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Over the last decades, multiscale molecular dynamics (MD) simulations including ab initio,
atomistic as well as coarse-grained models have significantly expanded our understanding of
biologically relevant macromolecules like DNA, RNA, or proteins and their properties in solution.
Despite the broad applicability, we comment here on some general challenges for coarse-grained
approaches, the most important being a reliable thermodynamic description at large time and
length scales.

Due to a massive increase in computational power, classical atomistic MD simulations are
nowadays the method of choice for the study of complex molecular mechanisms, thereby taking
into consideration hundreds of thousands of atoms on time scales of several microseconds.
Although classical atomistic models provide a higher level of detail when compared to
coarse-grained approaches, it has to be noted that the simplification of electronic behavior in terms
of potential functions, so called force fields, introduces some conceptual artifacts into the dynamic
and structural properties of the simulated molecular species (Dommert et al., 2012). Furthermore,
polarization and charge-transfer mechanisms are usually ignored, such that more sophisticated ab
initio or empirical models have to be used for systems where these effects become of importance
(Smiatek et al., 2018; Kohagen et al., 2019; Nandy and Smiatek, 2019; Smiatek, 2019).

However, some processes take place on time and length scales, which are not accessible
for atomistic MD simulations. Common examples are the formation of lipid bilayers and
polyelectrolyte complexes, polymer and colloidal diffusion, charge transport or large scale DNA
translocation (Smiatek and Schmid, 2011;Michalowsky et al., 2017, 2018; Smiatek andHolm, 2018).
For the study of these and closely related problems, simple as well as more refined coarse-grained
models offer a wide range of applications. Here, coarse-graining means the introduction of effective
interaction sites (beads) instead of individual atoms, which reduces the degrees of freedom and
thus also the number of necessary computations. In addition, the lower level of detail supports the
straightforward use of implicit solvent approaches in combination with larger time steps (Marrink
and Tieleman, 2013; Kleinjung and Fraternali, 2014; Onufriev and Case, 2019). Depending on the
degree of coarse graining, one can differentiate between simple approaches such as reduced bead-
spring models for polymers and advanced or semi coarse-grained methodologies such as iterative
Boltzmann inversion or the MARTINI method among others (Reith et al., 2003; Clark et al., 2012;
Marrink and Tieleman, 2013; Noid, 2013; McCarty et al., 2014; Rudzinski and Noid, 2014; Dunn
and Noid, 2015; Guenza et al., 2018; Smiatek and Holm, 2018). Although advanced coarse-graining
approaches are often based on rather mild parameterization procedures, it should be noted that
the consideration of effective interaction sites crucially affects the resulting size and the geometry
of the molecular species (Vögele et al., 2015a; Michalowsky et al., 2017, 2018). With regard to
this point, also coarse-grained methodologies reveal some generic drawbacks, thereby limiting the
applicability of these approaches for the thermodynamic analysis of complex solutions.
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In terms of a specific example, many biologically relevant
solutions, such as in mammalian or bacterial cells, are dense
mixtures of various ions, co-solute and co-solvent species
including a non-negligible concentration of solute components
(Zhou et al., 2008). Among other effects, the individual
components of the solution and their thermodynamic properties
exert a tremendous influence on the structural stability of
the dissolved biological species (Canchi and García, 2013;
Smiatek, 2017; Oprzeska-Zingrebe and Smiatek, 2018a). For
instance, it was shown (Zhang and Cremer, 2010; Canchi
and García, 2013; Sukenik et al., 2013; Oprzeska-Zingrebe
et al., 2018) that ions like SCN− or molecules like urea
destabilize DNA or protein structures, whereas the presence of
SO2−

4 , trimethylamine-N-oxide (TMAO), or ectoine enhances
the stability of native macromolecular states. Additionally,
many molecular mechanisms are also dominated by intra-
and intermolecular hydrogen bonds, polarization mechanisms
as well as electrostatic and dispersion interactions. The
presence of these mainly short-ranged interactions influences the
radial distribution functions, potentials of mean force or
the corresponding chemical potentials of the species, so that in
the end, for non-negligible concentrations, there are more or
less pronounced deviations from ideal solutions (Chandler, 1987;
Smiatek, 2014, 2017; Dunn and Noid, 2015; Guenza et al., 2018;
Oprzeska-Zingrebe and Smiatek, 2018a). The question now is
whether coarse-grained models can reproduce these findings?
Of course, one may wonder if the aforementioned properties
need to be exactly reproduced, but we will illustrate by means
of the following arguments that even slight deviations may
have a decisive influence on the thermodynamic properties of
the solution.

In more detail, modified interactions like in coarse-grained
models under constant pressure p and temperature T result
in variations of free energies, as defined by G = H − TS
with the enthalpy H and the entropy S, and changes in the
chemical potential via µα = (∂G/∂Nα)p,T where Nα denotes
the number of molecules of species α. Due to changes in the
enthalpy, also the corresponding molecular arrangements are
affected, which often induces entropic variations as a second-
order effect. Furthermore, changes of chemical potentials from
reference chemical potential µ0

α with the universal gas constant
R are directly related to changes in thermodynamic activities
aα = exp((µα − µ0

α)/RT), vapor pressures, solubilities or
chemical reaction equilibria, as can be shown by relations from
equilibrium thermodynamics and Kirkwood-Buff (KB) theory
(Kirkwood and Buff, 1951; Ben-Naim, 2013) . In consequence,
it becomes obvious that even slight modifications of molecular
interactions may establish a non-negligible variation of relevant
thermodynamic properties as it will be discussed in more detail
in the following.

For illustrative purposes, we develop our arguments for
a binary solution under isobaric-isothermal conditions with
two components, including only solvent (index 1) and co-
solvent (index 3) species. It has to be noted that the
corresponding expressions change for different ensembles and
higher-component mixtures, such that we here focus on one of
the simplest examples (Smith, 2006). In KB theory, the derivative

of the chemical potential of the co-solvent µ3 is defined as

1

RT

(

∂µ3

∂ ln ρ3

)

T,p

=

(

∂ ln a3

∂ ln ρ3

)

T,p

=
1

1+ ρ3(G33 − G31)
, (1)

where ρ3 denotes the number density of co-solvent species
and G33 and G31 the corresponding KB integrals. A detailed
explanation of KB integrals, their relation to radial distribution
functions and their central meaning in KB theory can be found
in the literature (Kirkwood and Buff, 1951; Ben-Naim, 2013;
Smiatek, 2017; Oprzeska-Zingrebe and Smiatek, 2018a). For our
considerations, it is sufficient to know that the KB integrals
rely on radial distribution functions and represent excess
volumes, which can be transformed into excess particle numbers
Nxs

αβ = ρβGαβ for arbitrarily chosen components β around
species α. With regard to this definition, Equation (1) can also
be written as

(

∂ ln a3

∂ ln ρ3

)

T,p

=
1

1+
(

Nxs
33 − (ρ3/ρ1)N

xs
31

) (2)

with the excess number of solvent Nxs
31 and co-solvent molecules

Nxs
33 in combination with the corresponding number densities

ρ1 and ρ3. In terms of implicit solvent approaches with a
continuum dielectric background, it follows that Nxs

31 = 0
by definition, which implies that Equation (2) approaches the
outcomes of experiments and atomistic models only under nearly
ideal conditions with ρ3 → 0 at infinite dilution. Further
deviations can be observed for large and spherical coarse-grained
solvent beads such that the resulting excess volumes are often
not correctly reproduced (Vögele et al., 2015a), which implies
a significant influence on bulk thermodynamic properties like
solubilities or isothermal compressibilities (Pierce et al., 2008;
Smiatek et al., 2018).

Noteworthy, also the transfer free energies in ternary mixtures
between the co-solvent “3” and the solute “2” as defined by G† =

Nxs
23−(ρ3/ρ1)N

xs
21 rely on accurate values for the number densities

and the excess numbers of molecules (Smiatek, 2017; Oprzeska-
Zingrebe and Smiatek, 2018b) Otherwise, the thermodynamic
affinity between the considered species is crucially affected. In
order to highlight some further inconsistencies, it can be shown
that also the chemical equilibrium between distinct chemical
states in coarse-grained models differs from experimental
values and atomistic approaches. In contrast to the chemical
equilibrium constant K0 in presence of a neat solute-solvent
mixture, the modified chemical equilibrium constant K∗ for
denatured or native protein or DNA states (Oprzeska-Zingrebe
and Smiatek, 2018a,b) or for associated and dissociated ion pairs
(Krishnamoorthy et al., 2018) in presence of low co-solvent
concentrations reads (Oprzeska-Zingrebe et al., 2019)

K∗ = K0 exp(1Nxs
23) (3)

with1Nxs
23 = Nxs

23(d)−Nxs
23(n) where d denotes the denatured and

n the native state (Oprzeska-Zingrebe et al., 2019).With regard to
the previous equation, a different value of1Nxs

23 as obtained from
the coarse-grained simulations when compared to the atomistic
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model or experimental values (1Nxs
23,exp) modifies the chemical

equilibrium constant K∗ 6= K∗
exp and also the free energy

difference in accordance with 1G∗ = −RT lnK∗ 6= 1G∗
exp.

In consequence, incorrect sizes and geometries as well as
simplified interactions or inaccurately parameterized coarse-
grained interaction sites may induce significant deviations and
spurious artifacts. A recent article revealed that specifically the
number of interaction sites is of crucial importance (Dunn and
Noid, 2015). Noteworthy, most deviations are only relevant for
small molecular species like organic solvent molecules or ions,
whereas significant improvements of coarse-grained models for
polymers were recently reported (McCarty et al., 2014; Dunn
and Noid, 2015; Vögele et al., 2015a,b; Guenza et al., 2018;
Michalowsky et al., 2018).

In terms of these challenges, why should one use coarse-
grained models at all? To answer this question, one should keep
in mind that everything should be made as simple as possible,
but not simpler. As already discussed, deviations between
atomistic and coarse-grained models are mainly relevant for
small molecular or ionic species where coarse-graining means a
significant change of size and geometry.With regard to this point,
it was recently shown that improvements in the parameterization
strategy, the functional form of the interaction potentials as well
as the consideration of polarizabilities in coarse-grained models
increase the validity of the results (Noid, 2013; Rudzinski and
Noid, 2014; Dunn and Noid, 2015; Michalowsky et al., 2017,

2018; Zeman et al., 2017; Guenza et al., 2018; Uhlig et al.,
2018). With regard to this point, variations in thermodynamic

properties become even visible for united- and all-atom models
which highlights the importance of accurately parameterized
molecular structures and interaction sites (Markthaler et al.,
2017). Nevertheless, if the key features of interest can be
reproduced through reduced models, nothing stands in the way
of using these approaches. Otherwise, one must always be aware
that uncontrollable artifacts may occur. In consequence, one may
always keep the limits of the individual models in mind, such that
the applicability of the approaches for certain research questions
should be carefully reviewed.
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