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The outbreak of 2019 novel coronavirus (COVID-19) has caused serious threat to public
health. Discovery of new anti-COVID-19 drugs is urgently needed. Fortunately, the
crystal structure of COVID-19 3CL proteinase was recently resolved. The proteinase
has been identified as a promising target for drug discovery in this crisis. Here, a
dataset including 2030 natural compounds was screened and refined based on the
machine learning and molecular docking. The performance of six machine learning (ML)
methods of predicting active coronavirus inhibitors had achieved satisfactory accuracy,
especially, the AUC (Area Under ROC Curve) scores with fivefold cross-validation of
Logistic Regression (LR) reached up to 0.976. Comprehensive ML prediction and
molecular docking results accounted for the compound Rutin, which was approved
by NMPA (National Medical Products Administration), exhibited the best AUC and the
most promising binding affinity compared to other compounds. Therefore, Rutin might
be a promising agent in anti-COVID-19 drugs development.

Keywords: COVID-19 3CL proteinase, flavonoids, rutin, virtual screening, machine learning, molecular docking

INTRODUCTION

At the end of 2019, the pneumonia of unknown cause was detected. A few weeks later a coronavirus
was newly isolated, and it was first identified and regarded as the seventh member of beta
coronavirus (Zhu et al., 2020). COVID-19 is an infectious disease caused by the most recently
discovered coronavirus by WHO (World Health Organization). Globally, as of 9 Aug, more than
19,000,000 confirmed and 720,000 deaths were reported to WHO. Anxiously, the number of
infections worldwide is still rising (Wang and Zhang, 2020). Therefore, this is a rapidly evolving
emergency. It is imperative to discover and develop potential agents to treat the outbreak.

The sequence alignment demonstrated that the COVID-19 has 82% nucleotide sequence
identity with human SARS-CoV (severe acute respiratory syndrome) (Chan et al., 2020;
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Lee and Hsueh, 2020; Xu et al., 2020). Recently, Prof. Zihe Rao’s
research team successfully expressed the 3C-Like Proteinase of
COVID-19. The crystal structure of COVID-19 3CLpro (PDB:
6LU7) (Liu et al., 2020) was identified, resolved in a very short
time, and available in PDB (protein data bank). It is well-known
that chymotrypsin-like protease is crucial in the life cycle of virus,
and the protease is stable inside the coronaviruses. Thus, the
COVID-19 3CLpro is a potential target for developing the new
anti-COVID-19 drugs.

Since the COVID-19 3CLpro has successfully resolved,
guaranteed accurate virtual screen strategies are generally
considered as a rapid progress of discovering potential drugs,
especially in the public health crisis. Experimental screening
programs are generally considered to be time-consuming and
laborious. Thus, to expedite screening possible drug molecules
and prevent the outbreak, the procedure of machine learning and
molecular docking were performed to narrow down the potential
candidates before experimental assays (Chen et al., 2005; Berry
et al., 2015). In this work, a natural compounds library including
2030 compounds (Chinese medicine compounds mostly) was
chosen as the database. Some Chinese medicine compounds
in the dataset are wildly used in clinic. Their mechanisms,
side effects, and safety were investigated. Encouragingly, the
NHC (National Health Commission of People’s Republic of
China) recently issued a statement that several Chinese medicine
formulas were suggested curing the patients in the early stage
of infections. Of note, more and more patients were discharged
from hospital after being cured by integrated treatment by
combining Chinese with Western medicine in China (Cao et al.,
2020; Qiu et al., 2020). In addition, it also should be mentioned
that many Chinese herbal formulas such as Le-Cao-Shi, JieZe-1,
and San Wu Huang Qin decoctions were used to prevent virus
infection and cure the viral diseases in China (Ma et al., 2018;
Zhao et al., 2019; Duan et al., 2020). The natural compounds
are appropriate to be selected as a source of prototype inhibitors
against COVID-19 3CLpro.

MATERIALS AND METHODS

Molecular Descriptors and Data Sets
Chemical fingerprint recognition is a method to convert the
drawn molecules into 0 and 1-bit streams. The old fingerprint
type was MACCS key, which was developed by the former
MDL as a fast method for substructure screening in molecular
databases (Polton, 1982). Another available fingerprint is the
Morgan fingerprint, a circular fingerprint (Morgan, 1965). The
environment and connectivity of each atom are analyzed to
a given radius, and each possibility is encoded. Therefore,
Morgan fingerprint was applied to this virtual screen project
as a molecular representation for machine learning. Morgan
fingerprint set a molecular fingerprint by setting a radius from a
specific atom to count the number of molecular structures within
this radius. We can set the number of radius and bits to get
different molecular fingerprints and lengths (Xue et al., 2004).
Ultimately, the fingerprint length (128-bit, 256-bit, 526-bit, 1024-
bit, 2048-bit) was selected in our study.

Since the binding cavity of COVID-19 3CLpro and SARS
3CLpro is extremely similar (Supplementary Figure S1), it is
rational to make the learning model based on the data of
inhibitors of above two proteins. The 66 active compounds and
66 inactive compounds were collected as the training and testing
set data (patent: US7495011 B2) (Yamamoto et al., 2004; Chen
et al., 2006; Wang et al., 2007; Jacobs et al., 2013; Adedeji
and Sarafianos, 2014; García-Fernández et al., 2016; Konno
et al., 2017; Hu et al., 2020; Jo et al., 2020; Yoshizawa et al.,
2020). The chemical structures of compounds were drawn by
ChemDraw software and translated into canonical SMILES by the
RDKit python package (Shi and Borchardt, 2017). These active
compounds and inactive compounds were prepared as positive
samples and negative samples respectively during model training.

Machine Learning Classifiers
Six machine learning classifiers were evaluated in this
study for comparison.

Random Forest (Watson, 2008)
Random forest (RF) or random decision forests 9 are ensemble
learning methods for classification, regression, and other tasks.
The methods are operated by constructing a multitude of decision
trees at training time, and they output the classes, which consist
of the mode of the classes (classification) or mean prediction
(regression) of the individual trees 10.

Support Vector Machine (Cortes and Vapnik, 1995)
The support-vector machines (SVMs, also support-vector
networks) 11 are supervised learning models with associated
learning algorithms, analyzing data for the classification and
regression. Given a set of training examples, each marked as
belonging to one or the other of two categories, the SVM
training algorithm builds a model that assigns new examples
to one category or the other, making a non-probabilistic binary
linear classifier.

K-Nearest Neighbors (Altman, 1992)
The K-nearest neighbors algorithm (K-NN) 12 is a non-
parametric method for the classification and regression. In both
cases, the input consists of the K closest training examples in the
feature space. The output depends on whether K-NN is used for
the classification or regression: (1) In the K-NN classification,
the output is a class membership. (2) In the K-NN regression,
the output is a property value for the object. This value is the
average of the values of K nearest neighbors. The K-NN is a type
of instance-based learning, or lazy learning, where the function is
only approximated locally and all computation is deferred until
the classification.

Naïve Bayes 13 (Safavian and Landgrebe, 1991)
Naïve Bayes 13 is a simple technique for constructing classifiers:
models that assign class labels to the problem instances,
representing as vectors of feature values, where the class labels
are drawn from some finite sets. There is not a single algorithm
for training such classifiers, but a family of algorithms based on
a common principle: all naïve Bayes classifiers assume that the
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value of a particular feature is independent of the value of any
other feature, given the class variable.

Decision Tree (Tolles and Meurer, 2016)
A decision tree 14 is a flowchart-like structure in which each
internal node represents a “test" on an attribute (e.g., whether
a coin flip comes up heads or tails), each branch represents the
outcome of the test, and each leaf node represents a class label
(decision taken after computing all attributes). The paths from
the root to the leaf represent classification rules.

Logistic Regression (Biau et al., 2008)
Logistic regression 15 is a statistical model for using a logistic
function to form a model of binary dependent variable. In the
regression analysis and logistic regression (or logit regression), it
is always used to estimate the parameters of a logistic model (a
form of binary regression).

Above all, Random Forest, Support Vector Machine,
K-nearest neighbors, Naïve Bayes, Decision Tree, and Logistic
Regression were realized by a machine learning package in
scikit-learn (Pedregosa et al., 2011).

Performance Measures
As for the evaluation of machine learning classifier, the AUC
describes the performance of the classifier and presents the
comparison between the true positive rate or sensitivity of a given
model and the false positive rates (Hand, 2009). The increase in
sensitivity is at the expense of the false positive rate. The AUC
is a measure of the accuracy of the model. An AUC >0.5 means
that the classifier could differ between the positive and negative
samples effectively. A perfect classifier should be with AUC = 1.0.

Molecular Docking
The crystal structure of COVID-19 3CLpro complex was
downloaded from protein data bank (PDB ID: 6LU7) (Liu et al.,
2020). A commercial database including 2030 approved natural
compounds was used as the screening library (Selleck Chemicals,
Houston, TX, United States).

The virtual screen procedure and refinement were conducted
by Glide module in Schrödinger Maestro software (Berry et al.,
2015). The 6LU7 (COVID-19 3CLpro) was performed as the
acceptor and prepared in the Protein Preparation Wizard.
The receptor was preprocessed, optimized, and minimized (the
restrained minimization using the OPLS2005 force field). All
compounds were prepared by the default settings of LigPre
module. For the screening in the Glide module, the prepared
receptor was imported to specify the suitable position in the
Receptor Grid Generation. The grid box was generated 10 Å
in X, Y, and Z direction, and the residue of His41 and Cys145
was selected as the centroid of the grid box. The Glide Ligand
docking was subsequently carried out with the default settings
applied (standard precision) and XP (extra precision) templates.
The dataset was screened through SP docking first; the SP
docking template is appropriate for screening compounds in
large numbers. Subsequently, the top ligands that had been
determined to be high-scoring using SP were screened by XP
docking template, and the XP method is to provide a better

correlation between good poses and good scores. All other
settings remained default to the Ligand docking wizard.

The phase module of pharmacophore was used to generate
pharmacophore hypothesis and define the pharmacophoric
features using the receptor-original ligand complex 6LU7.
Conformation of each hit was generated using Confgen by
applying the OPLS-2005 force field (Watts et al., 2010; Rohini and
Shanthi, 2018). Features were set based on the original inhibitor
binding model, which contained essential binding interactions
with key residues including His41, Phe140, Gln142, Cys145,
His164, Glu166, Gln189, and Thr190. The phase ligand screening
was subsequently carried out using the above pharmacophore
hypothesis based on Glide XP scoring terms. The visualization
results and the Phase Screen Score were used to examine the
alignment between initial ligands and pharmacophore features.

The binding free energy of each complex was calculated
using the panel of MM-GBSA technology available with
Prime. This panel can also be used to calculate ligand strain
energies for a set of ligands and a single receptor. The

FIGURE 1 | Schematic illustration of the anti-COVID-19 discover procedure of
virtual screening.
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FIGURE 2 | AUC curve of fivefold cross-validation with negative samples from inactive compounds in the case of different ML models. (A,B) are the AUC curve in
the 1024-bit and 2048-bit length fingerprints, respectively.

ligands and the receptor must be properly prepared beforehand,
and it is common to prepare by using LigPrep and the
Protein Preparation Wizard. The calculated difference between

the minimized receptor-ligand complex and the minimized
unbound ligand-receptor was scored by the MM-GBSA with the
VGSB solution model.
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FIGURE 3 | Binding modes of Rutin with 6LU7. (A) Electrostatic interaction between Rutin and crystal structure (6LU7) of COVID-19 3CLpro. (B) Interactions
between Rutin and associated residues in the crystal structure (6LU7) of COVID-19 3CLpro. Blue and gray labels shown in the figure are residue names and
interaction distance respectively.

RESULTS

Based on ML prediction and molecular docking procedures, six
flavonoids were presumably considered as potential inhibitors
of COVID-19 3CL proteinase. Among these inhibitors, the
most likely one is the compound Rutin, depending on the
comprehensive assessment. The summary of the results was
shown in Figure 1, and the details were described and
discussed as below.

Performance of Machine Learning
Classifiers
To evaluate the performance of the training model, two factors
were considered in a combinational way. These factors were (1)
machine learning methods (LR, NB, DT, KNN, SVM, RF) and
(2) fingerprint bits (128-bit, 256-bit, 526-bit, 1024-bit, 2048-bit).
The AUC under different conditions were summarized (Figure 2
and Supplementary Table S1). On average, the performance of
LR was best compared with the other five ML classifiers in the
different fingerprint length. The AUC (0.976) of LR in the case
of 2048-bit fingerprint was best compared with the case of other
bits fingerprint. Finally, the Logistic Regression with 2048-bit

fingerprint was selected to calculate the probability values (AUC)
for the screening library.

Analysis of the Original Ligand and
Defining the Accuracy of Docking
Protocol
In general, the molecular docking settings are often calibrated
based on the experimental ligand-acceptor. Especially, the
accuracy of docking protocol needs to be cross-checked by the
training set used. However, it wasn’t long before the crystal
structure of COVID-19 3CLpro complex analyzed and resolved.
We found the exciting truth that the catalytic pocket of SARS
3CLpro (PDB: 3IWM) and COVID-19 3CLpro are exactly similar
(Yang et al., 2006; Zhang et al., 2010; Supplementary Figure S1).
This phenomenon highlights the key to confirm the binding
mode of COVID-19 3CLpro complex, imitate the interaction
between SARS 3CLpro and its approved inhibitors, and replicate
the above binding mode to discover the potential COVID-19
3CLpro inhibitors.

The 6LU7 three-dimensional structure as well as the peptide
inhibitor was analyzed. The inhibitor forms hydrogen bonds with
different residues including His143, His164, Glu166, Gln189,
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and Thr190, and a weakly hydrogen binding with the residue
Phe140. In addition, the possible formations of π-π stacking
interaction with His41 and covalent bond with Cys145 were
also observed. These observations further demonstrated that
the original inhibitor would interact with key residues of
COVID-19 3CLpro, in a similar way to that of the screening
potential inhibitors against COVID-19. To confirm the proper
docking protocol used, the original inhibitor was redocked five
times, and the binding pose was in line with the previous
crystal conformation.

Secondary Screening With Molecular
Docking
The Glide ligand docking module was used to conduct the
initial screening based on the templates of SP and XP. As the
screening dataset, 2030 natural compounds (Chinese Medicine
compounds mostly) were added. We assumed that the predicted
binding affinity reflected the real binding model. The screening
results were ranked based on the docking score as an initial
selection, and score section showed the clear properties between
binding complexes and no-binding complexes (Wilsey et al.,
2013). In other words, the lowest binding score means the best
binding affinity. The results yielded 1340 compounds in the entry
of Workspace. Further refinement of the above initial selected
compounds were performed by analyzing and scoring with the
MM-GBSA and the Pharmacophore Modeling.

The pharmacophore model was subsequently generated and
optimized slightly. We clearly observed the main binding model
between COVID-19 3CLpro and its original inhibitor. Especially,
the generated model consisted of several features including
one aromatic feature projecting to the residue Thr26, H-bond
acceptors targeting Gly143, Cys145, and Glu166, and two H-bond
donors targeting Glu166 and Thr190. Then, the optimized
pharmacophore model was used to rescore the initial screened
1340 compounds. In this case, 98 hits were already reported to
give reliability to our pharmacophore model. Since the catalytic
pocket of COVID-19 3CLpro is extremely similar to SARS, the
binding model is highly similar. The relevant factors of docking
model should possibly follow the model of inhibitors binding
with SARS-CoV 3CL protease (Chen et al., 2005; Jo et al.,
2020). According to the comprehensive evaluation, the docking
score and AUC of molecules were better than −7.0 kcal/mol
and 0.70, respectively, which were considered more reliable. As
mentioned above, the 32 hits were tentatively considered as the
potential inhibitors.

Visual Inspection
After visualizing the docked complexes carefully, we found
that six agents with better docking scores compared to the
others in the refinement list (Table 1 and Supplementary
Table S2). Therefore, the six compounds were subsequently
applied for further analysis. According to the binding sites of
6LU7 complex, the original inhibitor could form hydrogen bonds
with surrounding residues in the active pocket. In addition,
we noted that these compounds all presented electrostatic
interaction with the residue Cys145, which is the key residue

TABLE 1 | Six selected natural compounds according to the docked
results and AUC.

Name Structure 2D ligand interaction
with 6LU7

Rutin

Astilbin

Astragalin

OH OH

OH

OH

OH
O

HO

O

OH O

O

Silymarin

O

O

HO

O

HO

O

HO

O HO

OH

Vitexin

Puerarin

O

O

O

OH

O

HO

OH

OH

OH

HO

in the catalytic center of COVID-19 3CLpro complex. Besides,
the residue Cys145 has also been approved to be the crucial
residue forming within a radius of 6 Å around the catalytic
center of SARS-CoV 3CLpro (Jacobs et al., 2013; Park et al.,
2016). The key residues surrounding the active center of SARS-
CoV 3CLpro include Hid41, Leu141, Gly143, Cys145, Glu166,
and Asp187 (Li et al., 2016). Recently, the flavonoids have been
approved to be the inhibitor targeting with the SARS-CoV 3CL
protease (Jo et al., 2020), and they occupy the main pockets
of the catalytic center including Asn 142, Glu166, and Gln189
residues. Interestingly, six screened compounds of our findings
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are also flavonoids. As mentioned above, both coronaviruses
have the similar binding affinity, which means that the screened
compounds could potentially occupy the catalytic active center of
the protease very well, inhibiting the activity of protease to reduce
the ability of virus copy.

Binding Modes of Rutin Against
COVID-19 3CLpro
According to the above analysis results, the compound Rutin
(docking score: −9.16 kcal/mol and AUC: 0.990) was considered
to be the most potential inhibitor compared with others. This
compound was predicted to form the hydrogen bonds involving
Cys145 (2.63Å), Asn142 (2.1 Å), Gly143 (2.3 Å), and Thr190
(2.35 Å), with additionally the possible formation of σ-π stacking
interaction with Gln189 (Figures 3A,B). Notably, the major
binding affinity was based on the presence of hydroxyl group,
which presented the key in anchoring and blocking the substrate
into the active pocket of catalytic center. Overall, the Rutin
matched very well with 6LU7 binding pocket, indicating that it
may be a potential inhibitor.

DISCUSSION

In summary, the rapid and efficient drug discovery procedure
of virtual screening combined ML methods with molecule
docking was performed. Based on the further evaluation and
refinement, the most potential compound Rutin was highly
screened, suggesting the compound might be active against
the COVID-19 3CLpro. Moreover, two flavonoids, baicalin and
baicalein, have recently been identified as the novel, natural
product inhibitors of 3CL protease in vitro (Su et al., 2020),
and the flavonoids could be potential anti-COVID-19 inhibitors
(Liu et al., 2020). In addition, the Rutin has been proved to be
against the flu viruses, and Rutin tablets have been used in clinic
for many years in China. Therefore, Rutin may be a potential
inhibitor against COVID-19 3CLpro. There are also some limits
of our approach. The number of compounds used in the machine
learning procedure is not enough and we still contribute to this
database. In addition, we are still keeping an eye on the latest
development of COVID-19 researches. We will collect more
related compounds and update our machine learning training
data. Simultaneously, there is still room for progress in machine
learning procedure, and the deep machine learning used in the
drug screening would be perfect for filling the gap. This article is

just the beginning of the research on the combination of machine
learning and molecular docking. We believe that the combination
of molecular docking and machine learning will bring more
surprises for the discovery of drugs. In vitro and in vivo studies
will be designed and carried out to validate the therapeutic effects
of Rutin for COVID-19 in the future (Chen et al., 2020).
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