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Lysine acetylation modification, which has key roles in cellular homeostasis as well as
cancer malignancy, is dynamically regulated by lysine acetylation regulators (LARs). In our
study, we found that most of 33 evaluated LARs were differentially expressed among
1,125 gliomas grouped by different clinicopathological characteristics. Consensus
clustering was applied to 33 LARs, resulting in three glioma subtypes (LA1, 2, and 3).
The LA3 subgroup was associated with the poorest clinical outcome, higher WHO grade,
fewer isocitrate dehydrogenase mutations, and lower frequency of 1p/19q codeletion.
Furthermore, gene set enrichment analysis indicated that eight tumor hallmarks were
highly enriched in the LA3 subgroup. These results suggested that LARs are significantly
related to glioma malignancy. We then designed a LAR-signature based on 14 overall
survival (overall survival)-related LARs, and showed that the LAR-signature possesses
strong and independent prognostic value for glioma patients in both training and validation
datasets. Moreover, by interrogating single nucleotide polymorphism and copy number
variation (CNV) data in The Cancer Genome Atlas dataset, we found that higher score of
our risk signature is correlated with the hypermutation status of gliomas and that
HDAC1(1p) was one of the oncogenes lost in 1p/19q codeletion events, while
SIRT2(19q) and EP300(22q) may act as tumor suppressors in gliomas with 19q or
22q deletions, respectively. In conclusion, LARs are critical for the malignant
development of gliomas, and our results are useful for prognostic stratification and
development of novel assessment strategies for the prognosis of glioma patients.
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INTRODUCTION

Glioma, the most common and fatal intracranial primary tumor in adults, is known for its rapid
progression, high infiltration rate, and relative resistance to chemoradiotherapy (Cancer Genome
Atlas Research Network et al., 2015; Jiang et al., 2016). Although comprehensive integrated treatment
programs are currently available, the clinical outcomes for glioma patients remain poor (Cancer
Genome Atlas Research Network, 2008; Cancer Genome Atlas Research Network et al., 2015; Jiang
et al., 2016). According to the Chinese Glioma Genome Atlas (CGGA), patients with malignant
glioma have a dissatisfactory prognosis with median overall survival (OS) of 78.1 months for low-
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grade gliomas (LGGs; WHO grade II), 37.6 months for anaplastic
gliomas, and 14.4 months for glioblastomas (GBMs) (Jiang et al.,
2016). In recent years, numerous glioma neuropathological
biomarkers and molecular stratification of glioma patients
have been identified based on the rapid development of
biomedical and bioinformatics technology. However, the
identification of new and efficient prognostic and therapeutic
biomarkers and targets in clinical use remains a priority for
glioma-tailored prognostic assessment and treatment.

Epigenetic regulation is essential for cellular homeostasis and
its dysregulation is associated with a variety of cancers (Dawson
and Kouzarides 2012; Henikoff and Greally 2016; Chen et al.,
2017). Post-translational modifications (PTMs) are key elements
of epigenetic regulation and function as signaling markers within
oncocytes (Serrano-Gomez et al., 2016; Toh et al., 2017). Lysine
acetylation is a dynamic, reversible PTM that has been widely
investigated in recent years due to its ubiquity as a mechanism for
cellular protein modification that regulates numerous cellular
biological processes, including transcription, cell cycle, cell
division, DNA damage repair, cellular signaling transduction,
protein folding and aggregation, cytoskeleton organization, RNA
processing and stability (Narita et al., 2019; Gil et al., 2017). Both
histone and non-histone proteins, such as p53, STAT proteins,
NF-κB, FoxO proteins, and tubulins, are targeted by lysine
acetylation regulators (LARs), and several are the products of
oncogenes or tumor-suppressor genes and are directly involved in
tumorigenesis, tumor progression, and metastasis (Glozak et al.,
2005; Narita et al., 2019).

Lysine acetylation is dynamically regulated by
acetyltransferases and deacetylases. The main LARs comprise
of acetyltransferase families, including the GCN5 family (KAT2A
and KAT2B), p300 family (KAT3A [CREBBP] and KAT3B
[EP300]), MYST family (KAT5, KAT6A, KAT6B, KAT7, and
KAT8), and others, such as the SLC16A10, KAT1 (HAT1),
ESCO1, and ESCO2; and deacetylase families, including the
histone deacetylase family (HDAC1–11), Sirtuin deacetylase
family (SIRT1–7), and others, such as the TCF1 (HNF1A) and
LEF1 (Narita et al., 2019). Increasing evidence supports that LARs
directly or indirectly participate in cancer initiation and
progression, which led us to explore the roles of acetylation in
glioma in greater detail. Although numerous studies have
investigated the acetylation-related molecular regulatory
mechanisms in gliomas, the role of lysine acetylation in
glioma is still poorly understood, and clarifying the effects of
impaired regulation of lysine acetylation could pave the way for
new therapeutic approaches to treat patients with these diseases.
Based on these, we attempted to mine the prognostic role of
LARs, innovate LAR-based clinical subtypes and construct LAR-
associated prognostic model to better understand the potential
roles of LARs in further clinical applications.

In this study, we utilized RNA-seq data or RNA microarray
data for 1,125 gliomas from the CGGA (n � 307), TCGA (n �
598) and GSE16011 (n � 250) datasets, and matched copy
number variation (CNV; n � 598) and single nucleotide
polymorphism (SNP; n � 583) data from the TCGA dataset.
Based on bioinformatic and statistical analyses of these open-
source datasets, several LARs were found to be involved in

malignant progression and prognosis of glioma, and a
predictive independent risk signature involving 14 screened
LARs was developed to predict the prognosis of glioma
patients. The results showed that several LARs were included
in the frequent chromosome alterations observed in gliomas and
show prognostic values. Tumor mutation burden (TMB) was also
calculated for samples with mutation data in the TCGA dataset
and we found TMB showed a positive correlation with our risk
score, which may mean that DNA repair system is highly
impaired in gliomas with higher risk score and dysregulation
of lysine acetylation may lead to malignant progression in glioma.
Overall, mRNA expressions and genome alterations of LARs were
significant associated with the clinical outcomes of glioma
patients and our study provides a method to perform clinical
applications of them.

MATERIALS AND METHODS

Data Acquisition
The RNA-seq data and corresponding clinicopathological
information for the CGGA training set were downloaded from
the CGGAwebsite (http://www.cgga.org.cn/). The RNA-seq data,
CNV data, and clinicopathological data for the validation set in
TCGA were downloaded from the University of California, Santa
Cruz Xena browser (UCSC Xena; https://xenabrowser.net/
datapages/). SNP data in the TCGA dataset were downloaded
from the Genomic Data Commons Data Portal (GDC; https://
portal.gdc.cancer.gov/). The microarray mRNA expression
profile of the GSE16011 dataset was downloaded from the
Gene Expression Omnibus (GEO) repository (https://www.
ncbi.nlm.nih.gov/geo/) and the corresponding clinical
information was found in previous publication (Gravendeel
et al., 2009). Immunohistochemistry images of LARs were
obtained from the website of The Human Protein Atlas (HPA:
https://www.proteinatlas.org/) The clinicopathological
information for the CGGA and TCGA datasets is summarized
in Supplementary Table S1. Copy number variation information
of the 33 LARs is summarized in Supplementary Table S2.

Data Processing
The RNA-seq transcriptome data for the CGGA and TCGA
samples were normalized by log2 (n+1) transformation. For
the GSE16011 microarray dataset, the raw data were
downloaded to perform normalization processing using a
robust multiarray averaging method (RAM) with the R
packages “affy” (Gautier et al., 2004; Wilson and Miller 2005)
and “simpleaffy” (Wilson andMiller 2005). The GISTIC2method
was applied to generate gene-level copy number estimates.
GISTIC2 further thresholded the estimated values to −2, −1, 0,
1, 2, representing homozygous deletion, single copy deletion,
diploid normal copy, low-level copy number amplification, or
high-level copy number amplification, respectively.

Selection of LARs
A list of LARs was compiled from the published literature and
subsequently restricted to genes for which RNA expression data
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was available in both the CGGA and TCGA datasets. We
obtained a final list of 33 LARs consisting of 13 lysine
acetyltransferases and 20 lysine deacetylases. The extracted
mRNA expression matrix of these 33 genes was used for the
subsequent bioinformatics analysis.

Consensus cluster Consensus clustering and screening of
molecular subtypes based on the expression profiles of the LARs
were performed using the R package “ConsensusClusterPlus”
(Wilkerson and Hayes 2010). The Euclidean distance was utilized
to compute the similarity distance between samples, and the k-means
method was used for clustering based on 50 iterations, with each
iteration containing 80% of samples. Then principal component
analysis (PCA) was performed to evaluate different expression
patterns among glioma subgroups using the R programming
language (https://www.r-project.org/).

Functional Enrichment Analysis
Differential gene expression analysis between the LA3 and LA1/2
subgroups was performed using the R package “limma” (Ritchie
et al., 2015), and the differentially expressed genes were input into
the Database for Annotation, Visualization, and Integrated
Discovery (DAVID) (https://david.ncifcrf.gov/) for GO and
KEGG pathway enrichment analyses. GSEA software (http://
software.broadinstitute.org/gsea/index.jsp) was used to
investigate the enriched tumor hallmarks in the LA3 subgroup
compared with those in the LA1/2 subgroups.

Protein-Protein Interaction Network
Protein-protein interactions (PPI) among LARs were evaluated
using the STRING database (https://string-db.org/), and the
“Cytoscape” software was used to perform the visualization of
the PPI network (Shannon et al., 2003).

Calculation of the Tumor Mutation Burden
The tumor mutation burden (TMB) was calculated using Perl
scripts (https://www.perl.org/), and the algorithm to calculate the
TMB included nonsynonymous mutation counts per tumor, with
germline mutations filtered out.

Construction of the LAR-Related
Prognostic Model
Based on the expression of 33 LARs in the CGGA dataset,
univariate Cox regression analyses were used to judge their
prognostic powers. We screened 23 genes associated with OS
(p < 0.05) and used the LASSO Cox regression algorithm to
develop a risk signature. Finally, 14 genes with their coefficients
were determined according to minimum criteria, which involved
selecting the best penalty parameter λ associated with the smallest
10-fold cross-validation within the training dataset. The risk score
for the signature was calculated using the following formula:

Risk score � ∑
n

i�1
Coef i*xi

in which CoefiCoefi is the coefficient, and xixi is the log2 (n+1)-
transformed relative expression value for each screened gene. The

formula was used to compute a risk score for each patient in both
the CGGA, TCGA and GSE16011 datasets.

Statistical Analyses
Differential LAR expression levels amongWHO grades and CNV
status, between different 1p/19q codeletion status and different
IDH mutation status and differential TMB levels between low-
and high-risk gliomas were compared by the Wilcox test. Chi-
square tests were used to compare the distribution of gender, age,
WHO grade, IDH mutation status, and 1p/19q codeletion status
and CNV status of LARs among the three subgroups (clustered by
consensus expression of LARs) and/or between low- and high-
risk subgroups in gliomas.

The prognostic abilities of the risk score and other
clinicopathological characteristics were evaluated by univariate
and multivariate Cox regression analyses. The prediction
efficiency of our risk signature, age, and WHO grade for 1/3/
5-years survival was assessed by receiver operating characteristic
(ROC) curves. Kaplan–Meier curves used to compare the OS for
patients in different groups were tested by the log-rank test.
Spearman correlation test was performed to analyze the
correlation between TMB and risk score. All statistical
analyses were performed using R v.3.6.1 (https://www.r-
project.org/) and SPSS Statistics 25 (https://www.ibm.com/
products/software).

RESULTS

Correlation Between mRNA Expressions
and Clinicopathological Features
Given the crucial biological roles of each LAR, we systematically
analyzed the correlation between LAR mRNA expression levels
and clinicopathological characteristics (including WHO grades,
IDH mutation status, and 1p/19q codeletion status) in gliomas.
The heatmaps (Figures 1A,B) show the expression levels of each
LAR in diverse WHO grades, and indicate that most of the LARs
were aberrantly expressed in different WHO grades in the
CGGA dataset; these differential expression levels were
validated in the TCGA dataset (Supplementary Figures
S1A,B). We found that the mRNA expression of 11 lysine
acetyltransferases and 15 lysine deacetylases were significantly
correlated with WHO grades in the CGGA dataset
(Supplementary Figures S2A,B). For acetyltransferases, the
mRNA expression levels of most KATs (except KAT5 and
KAT8) decreased significantly with increasing WHO grade. In
contrast, the mRNA expression of the other four
acetyltransferases (SLC16A10, KAT1, ESCO1, and ESCO2)
showed marked increases. For deacetylases, the mRNA
expression of SIRT1/2/3/5, and that of HDAC4/5/11
decreased with increasing WHO grade, while the mRNA
expressions of HDAC1/2/3/7/8, and that of SIRT6/7 and
LEF1, showed an increase. Among these LARs that showed
increased expression with increasing WHO grade in both the
CGGA and TCGA datasets, HDAC1 is the best-studied LAR in
glioma, whereas the potential functions of ESCO2, KAT1, LEF1,
and SLC16A10 are unreported in this cancer (Figures 1C,D).
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FIGURE 1 | (A), (B) The expression levels of 33 lysine acetylation regulators (LARs) in gliomas with different WHO grades. (C), (D) HDAC1, ESCO2, KAT1, LEF1,
and SCL16A10 expression levels increased with increasing WHO grade. (E), (F) The expression levels of LARs in low-grade gliomas (LGGs) and glioblastomas (GBMs)
with different IDH mutation status. (G) The expression levels of LARs in LGGs with IDH mutations (mIDH) with different 1p/19q codeletion status. (Wilcox test, *p < 0.05,
**p < 0.01, ***p < 0.001, and ****p < 0.0001).
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The differential expression levels of LARs according to IDH
mutation status were investigated in LGGs and GBMs (Figures
1E,F). Our results showed that HDACs (except HDAC8 and
10), KATs (except KAT1), SIRT1, SIRT2, and LEF1 were all
significantly associated with IDH mutation status in LGGs.
The expression levels of HDAC1/2/3/4/5/6/7/10/11, as well as
those of KATs (except KAT1 and KAT8), SIRT1/2/3/4,
ESCO2, SLC16A10, and LEF1, were significantly correlated
with IDH mutation status in GBMs. We also evaluated the
mRNA expression of the 33 LARs according to 1p/19q
codeletion status in LGGs with mutated IDH. We found
that HDAC1/2/3/4/5/6/10/11, as well as KAT1/2A/2B/7,
SIRT2/3/4/5/7, LEF1, TCF1, ESCO1/2 were closely
associated with 1p/19q codeletion status in LGGs with
mutated IDH (Figure 1G).

For further investigating the functional status of LARs in
gliomas, we downloaded immunohistochemistry images of
several LARs from the Human Protein Atlas database
(Supplementary Figure S3). Most of investigated LARs
(including HDAC1/2/3/5/8, SIRT5/7, KAT2A/2B and LEF1)
were differential expressed between LGG and GBM, and have
similar expression tendency with mRNA expression in our
analysis.

Identification of Glioma Subgroups by
Consensus Clustering
The mRNA expression of the 33 LARs was analyzed to determine
the glioma subtypes in the CGGA dataset. A total of 307 samples
were divided into k (k � 2–9) subtypes using the R package

FIGURE 2 | (A) Consensus clustering cumulative distribution function (CDF) for k � 2 to 9. (B) Relative change in area under the CDF curve for k � 2 to 9. (C)
Consensus clustering matrix for k � 3. (D) Principal component analysis of the total RNA expression profile in the CGGA dataset. (E) Kaplan–Meier overall survival curves
for 307 glioma patients in the LA1, 2, and three subgroups. (F) The different expression levels of lysine acetylation regulators (LARs) and clinicopathological feature
contributions of the three subgroups defined by the consensus expression of 33 LARs.
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“Consensus Cluster Plus”. We elected k � 3 (Figures 2A–C) as
our subtype-dividing value for further study due to the similar
number of samples in each cluster and distinct clinical prognoses
among the subgroups when we divided gliomas into three

subgroups. To investigate the differences among the three
subgroups in more detail, we performed PCA to compare
the mRNA expression profiles among the three subgroups
and the analysis showed that significant differences existed

FIGURE 3 | (A), (B) Functional annotation of the genes with higher expression in the LA3 subgroup using gene ontology (GO) terms of biological processes (A) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (B) analyses. (C) Gene set enrichment analysis indicated that genes with higher expression in the LA3
subgroup were enriched for hallmarks of malignant tumors.
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among the three subgroups (Figure 2D). Furthermore, survival
analysis was conducted and results showed that the LA3 subgroup
had the poorest OS time and rate while the LA1 subgroup showed
the longest OS time among the three groups (Figure 2E).
Subsequently, we evaluated the differences in
clinicopathological features and expression levels among the
three clusters (LA1, LA2, and LA3) (Figure 2F), and found
that, compared with the other two groups, LA3 was
significantly related to increased age at diagnosis (p < 0.001),
higher WHO grade (p < 0.001), fewer IDHmutations (p < 0.001),
and fewer 1p/19q codeletions (p < 0.001) (Supplementary Table
S3). In contrast, the other two subgroups correlated with younger
age at diagnosis, lower WHO grade, more IDH mutations, and
more 1p/19q codeletions.

Gene Ontology and Gene Set Enrichment
Analysis
The above findings implied that clustering was closely related to
glioma malignancy. As the LA3 subgroup had the poorest
prognosis, we identified genes that were significantly
upregulated (log(fold change) > 1 and p < 0.05) in the LA3
subgroup compared with the LA1 and LA2 subgroups, and
annotated their functions by gene ontology (GO) pathway
analysis for biological processes (BPs) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis. The GO–BP results
showed that the upregulated genes were enriched in malignancy-
related biological processes, such as positive regulation of the
ERK1 and ERK2 cascade, angiogenesis, cell proliferation, tumor
necrosis factor-mediated signaling pathway, immune response,
and negative regulation of apoptotic process (Figure 3A). Similar
results, such as JAK–STAT signaling pathway, cell adhesion
molecules (CAMs), and extracellular matrix (ECM)-receptor
interaction, were also significantly enriched in the LA3
subgroup based on KEGG pathway analysis (Figure 3B). We
also performed gene set enrichment analysis (GSEA) between the
LA3 and LA1/2 subgroups. The results revealed that malignant
hallmarks of tumors, including IL2/STAT5 signaling,
epithelial–mesenchymal transition, apoptosis, p53 pathway,
IL6/JAK/STAT3 signaling, angiogenesis, TNF signaling via
NF-κB, and KRAS signaling, were enriched in the LA3
subgroup (Figure 3C). The GSEA-based KEGG pathway
analysis verified that ECM receptor interaction, Focal
adhesion, Complement and coagulation cascades and
Cytokine-cytokine receptor interaction were enriched in LA3
subgroup (Figure 3D).

Correlations and Interactions Among LARs
To better understand the correlations among the LARs, we
performed correlative expression analysis and protein-protein
interaction (PPI) network analyses. We found that genes
within the same functional class showed significantly
correlated expression patterns and that a high correlation
existed between acetyltransferases and deacetylases
(Figure 4A). In the correlation analysis, five
acetyltransferases (KAT2B, KAT5, KAT6A, KAT6B, KAT7,
EP300, and CREBBP) presented a strong co-expression

relationship, they were also positively associated with the
expression of HDAC4, HDAC5, HDAC6, and SIRT1 and
negatively associated with SLC16A10, HAT1, HDAC1,
HDAC3, and LEF1 expression. The HDAC family seems to
be the hub family in lysine regulation, as it showed strong co-
expression not only among the family members, but also with
that of KATs and SIRTs. In contrast, few SIRTs (except SIRT1)
showed strong correlations with the other LARs.

Analysis of PPI networks also showed that these LARs
frequently interacted (Figure 4B), and that HDAC1, HDAC2,
and CREBBP presented the greatest number of links to other
LARs. In the PPI networks, we concluded that HDACs had an
especially high number of interactions with other LARs compared
with other lysine acetylation regulator family. Taken together,
these findings revealed that several co-expression patterns existed
among the LARs, and HDACs are the hub family.

Building a Risk Signature by LASSO Cox
Regression
To investigate the prognostic value of LARs, univariate Cox
regression analysis was performed on the mRNA expression of
the 33 LARs in the CGGA training dataset. We found that 26 of
the 33 genes were correlated with OS (p < 0.05) of glioma patients
(Figure 4C). Among the 26 genes, SLC16A10, ESCO1, ESCO2,
KAT1, HDAC1, HDAC2, HDAC3, HDAC7, HDAC8, SIRT6,
SIRT7, and LEF1 were found to be risk factors in glioma, with
hazard ratios >1, whereas KAT2A, KAT2B, KAT5, KAT6A,
KAT6B, KAT7, CREBBP, EP300, HDAC11, HDAC4, HDAC5,
SIRT1, SIRT3, and SIRT5 were protective factors, with hazard
ratios <1. The 26 LARs identified as having prognostic value were
selected for use with the least absolute shrinkage and selection
operator (LASSO) Cox regression algorithm in the CGGA
training dataset. Based on the minimum criteria, we
determined a 14-gene risk signature (Figure 4D), and the
coefficients (Figure 4E) obtained by the LASSO algorithm
were used to compute the risk score for each sample in the
CGGA and TCGA datasets for further study. Besides, prognostic
value of each LARs in LGG and GBM with different IDH mutant
status and 1p/19q codeletion status were concluded in
Supplementary Tables S4 and S5.

Testing and Validating the Risk Signature
We plotted heatmaps to evaluate whether the risk score reflected
the different distributions of clinicopathological features among
gliomas in the CGGA dataset (Figure 5A) and the TCGA dataset
(Supplementary Figure S4A). Significant differences in
clinicopathological features were observed between the low-
and high-risk subgroups (Supplementary Table S6). The
high-risk subgroup was highly associated with older age,
higher WHO grade, wild-type IDH, and non-codeletion of 1p/
19q, and OS time decreased with the risk score increasing. Based
on the ROC curves, we concluded that the risk score could
perfectly predict 1/3/5-years survival rates in glioma patients
with AUC � 0.812/0.866/0.881, respectively (Figures 5B–D),
and was more efficient than WHO grade and age. ROC curves
in the TCGA validation set proved that the risk signature had a
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FIGURE 4 | (A) Spearman’s correlation analysis among the 33 lysine acetylation regulators (LARs). (B) Protein interaction network of the 33 LARs. (C) Univariate
Cox regression analysis was used to calculate the hazard ratios (HRs), 95% confidence intervals, and p-values for screening the prognostic LARs. (D), (E) Least absolute
shrinkage and selection operator (LASSO) regression was performed to calculate the minimum criteria (D) and coefficients (E).
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FIGURE 5 | (A) The differential expression levels of the included 14 lysine acetylation regulators (LARs) and the distributions of clinicopathological characteristics
were compared between low- and high-risk subgroups. (B)–(D) Receiver operating characteristic (ROC) curves showed the predictive efficiency of the risk signature,
WHO grade, and age on 1/3/5-years survival rate. (E), (F) Univariate and multivariate Cox regression analyses of the overall survival and clinicopathological features of
patients from the Chinese Glioma Genome Atlas (CGGA) (E) and The Cancer Genome Atlas (TCGA) (F) datasets.
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stable and robust predictive ability (Supplementary Figures
S4B–D).

Univariate and multivariate Cox regression analyses were
performed to determine whether the risk signature was an
independent prognostic indicator. We included age, risk score,
1p/19q codeletion status, WHO grade, IDH mutation status,
gender in the univariate Cox regression analysis and the
results of the univariate and multivariate Cox regression
analysis showed that risk score, WHO grade, age and 1p/19q
status were independent predictors for glioma patients
(Figures 5E,F).

Here, we confirmed that the risk score had prognostic value for
different WHO grades. The Kaplan–Meier survival curves
indicated that low-risk patients had longer OS time and a
higher OS rate than high-risk patients in each and all WHO

grades in the CGGA dataset (Figure 6A), and the prognostic
ability of the risk score was further validated in the TCGA dataset
(Figure 6B).

Further Validation in the GSE16011
Microarray Dataset
On account of the expression file of TCGA and CGGA sets were
both RNA-seq data, we applied the risk score model in the
GSE16011 microarray dataset to evaluate the universality of
the LAR-signature. Similarly, in the GSE16011 dataset,
patients with higher risk score showed shorter OS time and
rate in all grade gliomas, LGGs and GBMs (Supplementary
Figures S5A–C). The prognosis predictive ability of the risk
score was also compared with the WHO grade and age of

FIGURE 6 | (A) Kaplan–Meier curves of low- and high-risk subgroups of all grades and each grade in the Chinese Glioma Genome Atlas (CGGA) training dataset.
(B) Kaplan–Meier curves of low- and high-risk subgroups of each grade in The Cancer Genome Atlas (TGGA) training dataset. (C) Waterfall plot depicting the mutant
status of lysine acetylation regulators (LARs). (D), (E) Box plot showing that risk subgroups were significantly associated with the tumor mutation burden (TMB) and
Spearman correlation analysis showed that the risk score was strongly correlated with TMB. (Wilcox test, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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patients in the GSE16011 dataset by using the model of ROC
curves. The risk score obtained high AUC values (0.703/0.765/
0.754) for predicting 1/3/5-years OS time. Particularly, the AUC
values of risk score were higher than age and WHO grade of
patients for predicting 3/5-years OS time (Supplementary
Figures S5D–F). Besides, univariate and multivariate Cox
regression analysis showed the risk score was an independent
predictive factor in the GSE16011 microarray dataset
(Supplementary Figures S5G,H).

Mutation Analysis of LARs
To study the mutation status of the 33 LARs and the relationship
between the risk signature and gene mutation load, 583 samples with
matched SNP data were divided into low- (n � 303) and high-risk (n
� 280) groups. A waterfall plot was generated depicting the mutation
frequency of the 33 LARs and the percentage at which they occurred
in gliomas (Figure 6C).We found that 36 (6.17%) of the 583 samples
contained mutations in genes coding for the LARs, in which KAT6B
(8/583) and CREBBP (5/583) were the most frequently mutated
genes. Within the eight mutations found in KAT6B, six were present
in oligodendrogliomas and six of the samples were in the low-risk
subgroup. All the mutations in CREBBP were in samples from high-
risk patients, and comprised two glioblastomas and three
astrocytomas.

In the waterfall plot depicting the 30 most frequently mutated
genes in gliomas (Supplementary Figure S6A), we noticed that
glioma patients with a high-risk score often carried a higher
frequency of gene mutations. This indicated that DNA repair
system is highly damaged in patients with higher risk score.
Therefore, we calculated the TMB for each sample with SNP data
in the TCGA dataset. We found that high-risk patients had higher
TMB values (Figure 6D), and Spearman’s correlation analysis
confirmed the positive correlation between our risk signature and
TMB (Figure 6E). This result implied that impaired regulation of
lysine acetylation may affect glioma malignancy through the
modulation of factors involved in DNA replication or repair.

CNV Analysis of LARs
In the heatmap depicting the CNV of the 33 LARs, the high-risk
section of the heatmap showed more CNVs than the low-risk
section (Supplementary Figure S6B). We selected seven LARs
for which the CNV was highly associated with the risk score for
further analyses (Figure 7A). These genes are located on
chromosome arms 1p, 7p, 10q, 19q, and 22q which are
characteristically altered in gliomas (Bredel et al., 2009).

HDAC1 and SIRT2 are located on chromosome arms 1p and
19q, respectively. Codeletion of these genes is frequently observed
in oligodendrogliomas, and is highly associated with improved
responses to radiochemotherapy and longer survival than diffuse
gliomas without these alterations (Cancer Genome Atlas
Research Network et al., 2015). Although Kaplan–Meier curves
revealed that copy number deletions of HDAC1 and SIRT2 are
related to a better prognosis, we could not determine whether 1p/
19q codeletions resulted in differential OS. Therefore, to exclude
the potential influences of 1p/19q codeletion, we compared the
mRNA expression levels of HDAC1 and SIRT2 according to
CNV status, as well as the OS rates between low and high levels of

HDAC1 and SIRT2 mRNA expression in gliomas without
HDAC1 or SIRT2 CNVs (Figures 7B,C). We found that, for
both genes, copy number deletions were associated with lower
mRNA expression, and in gliomas without HDAC1 or SIRT2
copy number variations, patients with lower HDAC1 expression
or higher SIRT2 expression showed better clinical prognosis.
These results indicated that HDAC1may be one of the oncogenes
lost in gliomas with 1p deletion, while SIRT2, as a protective
factor, is lost with 19q codeletions in glioma patients.

The EP300 is located on chromosome 22q, and deletion of this
gene is also common in gliomas. Although EP300 copy number
deletion was associated with worse prognosis when compared with
the diploid state, we could not exclude that loss of other genes located
in 22q may also influence prognosis. Therefore, we compared EP300
mRNA expression levels according to CNV status, as well as the OS
rates between high and low levels of EP300 expression in gliomas
without EP300 CNVs. We found that copy number deletions of
EP300 were associated with lower EP300 mRNA expression levels,
and reduced expression of EP300 in gliomas without EP300 CNVs
was related to a worse clinical prognosis (Figure 7D). This indicates
that EP300 may play a tumor suppressor role in glioma and EP300
(22q) may be one of the tumor suppressor genes lost in the 22q−
event (Hartmann et al., 2004).

The CNVs for the other four LARs–KAT6B (10q), SIRT1(10q),
HDAC10 (22q), and HDAC9 (7q)–were highly associated with the
risk signature and may be affected in chromosomal alterations such
as 10q−, 22q− and 7+ in gliomas. However, we did not find
significant differences in OS between low and high levels of
expression of these four genes in patients without CNVs
(Supplementary Figures S7A–D). Therefore, we regarded the
differences in OS rates between patients with or without copy
number loss of these four genes as passive changes resulting from
chromosomal variations, indicating that they may have little effect in
related clinical outcomes.

DISCUSSION

In this report, we have shown that the mRNA expression levels of
most of the evaluated LARs are closely associated with
clinicopathological features of glioma. We further identified three
subgroups (LA1/2/3) of gliomas by consensus clustering of 26 OS-
related LARs, and confirmed that LA3 was the most malignant
subtype with the poorest prognosis.Moreover, the LA3 subgroupwas
tightly associated with malignancy-related biological processes, key
signaling pathways, and tumor hallmarks. In addition, we also
constructed a prognostic signature and divided glioma patients
into low- and high-risk categories by the median of risk scores.
We noticed a close relationship between the risk signature and
clinicopathological features of glioma, and ROC curves, univariate
and multivariate analyses, and Kaplan–Meier curves were used to
determine the potential prognosis value of the risk signature in
glioma. We also included SNP and CNV data of LARs to identify
potential therapeutic targets that may play a prognostic role in
gliomas.

The advantages of our study included that we analyzed
comprehensive genome and transcriptome data of 1,125
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glioma patients and we build a LAR-based glioma classification
system and LAR-related risk score model which was validated in
two external independent glioma cohorts. The LAR-signature
possessed strong and steady prognostic value and it’s promising
in further clinical application. With the rapid evolution of
bioscience and bioinformatics, it’s convenient in using
sequencing technique for clinical diagnosis and prognostic
assessment. How to combine computational technique with
bioscience tools in clinical use would break through the
difficulties in patient diagnosis and prognosis prediction.
Thus, we thought our work could provide a strong weapon

for predicting the prognosis of glioma patients. But the
limitations were also obvious, the LAR-signature need more
perspective rather than retrospective validations for further
clinical using. Besides, we thought the underlying functions
of LARs also need experimental verifications in following
research.

We have found that the LAR-signature was pertinent to the
TMB of glioma patients. The TMB is associated with neoantigen
abundance and increased immunogenicity (Hodges et al., 2017),
and is used to quantitatively assess mutations carried by tumor
cells, which was usually used to predict the response to

FIGURE 7 | (A) Copy number variation (CNV) of seven lysine acetylation regulators (LARs) were significantly correlated with the risk score and other
clinicopathological features (Chi-square tests). (B)–(D)Box plots indicated that different CNV status of HDAC1, SIRT2, and EP300 have different mRNA expression levels
and the Kaplan–Meier curves revealed that HDAC1, SIRT2, and EP300 expression levels were associated with OS rates both in all samples and samples without their
CNVs and their CNV status were also related to OS rates of glioma patients. (Wilcox test, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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immunotherapy in cancer patients It is defined as the total
number of somatic gene coding errors, base substitutions, gene
insertions, or deletion errors that are detected per million bases.
In recent years, several studies have demonstrated that
dysregulation of lysine acetylation may result in errors
during DNA damage repair. For instance, PCAF/GCN5-
mediated K163 acetylation of RPA1 (replication protein A) is
crucial for nucleotide excision repair (NER) (Zhao et al., 2017),
SIRT7 is recruited in a PARP1-dependent manner to sites of
DNA damage, where it modulates H3K18Ac levels (Vazquez
et al., 2016), and TET1 (ten-eleven translocation-1) forms a
complex with KAT8 to modulate its function and the level of
H4K16Ac, which ultimately affects gene expression and DNA
repair (Zhong et al., 2017). Based on these observations, we
speculate that dysregulation of lysine acetylation of both histone
and non-histone proteins may play a pivotal role in impairing
the DNA damage repair response, which would then lead to
hypermutations and an increased neoantigen load, leading to
malignant progression of tumors. We have systematically
revealed the mRNA expression, underlying functions, and
prognostic values of LARs in glioma, and shown that
acetylation regulators may have an immune-related effect on
the malignant progression of glioma. Moreover, we identified
that several underexplored LARs, such as ESC O 2,
HAT1(KAT1), and LEF1, may have prognostic value in lower
grade glioma patients (Supplementary Table S5) and may be
potential glioma biomarkers. We further found that specific
chromosomal alterations in gliomas were highly related to the
CNVs of several LARs. HDAC1 was shown to be one of the
oncogenes deleted in the 1p deletion event, and SIRT2 and
EP300 were two cancer suppressors lost in 19q deletion and 22q
deletion events, respectively. Our results also revealed that
dysfunction of LARs may partially explain the
hypermutation state of gliomas, which is associated with
unfavorable prognosis. Besides, which is the main idea of
our research, LAR-based glioma subtypes were built and
LAR-associated risk scores were constructed to expand the
potential clinical applications of LARs. Taken together, we
believe that substantial research is still required to illuminate
the detailed mechanisms involved in lysine acetylation-
mediated regulation of glioma malignancy that may
ultimately lead to new and effective targeted therapies for
glioma patients, and the use of LAR-subtype and LAR-
signature are promising for further clinical applications and
need more perspective evidence.
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