vitro and in vivo investigations

of the structure and function of protein. Bioorthogonal reactions

can facilitate the regioselective functionalization of selective

chemical agents to proteins, which are extremely promising

techniques for site-specific protein labeling (Chen et al., 2011;

Bird et al., 2021). Thereinto, antibody based TBC is widely

studied and possesses applications in imaging and therapeutic

fields. As illustrated in Figure 2D. Pretargeted immuno-PET

imagination technique rely on the reaction between 18F-fused

dienophiles and tetrazine building blocks of two EGFR-targeting

monoclonal antibodies panitumumab and cetuximab was

developed (Shi et al., 2018). Firstly, lysine residue of EGFR-

specific monoclonal antibodies (panitumumab or cetuximab)

was labeled with tetrazine. The monoclonal

antibodies−tetrazine motifs were subsequently utilized to

conect with the positron emitter modified dienophiles in vivo.

Immuno-PET imaging as well as biodistribution investigations

revealed a fast hepatobiliary along with renal excretion and a

subsequent low background signal of the probe, leading to a high

quelity along with unobstructed imagination of EGFR expression

in living mice (Figure 2D). Alternatively, a18F-labeled tetrazine

was designed as a bioorthogonal reporter to react with a TCO

handle on tumor targeting antibody (Battisti et al., 2021). This
18F-labeled tetrazine has favorable target-to-background ratios

and good pharmacokinetics in its in vivo pretargeted PET

imaging investigation. The probe has been considered to have

the capacity to be clinically applied for in vivo pretargeted PET

imagination by the authors. Need to mention that their results

were preliminary studies and require detailed investigation using

more complex models (e.g., PDX or orthotopic).

Perspectives

Bioorthogonal chemistry pursuit the selective reactions in

harsh environments. The strict demand of the technique for in

vivo applications has forced researchist to develop

unconventional handles into the in vivo, which usually

represent complicated prior task. Fortunately, several clinical

or pre-clinical drugs relying on bioorthogonal chemistry (e.g.,

TRPH-222, STRO-002, ADCT-601 et al.) are ongoing to explore

drugabilities of this technique (Peplow, 2019).

The tetrazine bioorthogonal reactions summarized in this mini-

review and related in vivo imaging applications have proven to be

potent tools. Thus, tetrazinemediated Diels-Alder cycloaddition can

successfully be utilized for site-specific modification of glycans,

nuclear acids, lipids and proteins under physiological conditions,

which can facilitate the tracking and imaging of those important

biomolecules in their physiological conditions. Depending on these

tactics the orientation of labeled biomolecules can be controlled

while retaining their structures coupled with activities, which greatly

assists the study of the biological functions of in their target natural

environment. Expanding the repertoire of TBC has supplied new

opportunities for chemo- and site-specific functionalization of

biomolecules and the related biological applications. Nevertheless,

despite the achievement in developing such strategies in past years,

the demand for novel tetrazine bioorthogonal reactions with greatly

improved selectivities, kinetics, the ability to be operated at lower
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concentrations, and the complementary with existing

bioconjugation techniques remains high. Another consideration is

the accessibility of the reagents used for the tetrazine bioorthogonal

reactions. Many of present tetrazine and dienophile building blocks

are prepared with multiple steps coupled with the moderate to low

yields. Tetrazine and dienophile motifs that are commercially

available or can be prepared in simple synthetic steps from

commercially available building blocks will have a great vogue.

Continued efforts are poised in this promising field.
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