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Triple-negative breast cancer (TNBC) is one of the most lethal subtypes of breast

cancer (BC), and it accounts for approximately 10%–20% of all invasive BCs

diagnosedworldwide. The survival rate of TNBC in stages III and IV is very low, and

a large number of patients are diagnosed in these stages. Therefore, the purpose

of this study was to identify TNBC-causing molecular signatures and anti-TNBC

drug agents for early diagnosis and therapies. Five microarray datasets that

contained 304 TNBC and 109 control samples were collected from the Gene

Expression Omnibus (GEO) database, and RNA-Seq data with 116 tumor and

124 normal samples were collected from TCGA database to identify differentially

expressed genes (DEGs) between TNBC and control samples. A total of 64 DEGs

were identified, of which 29 were upregulated and 35 were downregulated, by

using the statistical limma R-package. Among them, seven key genes (KGs) were

commonly selected from microarray and RNA-Seq data based on the high

degree of connectivity through PPI (protein–protein interaction) and module

analysis. Out of these seven KGs, six KGs (TOP2A, BIRC5, AURKB, ACTB, ASPM,

and BUB1B) were upregulated and one (EGFR) was downregulated. We also

investigated their differential expression patterns with different subtypes and

progression stages of BC by the independent datasets of RNA-seq profiles from

UALCAN database, which indicated that they may be potential biomarkers for

early diagnosis. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses with the proposed DEGs were

performed using the online Enrichr database to investigate the pathogenetic

processes of TNBC highlighting KGs. Then, we performed gene regulatory

network analysis and identified three transcriptional (SOX2, E2F4, and KDM5B)

and three post-transcriptional (hsa-mir-1-3p, hsa-mir-124-3p, and hsa-mir-34a-

5p) regulators of KGs. Finally, we proposed five KG-guided repurposable drug

molecules (imatinib, regorafenib, pazopanib, teniposide, and dexrazoxane) for

TNBC through network pharmacology and molecular docking analyses. These

drug molecules also showed significant binding performance with some cancer-

related PTM-sites (phosphorylation, succinylation, and ubiquitination) of top-

ranked four key proteins (EGFR, AURKB, BIRC5, and TOP2A). Therefore, the

findings of this computational study may play a vital role in early diagnosis and

therapies against TNBC by wet-lab validation.
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Introduction

Breast cancer (BC) is a major public health concern as it is

one of the most common types of hormone-sensitive cancers and

the most commonly diagnosed cancer in women worldwide.

GLOBOCAN estimates approximately 2,261,419 (11.7% of all

cancers, the most diagnosed cancer type) newly diagnosed cases,

and 684,996 (6.9% of all cancers) deaths were reported due to BC

in 2020 (Sung et al., 2021). There are four major molecular

subtypes of BC, namely, luminal A, luminal B, HER2, and triple

negative/basal-like (Yanagawa et al., 2012). TNBC is a specific

subtype of BC that is estrogen receptor-negative (ER-),

progesterone receptor-negative (PR-), and HER2-negative

(HER2-). Although approximately 10–20% of BC is covered

by TNBC, it has a higher mortality, is metastatic, and more

aggressive compared to other subtypes (Kumar and Aggarwal,

2016). Although there have been significant advances in

systematic treatment for BC over the decades, TNBC has not

benefited from advanced treatment strategies due to the lack of

TNBC-specific therapeutic targets. The 5-year overall survival

rate for patients with TNBC is lower than that of other subtypes

of BC (Dent et al., 2007). In particular, the 5-year overall survival

rate is 91% if the cancer is diagnosed at an early stage, it drops to

65% if the cancer spreads to the lymph nodes near the breast, and

eventually it drops to a very low 12% if the cancer spreads to

distant sites (Society, 2022). Therefore, it is important to identify

biomolecular signatures that can diagnose TNBC at an early stage

and play a vital role as therapeutic targets in treatment strategies

to reduce mortality in TNBC patients. The TNBC-driving genes

may play the key role in this regard. There are some

transcriptomics studies exploring TNBC-driving key genes

(KGs). However, we observed that their individual KG-sets

were not so consistent (see Supplementary Table S1 in

Supplementary File S1). It may have happened due to the

environmental variations, small sample sizes, and selection of

inappropriate statistical models. They did not validate their

suggested KGs against the other independent databases. Also,

they did not explore their suggested KG-guided candidate drug

molecules for the treatment against TNBC. Therefore, the main

purpose of this study was to explore more consistent TNBC-

driving KGs for early diagnosis and therapies, giving the weight

to a large sample size, appropriate statistical model, and the

datasets from different environment.

Transcriptomics analysis is one of the most popular platforms

for identifying disease-driving genes (Li et al., 2021; Yuan et al.,

2021; Alam et al., 2022a; Alam et al., 2022b; Alam et al., 2022c; Ma

et al., 2022). In this study, we created transcriptomics datasets of

large sample sizes from NCBI-GEO and TCGA databases to

identify more consistent TNBC-driving KGs for diagnosis at an

early-stage. To make a large sample size, we combined five

environmentally independent microarray gene-expression

datasets from the NCBI-GEO database that contained

304 TNBC and 109 control samples in total. On the other

hand, the RNA-Seq profiles from TCGA database consisted of

116 TNBC and 124 control samples that were generated from

different environments. In the case of drug discovery, drug

repositioning (DR) is a promising strategy for discovering new

therapies through existing drugs (Langedijk et al., 2015). The DR

strategy is efficient, safe, less expensive, and less time-consuming

than the de novo technique (Rudrapal et al., 2020). Therefore, in

this study, we also attempted to explore KG-guided repurposable

drug-molecules through the network pharmacology andmolecular

docking analysis. Network pharmacology is an efficient tool to

generate interactions between therapeutic targets (genes) and drug

molecules through a network-based approach (Hopkins, 2007;

Song et al., 2019). Recently, molecular docking analysis has gained

popularity in the field of computational research to identify

therapeutic target-related candidate drugs (Alam et al., 2022a;

Alam et al., 2022b). In this study, we considered well-established

bioinformatics tools and statistical methods to identify

biomolecular signatures and candidate drug agents that may

play an effective role in the early diagnosis and treatment of

TNBC patients. The whole workflow of this study is displayed

in Figure 1.

Methods and materials

Data collection

A total of 304 TNBC samples and 109 normal samples were

collected from five sets of omics data (gene expression profiles

data) with accession numbers GSE65216 (Dubois, 2019),

GSE76275 (Fuqua, 2019), GSE38959 (Komatsu and Katagiri,

2018), GSE27447 (Yang et al., 2018), and GSE61724 (Mathe

et al., 2018), and 116 tumor samples and 124 normal samples

were collected from RNA-Seq data. Datasets were downloaded

from the public database Gene Expression Omnibus (GEO) in

the National Center of Biotechnology Information (NCBI)

(Edgar and Barrett, 2006) and TCGA database (https://www.

cancer.gov/about-nci/organization/ccg/research/structural-

genomics/tcga). Two datasets (GSE65216 and GSE76275) are

based on the platform GPL570 Affymetrix Human Genome

U133 Plus 2.0 Array, two datasets (GSE27447 and GSE61724)

are based on the platform GPL6244 Affymetrix Human Gene 1.

0 ST Array, and the last one (GSE38959) is based on the platform

GPL4133 Agilent-014850 Whole Human Genome Microarray.

More details of the datasets are given in Table 1.
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Data preprocessing andDEG identification

Background correction, standardization, and median polish

summarization were performed on the raw data through the

robust multichip average (RMA) algorithm analysis (Irizarry

et al., 2003). Then, we converted the probe IDs to official

gene symbols according to the annotation files and merge all

datasets. After combining the five datasets, we obtained a total

number of samples of 413 including 304 TNBC and 109 normal.

We considered the limma (Linear Models for Microarray

Analysis) statistical approach (Ritchie et al., 2015), which was

implemented in the limma (v- 3.44.3) R-package to identify

differentially expressed genes (DEGs) between tumor and

normal samples. The moderated t-statistic was used to test the

null hypothesis (H0) (equally expressed gene (EEG) in both

tumor and control groups) versus the alternative hypothesis

(H1) (differentially expressed gene (DEG) between tumor and

control groups). We have considered the threshold to identify the

up- and down-regulated DEGs for the combined data as follows:

DEGg �
DEG Upregulated( ), if adj.p.value< 0.01 and

Log2FC> + 1.0
DEG Downregulated( ), if adj.p.value< 0.01

and Log2FC< − 1.0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

,

where adj. p-value: adjusted p-values and Log2FC: Log2 (fold

change).

PPI network and module analysis

We used the online database Search Tool for the Retrieval of

Interacting Genes (STRING) to construct the PPI network of

DEGs and visualized it using Cytoscape software (Shannon et al.,

2003; Szklarczyk et al., 2019). Module analysis was performed

using the MCODE app in Cytoscape with the threshold

FIGURE 1
Workflow of this study.

TABLE 1 List of datasets with brief descriptions that are used in this study.

Accession number Sample size Probe Platform Country

Tumor Normal

GSE65216 55 11 54,673 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array France

GSE76275 198 67 54,675 United States

GSE38959 30 13 45,015 GPL4133 Agilent-014850 Whole Human Genome Microarray 4 × 44K G4112F Japan

GSE27447 5 14 33,297 GPL6244 Affymetrix Human Gene 1.0 ST Array United States

GSE61724 16 4 33,297 Australia

Total 304 109

TCGA data 116 124 49,449 NA NA
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degree = 2, haircut cluster, node_score = 0.2, k-core = 2, and max.

depth = 100.

The association of KGs with different subtypes and

progression stages of BC.

We investigated the association of KGs with different

subtypes and progression stages of BC using a box plot of

their independent RNA-Seq profiles from the UALCAN

online database (http://gepia.cancer-pku.cn/index.html)

(Chandrashekar et al., 2022). This RNA-Seq dataset contained

a total of 114 normal samples and 719 BC samples (luminal =

566, HER2-positive = 37, and triple-negative = 116). On the other

hand, the samples sizes are 183, 615, 247, and 20 in stage 1, stage

2, stage 3, and stage 4, respectively.

GO and KEGG enrichment analysis of
DEGs

Gene Ontology (GO) analysis was performed to define and

describe genes across species in three categories including

biological process (BP), cellular component (CC), and

molecular function (MF). The Kyoto Encyclopedia of Genes

and Genomes (KEGG) is the databases of drugs, genomes,

biological pathways, enzymes etc. GO functional and KEGG

pathway enrichment analyses were performed using the online

tool Enrichr (Chen et al., 2013).

Regulatory interaction network of KGs

We performed the regulatory interaction network (TF-KG-

miRNA) to identify the transcriptional and post-transcriptional

regulators of KGs. The regulatory interaction network was

constructed using the online tool “NetworkAnalyst” (version:

3.0) (Zhou et al., 2019). The ChEA database was selected for

constructing a KG-TF interaction network and miRTarBase

database for a KG-miRNA interaction network.

Drug repositioning

To propose candidate drug molecules for treatment against

TNBC, we performed network pharmacology and molecular

docking analyses. We considered our proposed KGs as drug

target receptor proteins. KG-guided drug agents were detected by

the Drug–Gene Interaction Database (DGIdb) through network

pharmacology analysis (Wagner et al., 2016). Molecular docking

analysis was performed to examine structural binding between

receptor proteins and drug agents. We collected 3-D (three-

dimensional) structures of both protein receptors and drug agents

for molecular docking analysis. We downloaded the 3D structures of

all receptor proteins such as TOP2A, BIRC5, EGFR, and AURKB

with PDB IDs 1zxm, 1xox, 3GKW, and 4af3, respectively, from the

Protein Data Bank (PDB) database (Berman et al., 2000). The 3D

structures of drug agents were downloaded from the PubChem

database (Kim et al., 2019). Pymol was used to preprocess the 3D

structures of ligands, compounds, and the water molecules, and co-

crystal ligands which were bound to the protein were removed

(DeLano and Bromberg, 2004). We performed molecular docking

analysis between the proposed receptors and drug molecules to

calculate binding affinity scores (kcal/mol) through the AutoDock

Vina in PyRx software (Trott and Olson, 2010; Dallakyan and Olson,

2015). The 3D and 2D structures of interaction between the proposed

receptors and top-ranked drug molecules were constructed and

visualized using USCF Chimera program and Discovery Studio

Visualizer 2021 software (Pettersen et al., 2004). Then, we

validated the selected drug molecules with the cancer-related post-

translational modification (PTM) sites (phosphorylation,

ubiquitination, and succinylation) through docking analysis

(Hasan et al., 2016; Wang et al., 2020; Holstein et al., 2021; Mu

et al., 2021).

Result

Identification of DEGs

We identified a total of 64 DEGs, including 29 up- and

35 down-regulated DEGs between 304 TNBC samples and

109 normal samples in Supplementary File S2, and 306 DEGs

FIGURE 2
Heatmap of 64 identified DEGs based on integrated
microarray analysis of five datasets. Each row represents a single
gene, and each column represents a tissue (sample).
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including 68 upregulated and 238 downregulated for RNA-Seq

data in Supplementary File S3. We visualize the heatmap of

hierarchical clustering (HC) for 64 DEGs in Figure 2, where each

row represents a single gene and each column represents a

sample. We observed that the heatmap clearly classified

upregulated and downregulated DEGs, and also tumor and

normal samples, where yellow, green, pink, and turquoise

indicated downregulated DEGs, upregulated DEGs, normal

samples, and tumor samples, respectively.

Identification of key genes (KGs) by PPI
network and cluster analysis

The PPI network of DEGs for NCBI data included 64 nodes,

427 edges, average node degree of 13.3, and PPI enrichment

p-value < 1.0e-16. The PPI network of DEGs for TCGA data

included 298 nodes, 1,371 edges, average node degree 9.2, and

PPI enrichment p-value < 1.0e-16. Figure 3A represents the

interactions between oncogenes and tumor suppressor genes

detected from five NCBI gene-expression profiles, and

Figure 3B represents the interactions between oncogenes and

tumor suppressor genes detected from TCGA RNA-Seq

profiles, where yellow indicates downregulated (tumor

suppressor genes), green indicates upregulated (oncogenes),

and the parallelogram indicates the common KGs. Then, we

selected 10 top-ranked Hub-DEGs for each of NCBI and TCGA

datasets. Then, we found seven common Hub-DEGs (TOP2A,

BIRC5, AURKB, ACTB, ASPM, BUB1B, and EGFR) between

two independent sets of 10 top-ranked Hub-DEGs (see Figures

3A,B). Then, we performed their module analysis and observed

that the PPI network of NCBI data produces two modules

between oncogenes and tumor suppressor genes with around a

6% clustering error rate including 10 Hub-DEGs with the

highest degrees. Furthermore, we found only two modules of

DEGs for NCBI data with scores 23 and 12.7. Also, we found a

total of 12 modules of DEGs for TCGA data with scores ranging

from 31 to 3 through MCODE analysis, and two top-ranked

modules for both data are presented in Supplementary Figures

S1A,B in Supplementary File S1. Finally, six common

upregulated KGs (BIRC5, TOP2A, ASPM, ACTB, BUB1B,

and AURKB) and one common downregulated KG (EGFR)

were found in module 1 and module 2, respectively, with the

highest degree of connectivity for both NCBI and TCGA data in

Table 2. The original results of the aforementioned analysis are

presented in Supplementary Files S4,S5.

To investigate the similarity and consistency of different

computational results with KGs, we summarized them in

Table-2. We observed that limma and an FC recommended

cluster with the upregulated KGs (TOP2A, BIRC5, and

AURKB) and the cluster with downregulated KGs (EGFR) are

supported by the PPI and MCODE-mediated clusters 1 and 2,

respectively. Evidently, results are consistent and support each

other. To validate the differential expression patterns of the

identified KGs, we considered both dependent and

independent test-datasets. Figure 4 shows the HC results

based on the expressions of seven KGs with 304 TNBC and

109 control samples (dependent data). We observed that HC

FIGURE 3
Protein–protein interaction (PPI) networks for (A) DEGs for microarray data and (B) DEGs for RNA-Seq data. The green indicates upregulated
and yellow indicates downregulated DEGs, and the larger nodes in the center are KGs with the highest degree of connectivity.
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clearly separated KGs into upregulated and downregulated

groups, and samples/patients in TNBC and control groups.

Association of KGs with different subtypes
and progression stages of BC

To investigate the association of KGs (AURKB, BIRC5,

TOP2A, ACTB, ASPM, EGFR, and BUB1B) with different

subtypes and progression stages of BC by the independent

datasets, we performed box plot analysis based on

independent RNA-Seq profiles from the UALCAN online

database. Figure 5 displayed the box plots for the expressions

of KGs with each BC subtypes (normal, luminal, HER2-positive,

and TNBC), where blue indicates the normal group and orange,

green, and brown indicate luminal, HER2-positive, and triple-

negative BC, respectively. We observed the significant differential

expression patterns between the normal group and the subtypes

of the BC group. Supplementary Figure S2 shows that the

expression patterns of KGs with different BC progression

stages significantly differentiated from the control

group. Therefore, proposed KGs (AURKB, BIRC5, TOP2A,

ACTB, ASPM, EGFR, and BUB1B) may play a significant role

for the diagnosis of TNBC at the earlier stage.

GO terms and KEGG pathway enrichment
analysis of DEGs

GO and KEGG enrichment analysis showed that our

identified DEGs were enriched by 63 BP-terms, 14 CC-terms,

TABLE 2 Similarity and consistency of different computational results with KGs.

KGs Results with NCBI data

Fold change (FC) Limma PPI MCODE

Log2FC Regulation adj p-value Degree Clustering Degree

TOP2A 2.86 Up 3.80E-07 28 Cluster 1 22

BIRC5 1.87 Up 0.00012 31 Cluster 1 23

EGFR −1.96 Down 1.61E-05 27 Cluster 2 10

AURKB 1.53 Up 0.001892 25 Cluster 1 23

ACTB 1.78 Up 7.54E-03 24 Cluster 1 21

ASPM 1.95 Up 0.0025 24 Cluster 1 21

BUB1B 1.58 Up 3.80E-04 23 Cluster 1 21

Results with TCGA data

TOP2A 2.8 Up 1.96E-94 35 Cluster 1 31

BIRC5 2.4 Up 7.78E-85 34 Cluster 1 30

EGFR −2.3 Down 1.19E-80 45 Cluster 2 16

AURKB 2.8 Up 2.07E-62 35 Cluster 1 31

ACTB 2.0 Up 8.82E-81 70 Cluster 1 31

ASPM 1.8 Up 1.64E-61 35 Cluster 1 31

BUB1B 1.5 Up 1.48E-68 34 Cluster 1 31

FIGURE 4
Heatmap of hierarchical clustering (HC) results based on the
expressions of seven KGs with 304 TNBC and 109 control samples
(dependent data).
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19 MF-terms, and 48 KEGG-terms, and the threshold p <
0.01 was considered. The top 10 significantly enriched terms

for each category are presented in Figures 6A–D. We observed

that mitotic spindle organization (p = 2.4E-15, DEGs

involved = 25%), microtubule cytoskeleton organization

involved in mitosis (p = 9.1E-12, DEGs involved = 21%),

intracellular membrane-bound organelle (p = 6.8E-08, DEGs

involved = 58%), nucleus (p = 6.3E-08, DEGs involved = 53%),

FIGURE 5
Expression levels’ analysis of KGs between the normal group and the three major subtypes of BC (luminal, HER2-positive, and triple-
negative BC).

FIGURE 6
Top 10 significantly enriched terms for each category of DEGs. (A)GO BP-terms, (B)GOCC-terms, (C)GOMF-terms, and (D) KEGG pathways.
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kinase binding (p = 1.9E-06, DEGs involved = 18%), and protein

kinase binding (p = 4.3E-06, DEGs involved = 22%) were

significantly enriched GO terms in TNBC in Figures 6A–C.

Proteoglycans in cancer (p = 9.6E-10, DEGs involved = 21%),

estrogen signaling pathway (p = 2.7E-07, DEGs involved = 27%),

and pathways in cancer (p = 6.7E-06, DEGs involved = 15%) were

significantly enriched KEGG pathways terms in Figure 6D. We

included further information of GO and KEGG analysis in

Supplementary Table S2 in Supplementary File S1.

Regulatory interaction network of KGs

The regulatory interaction network (TF-KG-miRNA) is

shown in Figure 7; where pink indicates TFs (diamond) and

miRNAs (ellipse) and yellow indicates KGs. Then, we observed

that three TFs (SOX2, E2F4, and KDM5B) and three miRNAs

(hsa-mir-1-3p, hsa-mir-124-3p, and hsa-mir-34a-5p) are

connected with all KGs (degree = 7). Thus, we considered

these three TFs and three miRNAs as transcriptional and

post-transcriptional factors of KGs.

Drug repositioning

First, we collected a total of 115 FDA-approved drugs related

to KGs from the DGIdb database and published articles and

considered them as drug agents for further analysis. Then,

structural interactions between KGs and drug agents were

performed and binding affinity scores (BAS) (kCal/mol) were

calculated by molecular docking analysis. We presented the

molecular docking results of the top-ranked interaction with

BAS < −7 in Table 3. Five candidate drugs, namely, imatinib,

regorafenib, pazopanib, teniposide, and dexrazoxane, are

proposed for TNBC based on a threshold of BAS < −10 and

highlighted by asterisks (*) in Table 3. The 3D (Three-

dimensional) structural interactions of ligands (candidate

drugs) and receptors (KGs) and their active sites are

presented in Figure 8. The 2D (two-dimensional) structural

binding of ligands and receptors and their interaction types

are presented in Figure 9.

To validate the top-ranked drug molecules with some cancer-

related PTM sites of top-ranked key proteins (EGFR, AURKB,

BIRC5, and TOP2A) by their docking analysis, we predicted the

their PTM sites (phosphorylation, succinylation, and

ubiquitination) by the web-based prediction models

MusiteDeep (https://www.musite.net/) and SuccinSite (http://

systbio.cau.edu.cn/SuccinSite/). We found seven, seven, four,

and six phosphorylated PTM sites in chain A and three, five,

four, and six PTM sites in chain B for proteins EGFR, AURKB,

BIRC5, and TOP2A, respectively (Supplementary File S6).

Similarly, we found a total of 15 succinylated PTM sites in

chain A and 11 PTM sites in chain B, and 11 ubiquitinated

PTM sites in chain A and nine PTM sites in chain B (in

Supplementary File S7,S8). We observed that almost all active

sites of blind docking are common with the predicted PTM sites

(Figure 9). Furthermore, we performed the docking analysis

between the predicted PTM sites and candidate drug

molecules and observed their significant binding affinity

scores (Table 4).

Discussion

In this study, we identified 64 DEGs between 304 TNBC and

109 control samples (Supplementary File S2) by combining five

FIGURE 7
KG-regulatory (TF and miRNA) interaction network, where yellow indicates KGs and pink indicates key TFs (diamond) and key miRNAs (ellipse).
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transcriptomics datasets of NCBI with GEO accession numbers

GSE65216, GSE76275, GSE38959, GSE27447, and GSE61724,

and 306 DEGs between 116 TNBC and 124 control samples of

RNA-Seq profiles from TCGA dataset (Supplementary File S3).

Then, we constructed two sets of 10 top-ranked key-DEGs for

both DEGs-sets by PPI network and their module analysis. We

found seven common key-DEGs (TOP2A, BIRC5, EGFR,

AURKB, ACTB, ASPM, and BUB1B) in both key DEGs-sets

(Figures 3A,B, and Supplementary Figures S1A,B), where

six KGs (TOP2A, BIRC5, AURKB, ACTB, ASPM, and

BUB1B) were upregulated and only one gene (EGFR) was

downregulated (Table 2). Several studies have already

proposed our identified KGs as TNBC-causing genes, which

strongly supports our results. TOP2A encodes topoisomerase

(DNA) II alpha, somatic mutations in a TOP2A

immunohistochemical score may be important in predicting

response to immunotherapy treatment for triple-negative

breast cancer (Jiang et al., 2021). Several studies have

proposed TOP2A as a prognostic marker and therapeutic

target for TNBC through well-established integrated

bioinformatics methods (Qiu et al., 2021; Wei et al., 2021; Ma

et al., 2022). The gene expression of TOP2A and EGFR identifies

efficacy of docetaxel plus epirubicin as neoadjuvant

chemotherapy in TNBC patients (Liu et al., 2016). The EGFR

gene encodes a receptor protein called the epidermal growth

factor receptor, which causes cell proliferation, invasion,

TABLE 3 List of drugs associated with corresponding targets, calculated binding affinity scores (BAS), and proposed candidate drugs highlighted by
bold and star (*).

Target Drug Docking score Drug Docking score

EGFR Imatinib* −11.7 Ibrutinib −8.2

Regorafenib* −10.6 Talazoparib −8.2

Irinotecan −9.4 Leucovorin −8.2

Sorafenib −9.4 Amlexanox −8.1

Lapatinib −8.9 Neratinib −8.1

Sonidegib −8.8 Vemurafenib −8

Etoposide −8.8 Dacomitinib −7.9

Trastuzumab −8.8 Bosutinib −7.9

Ponatinib −8.7 Afatinib −7.8

Brigatinib −8.4 Encorafenib −7.8

Dasatinib −8.4 Gefitinib −7.7

Crizotinib −8.3 Osimertinib −7.6

Dabrafenib −8.3 Vandetanib −7.5

Pemetrexed −8.3 Erlotinib −7.2

Trametinib −8.2 Erdafitinib −7.2

AURKB Pazopanib* −10.8 Sorafenib −9.3

Lapatinib −9.8 Vandetanib −8.7

Dasatinib −9.7 Erlotinib −7.6

BIRC5 Imatinib* −11.8 Tretinoin −7.5

Lapatinib −9.8 Sulindac −7.5

Methotrexate −9.5 Doxorubicin −7.2

Indomethacin −8.4 Epirubicin −7.1

Flutamide −7.9 Trastuzumab −7.1

Erlotinib −7.8 Docetaxel −7.1

Romidepsin −7.5 Vorinostat −7

TOP2A Teniposide* −11.1 Idarubicin hydrochloride −9.2

Dexrazoxane* −10.1 Etoposide phosphate −9.2

Doxorubicin hydrochloride −9.8 Idarubicin −9.2

Daunorubicin citrate −9.8 Amsacrine −8.8

Daunorubicin −9.8 Etoposide −8.8

Doxorubicin −9.2 Mitoxantrone −7.7

Epirubicin −9.2 Podofilox −7.6

ACTB Ethinyl Estradiol −8.1 Cyclophosphamide −7.8
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FIGURE 8
Three-dimensional (3D) structures between receptor proteins and candidate drugs and highlighting active site. (A) EGFR–imatinib, (B)
EGFR–regorafenib, (C) AURKB–pazopanib, (D) BIRC5–imatinib, (E) TOP2A–teniposide, and (F) TOP2A–dexrazoxane.

FIGURE 9
Two-dimensional (2D) structures between receptor proteins and candidate drugs and highlighting interaction types. (A) EGFR–imatinib, (B)
EGFR–regorafenib, (C) AURKB–pazopanib, (D) BIRC5–imatinib, (E) TOP2A–teniposide, and (F) TOP2A–dexrazoxane.
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angiogenesis, and metastasis associated with poor prognosis in

TNBC (Nakai et al., 2016). MicroRNA-203 may function to

inhibit the proliferation andmigration of TNBC cells by targeting

BIRC5, so BIRC5 may be a potential therapeutic target for the

treatment of TNBC patients (Wang et al., 2012). AURKB gene

polymorphism can predict the overall survival or disease-free

TABLE 4 Docking scores between the proposed drug molecules and the PTM sites of key proteins.

Drug molecule Chain A Chain B

Phosphorylated PTM sites of EGFR protein

S7 S63 S65 S162 T164 S168 S203 T93 Y95 T168

Imatinib -9.7 −7.9 −10.2 −6.8 −10.1 −6.7 −5.8 −8.3 −9 −8.1

Regorafenib −8 −7.8 −9.1 −13.1 −8.2 −7.4 −8.1 −7.8 −9.2 −7.1

Phosphorylated PTM sites of AURKB protein

S10 T12 T21 S170 S175 T180 S290 S1 T60 S61 S62 S67

Pazopanib −10 −7.2 −7.1 −8.5 −12.1 −6.2 −5.6 −9.1 −8.2 −7.5 −11.1 −7.4

Phosphorylated PTM sites of BIRC5 protein

S20 T34 T48 S81 S20 T34 T48 S81

Imatinib −7.3 −9.5 −8.2 −10.8 −7.3 −9.5 −8.2 −10.8

Phosphorylated PTM sites of TOP2A protein

S1 Y72 S148 S149 T215 S320 S1 Y72 S148 S149 T215 S320

Teniposide −9.2 −7.8 −6.1 −10.8 −7.2 −9.4 −9.2 −7.8 −6.1 −10.8 −7.2 −9.4

Dexrazoxane −8.6 −7.7 −6.4 −9.5 −8.2 −9.3 −8.6 −7.7 −6.4 −9.5 −8.2 −9.3

Succinylated PTM sites of EGFR protein

Drug molecule K42 K103 K142 K149 K65

Imatinib −9.2 −7.4 −9.6 −4.2 −8.3

Regorafenib −8.9 −7.1 −8.7 −5.3 −7.9

Succinylated PTM sites of AURKB protein

K106 K239 K50

Pazopanib −7.2 −9.9 −5.3

Succinylated PTM sites of BIRC5 protein

K15 K23 K103 K15 K23 K103

Imatinib −7.8 −8.6 −5.2 −7.8 −8.6 −5.2

Succinylated PTM sites of TOP2A protein

K8 K55 K248 K306 K314 K357 K8 K55 K248 K306 K314 K357

Teniposide −10.7 −9.2 −6.4 −9.2 −7.8 −8.1 −10.7 −9.2 −6.4 −9.2 −7.8 −8.1

Dexrazoxane −9.9 −8.6 −6.3 −8.6 −8.8 −7.4 −9.9 −8.6 −6.3 −8.6 −8.8 −7.4

Ubiquitinated PTM sites of EGFR protein

Drug molecule K42 K103 K212

Imatinib 8.3 7.4 9.8

Regorafenib 7.9 7.3 10.1

Ubiquitinated PTM sites of AURKB protein

K106 K254 K8

Pazopanib 9.1 7.4 8.6

Ubiquitinated PTM sites of BIRC5 protein

K62 K103 K115 K62 K103 K115

Imatinib 8.2 12.3 7.1 8.2 12.3 7.1

Ubiquitinated PTM sites of TOP2A protein

K68 K293 K306 K357 K68 K293 K306 K357

Teniposide 8.3 6.7 11.8 12.7 8.3 6.7 11.8 12.7

Dexrazoxane 7.9 7.1 10.9 12.6 7.9 7.1 10.9 12.6
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survival in TNBC patients treated with taxane-based adjuvant

chemotherapy (Liao et al., 2018). The expression patterns of KGs

with different subtypes of BC were significantly contrasted from

the control group, where TNBC showed highly significant

differences (Figure 5). The expression analysis of KGs with

different BC progression stages compared to the normal stage

indicated that the proposed KGs might be potential biomarkers

for early diagnosis of TNBC (Supplementary Figure S2).

To investigate the pathogenetic mechanisms of TNBC with

highlighting KGs, we performed GO functional and KEGG

pathway enrichment analyses. We found some significant

functional terms and pathways that are responsible for TNBC

development which involves our identified KGs. The BP term

mitotic spindle organization (involved in KG: BUB1B, AURKB,

BIRC5, and TOP2A) was reported to be responsible for TNBC

(Chimplee et al., 2022). Integrated bioinformatics analysis

reported that microtubule cytoskeleton organization involved

in mitosis (involved in KG: BUB1B, AURKB, and BIRC5) and

kinase binding (involved in KG: AURKB, ACTB, EGFR, and

TOP2A) are significant functional term for TNBC progression

(Ryall et al., 2015; Huo et al., 2021). Therapeutic targets for

TNBC treatment may interfere with the progression of TNBC by

participating in the estrogen signaling pathway (involved in KG:

EGFR, TOP2A, and BIRC5) (Huang et al., 2021). The regulatory

interaction networks (miRNA-KG-TF) revealed three TFs

proteins (SOX2, E2F4, and KDM5B) and three miRNAs (hsa-

mir-1-3p, hsa-mir-124-3p, and hsa-mir-34a-5p) as the

transcriptional and post-transcriptional regulators of KGs in

Figure 7. The TF-protein, SOX2, has been found to be a

tumor promoter and has a dynamic therapeutic strategy for

TNBC (Liu et al., 2018). The expression of E2F4 is associated

with lymph node metastasis in TNBC patients (Zou et al., 2022).

The expression of KDM5B enhances invasive TNBC by

downregulating hsa-mir-448 (Bamodu et al., 2016). Our

identified three post-transcriptional regulators (hsa-mir-1-3p,

hsa-mir-124-3p, and hsa-mir-34a-5p) are also supported by

published articles that are associated with TNBC progression

by using bioinformatics analysis and cellular experiments

(Volovat et al., 2020; Zhang et al., 2021a; Zhang et al., 2021b;

Shadbad et al., 2021).

We performedKG–disease interactions to check the enrichment

of KGs in diseases from the DisGeNET database through the online

based tool Enrichr (https://maayanlab.cloud/Enrichr/) (Chen et al.,

2013), as shown in Figure 10. In the figure, we present the 15 most

enriched diseases corresponding to our seven identified KGs. We

observed that all KGs are highly enriched in recurrent BC, and one

major subtype triple-negative BC highlighted in yellow strongly

supports our proposed results. Another four diseases (malignant

glioma, sarcoma, small cell carcinoma of lung, and nasopharyngeal

carcinoma) also enriched all KGs, and one KG TOP2A enriched by

all the top 15 diseases. Overall, the results suggested that our

identified KGs may be significant for TNBC and some other

diseases.

To discover the potential repurposable candidate drug

molecules for the treatment against TNBC, 115 KG-

associated FDA-approved drugs were collected from the

DGIdb database and published articles. Among them, five

drugs (imatinib, regorafenib, pazopanib, teniposide, and

dexrazoxane) have been proposed as the candidate drug

molecules for TNBC through the molecular docking

analysis (Table 3). Then, we validated them by molecular

docking analysis with some cancer-related PTM-sites

(phosphorylation, succinylation, and ubiquitination) of the

four top-ranked key proteins EGFR, AURKB, BIRC5, and

TOP2A (Table 4). Imatinib was approved by the US Food and

Drug Administration (FDA) on 1 February 2001 for the

treatment of malignant metastatic and unresectable

gastrointestinal stromal tumors (GISTs) (Dagher et al.,

2002). Imatinib (also known as Glivec and Gleevec) is used

to treat GISTs, acute lymphocytic leukemia (ALL), chronic

myelogenous leukemia (CML), and other malignancies (Iqbal

and Iqbal, 2014). It may be a novel treatment strategy for BC

patients (including lethal subtype TNBC) overexpressing

geminin and nuclear c-Abl (Blanchard et al., 2014).

Regorafenib, sold under the brand names Stivarga and

Regonix (in Bangladesh), was approved by the FDA in

2012 and 2013 for the treatment of metastatic colorectal

cancer and GISTs, respectively (Regorafenib, 2017). Mehta

et al. proposed that a combination of regorafenib,

angiogenesis inhibitors, and radiation may be effective in

inhibiting TNBC cells (Mehta et al., 2021). The drug

pazopanib, also known as Votrient, was approved by the

FDA on 19 October 2009, the EMA on 14 June 2010, the

MHRA on 14 June 2010, and Australia’s TGA on 30 June

2010 for the treatment of advanced renal cell carcinoma and

advanced soft tissue sarcomas (Bukowski et al., 2010; Nieto

et al., 2011). It may play an important role in keeping the

disease stable in advanced BC (under phase II clinical trial)

and also TNBC (Taylor et al., 2010; Van Swearingen et al.,

FIGURE 10
KG–disease interaction to check the enrichment of KGs in
different diseases, where the X-axis represents diseases, the Y-axis
represents KGs, and red indicates enriched.
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2017). Teniposide (known as Vumon), commonly used for

the treatment of cancer diseases in children, was approved by

the FDA for the treatment of second-line therapy of ALL in

combination with other antineoplastic drugs (Drugs, 2007).

Dexrazoxane was approved and designated by the FDA for

the treatment of extravasation resulting from IV

anthracycline chemotherapy and cardiomyopathy for

children (0–16 years) and adults (FDA, 2013). Our five

proposed candidate drugs are not approved for TNBC/BC

yet, but several computational studies have suggested that

they might be effective for TNBC/BC patients. This study

lends further validation for the proposed candidate drugs and

target proteins in the experimental lab as a proper treatment

plan against TNBC.

Conclusion

The selection of few potential target proteins and drug

agents from a huge number of alternatives are equally

important in drug discovery by wet-lab experiments. In this

study, we identified triple-negative breast cancer (TNBC)

causing seven KGs (TOP2A, BIRC5, AURKB, EGFR, ACTB,

ASPM, and BUB1B) based on five NCBI-GEO microarray gene

expression datasets and TCGA RNA-Seq datasets for early

diagnosis and therapies of TNBC by using the integrated

bioinformatics and systems biology approaches. We also

confirmed their higher differential expression between

normal and TNBC compared to other subtypes of BC from

the other independent data source. The enrichment analysis of

GO-terms and KEGG pathways with the key genes detected

some crucial TNBC-related biological processes, molecular

functions, cellular components, and pathways. For example,

the detected mitotic spindle organization function and estrogen

signaling pathway are both significantly associated with TNBC

progression. The key gene (KG) regulatory network analysis

detected some transcriptional and post-transcriptional

regulators of KGs that are associated with TNBC

progression. Finally, we proposed five KG-guided

repurposable drug molecules (imatinib, regorafenib,

pazopanib, teniposide, and dexrazoxane) for TNBC through

network pharmacology and molecular docking analyses.

Therefore, our findings would be more reliable for the wet-

lab researchers and medical doctors in TNBC diagnosis and

therapies at the earlier stage.
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