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Highlights

• Developed a data preprocessing strategy to cope with missing values and mask
effects in data analysis from high variation of abundant metabolites.

• A new method- ‘x-VAST’ was developed to amend the measurement deviation
enlargement.

• Applying the above strategy, several low abundant masked differential metabolites
were rescued.

Metabolomics is a booming research field. Its success highly relies on the discovery
of differential metabolites by comparing different data sets (for example, patients vs.
controls). One of the challenges is that differences of the low abundant metabolites
between groups are often masked by the high variation of abundant metabolites. In order
to solve this challenge, a novel data preprocessing strategy consisting of three steps was
proposed in this study. In step 1, a ‘modified 80%’ rule was used to reduce effect of
missing values; in step 2, unit-variance and Pareto scaling methods were used to reduce
the mask effect from the abundant metabolites. In step 3, in order to fix the adverse
effect of scaling, stability information of the variables deduced from intensity information
and the class information, was used to assign suitable weights to the variables. When
applying to an LC/MS based metabolomics dataset from chronic hepatitis B patients
study and two simulated datasets, the mask effect was found to be partially eliminated
and several new low abundant differential metabolites were rescued.
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INTRODUCTION
Metabolomics has been successfully applied in many fields includ-
ing clinical research (Brindle et al., 2002; Yang et al., 2004, 2005;
Abate-Shen and Shen, 2009; Sreekumar et al., 2009), drug dis-
covery (Kell and Goodacre, 2014), toxicology (Keun, 2006; van
Ravenzwaay et al., 2014), and phytochemistry (Fiehn, 2002; Mari
et al., 2013). With the quantitative measure of the dynamic
metabolic response of living systems to pathophysiological stimuli
or genetic modification (Nicholson et al., 2002), the disease pro-
cess and mechanism could be investigated in a synthesis induction
way (Kell, 2004). Among the analytical technologies used in
metabolomics, NMR (Pelczer, 2005; Wang et al., 2005; Pinto et al.,
2014; Powers, 2014; Wagner et al., 2014; Worley and Powers,
2014), chromatography and their hyphenated techniques (Keun
et al., 2003; Bijlsma et al., 2006; Craig et al., 2006; Dai et al., 2014;
Peterson et al., 2014; Wachsmuth et al., 2014; Zhao et al., 2014)
were the most popular.

In general, after samples are analyzed using various instru-
ments, the data collected need be pre-processed including data
alignment (Koh et al., 2010), normalization (Sysi-Aho et al., 2007)

or internal standard correction, missing value correction, scaling
and transformation (van den Berg et al., 2006; Enot et al., 2008;
Veselkov et al., 2011; Want and Masson, 2011; Hrydziuszko and
Viant, 2012; Kohl et al., 2012) before using various chemomet-
rics methods (Trygg et al., 2007). A general strategy of data (pre-)
processing and validation for human metabolomics studies was
given by Bijlsma et al. (2006). However, they didn’t describe how
the data preprocessing method affects the results and what data
preprocessing methods are to be selected for a given study.

Craig et al. (2006) investigated the scaling and normalization
effects in details, two traditional scaling methods [mean center-
ing and unit variance (Uv)] were compared using NMR data
sets. It was concluded that mean centering (Ctr) could result
in a parsimonious model, and Uv favored systematic changes
with small variance while it confounds the potential useful infor-
mation embedded in peak height and peak multiplicities. In
another word, Uv may diminish the mask effect of the abun-
dant metabolites, which is a common problem in proteomics and
metabolomics fields. Unfortunately, at the same time, the devi-
ations from measurements are significantly magnified since the
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measurement deviations are often higher at low concentrations,
which will confound the results.

To eliminate the adverse effects of Uv mentioned above, several
methods were developed. Keun et al. (2003) proposed a strategy
for incorporating prior information into the scaling procedure
called variable stability (VAST) scaling, in which each variable
is assigned a weight according to its stability. Another method
is orthogonal signal correction (OSC) (Wold et al., 1998). The
OSC can extract the components with the maximum variance
orthogonal to Y. This orthogonal model effectively filters obscur-
ing variation in the data set. However, how many components
should be retained appropriately becomes another challenge in
the OSC procedure. Van den Berg et al. compared several different
centering, scaling and transformations in a GC/MS data set and
concluded that “the choice for a pretreatment method depends
on the biological question to be answered” (van den Berg et al.,
2006).

In the current study, we have developed a novel data prepro-
cessing strategy to cope with the missing values and eliminate
mask effects in data analysis from high variation of abundant
metabolites. It consists of the following three steps: missing value
correction, scaling and x-VAST. In the missing value correction
step, a ‘modified 80% rule’ was proposed to cope with the missing
value. In the scaling method, Pareto (User’s Guide to SIMCA-P,
2005) was chosen to reduce the effect of the metabolite mag-
nitude (i.e., eliminate the mask effect) without amplifying the
measurement deviation too much. At last, a new method called
as ‘x-VAST’ was developed to amend the measurement deviation
enlargement after the VAST information and class information
were used. The contour plots, which give an intuitionist view,
were employed to illustrate the effects of each step. In order to
test the developed data preprocessing strategy, the dataset from
a metabolomics study of chronic hepatitis B patients was tested.
Several masked differential metabolites were rescued. In addition,
two simulated datasets were used to test if the proposed strat-
egy could be generalized. The result indicated that the developed
preprocessing strategy could improve the analysis of multivari-
ate dataset of metabolomics by removing missing values and
reducing mask effect.

MATERIALS AND METHODS
PLASMA SAMPLES AND HIGH PERFORMANCE LIQUID
CHROMATOGRAPHY-MASS SPECTROMETRY (HPLC-MS) ANALYSIS
Thirty seven chronic hepatitis B patients hospitalized for acute
deterioration in liver function and 50 healthy individuals were
enrolled in this study. The detailed sample information and
HPLC-MS analysis procedure were described in another paper
(Yang et al., 2006). After peak alignment, 7347 ions were gener-
ated in the final reference peak list. The data set was an 87 × 7347
matrix. After preprocessed by missing value correction, scaling
and x-VAST, partial least squares discriminant analysis (PLS-DA)
was used to discovery the differential metabolites.

MISSING VALUE CORRECTION
The data sets from the metabolic profiling analysis usually con-
tain many zeros. They are considered as the missing value, which
are artificial cutoffs from the peak alignment. The missing values

could affect the correlation between variables, which would dete-
riorate the performance of multivariate analysis.

In order to reduce the number of zeros present, Smilde et al.
applied a procedure referred as the ‘80% rule’ (Smilde et al.,
2005). A variable will be kept if it has a non-zero value for at least
80% of all samples. One shortcoming is that some perfect differ-
ential metabolites might be lost according to the ‘80% rule’ when
their concentrations were below the detect limitation in one spe-
cific class. In this work, the class information was utilized as the
supervisor, the ‘80% rule’ was modified to a ‘variable is kept if the
variable has a non-zero value for at least 80% in the samples of
any one class’. In this paper, this new rule was called as ‘modified
80% rule’.

SCALING METHODS
In the scaling section, Ctr, Uv, Pareto and logarithm (ln) trans-
formation were compared in diminishing the mask effects and
finding the differential metabolites more efficiently. To avoid the
confusion, we adopt the following definitions as in the SIMCA-P
manual (User’s Guide to SIMCA-P, 2005).

Mean centering (Ctr):

x′
ik = xik − xk (1)

Where x′
ik is the value after scaling, xik is the original value; xk is

the mean of the variable k.
Uv:

x′
ik = xik

sk
(2)

Where sk is the standard deviation of the variable k.
Pareto:

x′
ik = xik√

sk
(3)

ln transformation:

x′
ik = ln xik (4)

Here, we propose a new supervised scaling method based on
VAST method, which is referred as ‘x-VAST’. And VAST, super-
vised VAST methods (Keun et al., 2003) are employed for com-
parison.

x-VAST:

x′
ik = max

(
x1k

s1k
,

x2k

s2k
,

x3k

s3k
. . .

xjk

sjk
. . .

xnk

snk

)
• xik (5)

Here, xjk and sjk are the mean and standard deviation of the vari-
able k for the jth class, respectively, and n is the total number of
classes.

VAST:

x′
ik = xk

sk
• xik (6)
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supervised VAST (s-VAST):

x′
ik =

⎛
⎝ 1

n

n∑
j=1

xjk

sjk

⎞
⎠ • xik (7)

The preprocessing methods mentioned above were all realized in
self-developed scripts written in MATLAB software (Mathworks,
Natick, MA).

CONTOUR PLOT AND PLS-DA
The contour plot was employed to visualize the data. In the plot,
x-coordinate is corresponding to the variables, y-coordinate is
corresponding to the samples. The plot is straightforward to show
difference among the effect from different data preprocessing
methods.

To compare the final classification results and find the dif-
ferential metabolites, PLS-DA in SIMCA-P software (Umetrics,
Sweden) was employed.

VALIDATION WITH SIMULATED DATASET
In order to test if the proposed method could be generic, two
datasets [one includes 140 variables, another includes 1400 vari-
ables; both includes two class of samples (n = 20 in each class)]
were generated to validate it.

The smaller dataset (variable number is 140) including 50
high abundant random variables (HNM variables), 50 low abun-
dant random variables (LNM variables), 10 high abundant and
big change variables with 10 times difference on average (HGM
variables), 10 high abundant and medium change variables with
three times difference on average (HMM variables), 10 low abun-
dant and big change variables with 10 times difference on average
(LGM variables), 10 low abundant and medium change vari-
ables with three times difference on average (LMM variables).
The bigger dataset includes similar setup but has 10 times more
variables. The detail codes for generating the simulated datasets
are included in the Supplementary File for information. In brief,
random normal distribution function was used to generate each
group variables with different abundance and variations as shown
in the code.

RESULTS AND DISCUSSION
MISSING VALUE CORRECTION
As mentioned above, the ‘80% rule’ is often followed when miss-
ing values are present in the data set. Figures 1A,B shows the
contour plots of the raw data and the data corrected accord-
ing to the ‘80% rule’. After corrected, the variable number was
reduced dramatically, most of them were deleted and only 169
were reserved. As illuminated in the following section, in this
step some useful differential metabolites were also deleted. As an
example, Figure 2 shows the non-zero ratio of the first 15 vari-
ables of the raw data in each class sample (control and hepatitis).
From the figure, the variables can be divided into three types:

(1). Type 1, which values in most of the samples in each class is
zero such as var_1, var_2, and var_3, it indicates that these
variables have a very low concentration, and present method
can’t correctly measure them and should be deleted.

(2). Type 2, which values in most of the samples are zero
in one class or several classes, but in the samples of
the remaining at least one class most of them are non-
zero, such as var_5. These variables are perfect biomark-
ers which can accurately differentiate different groups. The
variables of this type should be reserved instead of being
deleted.

FIGURE 2 | Non-zero ratios in the control and hepatitis groups of the

first 15 ions.

FIGURE 1 | Two dimensional contour plots based on (A) the raw data,

(B) the data excluding missing values according to 80% criteria, and (C)

modified 80% criteria. The horizontal coordinate is corresponding to the
variable No. The longitudinal coordinate is corresponding to the sample No.

And the color is corresponding to the responses of the variables. To be
convenient, the variables in original data were named as var +“_”+ number
like var_1, the variables in Panel C (i.e., the raw data were corrected by
modified 80% rule) were expressed as VAR + “_”+number, such as VAR_1.

www.frontiersin.org February 2015 | Volume 2 | Article 4 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Metabolomics/archive


Yang et al. Strategy to reduce mask effect

(3). Type 3, which values in most of the samples in each class are
non-zero such as var_8, var_11, var_12, and var_14, it indi-
cates that the value of this type variation could be measured
and should be reserved.

In current study, a ‘modified 80% rule’, is suggested: the vari-
ables which non-zero values in any class of the samples are above
80% should be reserved. According to this rule, the type 2 vari-
ables defined above will be rescued. Figure 1C gives the contour
plot processed according to the ‘modified 80% rule’. Compared
to 80% rule, many type 2 variables were rescued (170 out of 339
are new). As an example, it can be found that VAR_165 is present
according to the ‘modified 80% rule’ but absent according to the
‘80% rule’ (see arrow position in Figure 1C). The significant dif-
ference is found when t-test is applied to this variable. It could
be concluded that the ‘modified 80% rule’ saves more differential
metabolites (around two times more).

MASK EFFECTS AND VARIOUS SCALING METHODS
When the average responses of the 7347 ions were compared, the
dynamic range (minimum to maximum ratio) of these ions is
3.22 × 10−5. It resulted in the fact that the variable with high

responses would be endowed with a bigger weight and their
variations have dominant impacts on the result if no scaling
methods were employed. The minor peaks will be masked by the
major ones or noise although their biology meaning may be of
importance.

The mask effect could be eliminated, at least partly reduced if
the variables were divided by their deviations, i.e., scaling accord-
ing to Uv. Each new variable would have identical weight for
the identical variance i.e., Uv. The height information was dis-
carded while only the deviation information was reserved. It
seems that Uv is an ideal scaling method to eliminate the mask
effects and perfectly suit for metabolomics application to dif-
ferential metabolite discovery if all variables could be accurately
measured and the deviation from measurement could be ignored.
Unfortunately, it is not always true especially when the metabo-
lite responses are near the detection limit. The measurement
deviation would account for the major part in the deviation infor-
mation when the peaks were just above the detection limit. In
other words, Uv scaling method magnifies the measurement vari-
ations for the low abundance metabolites. In this situation, the
peak response information still gives some information about
how much probability the deviation from measurement should

FIGURE 3 | Comparison of the different preprocessing methods. (A) preprocessed with Pareto; (B) preprocessed with ln transformation. X-axis is variable
number and y-axis is sample number.

FIGURE 4 | Comparison of the different VAST scaling methods. (A) VAST; (B) s-VAST; (C) x-VAST. Red arrow indicates the specially enhanced variables
processed after x-VAST’ method. X-axis is variable number and y-axis is sample number.
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be considered. In another word, the peak information should be
reserved to some extent.

Pareto and ln transformation could satisfy the requirement.
Figure 3 shows the contour plots scaled by the Pareto or ln
transformation. Compared with the raw data without scaling
(Figure 1C), it could be found that the response information was
reserved too little to discover the differential metabolites after
the ln transformation (Figure 3B), the Pareto scaling seems a
good compromise between diminishing mask effects and avoid-
ing magnifying the measurement deviation of low concentration
metabolites (Figure 3A).

x-VAST
To solve the dilemma mentioned above, many algorithms were
developed. Keun et al. (2003) thought the VAST will improve
the analysis of any multivariate dataset where group differences
were significantly obscured by other variation. Here, x-VAST was
developed to amend the adverse effect mentioned above after scal-
ing. As comparison, the VAST and s-VAST were also employed to
utilize the VAST to adjust the variables’ weights. In general, the
variables, which variation was mainly from measurement devia-
tion or from the individual variation, have lower stability (smaller
x/s value). It could be expected that the combination of the VAST
and scaling methods mentioned above could diminish the mask
effects with fewer side effect.

Comparison of the various VAST scaling methods is shown
in Figure 4. It could be found that (i) the noise was eliminated
and the stability of variables was enhanced after scaled by all of
the VAST methods; (ii) the variables (e.g., VAR_60, VAR_106,
the red arrows) which have distinct different values in the two
classes, got a larger weights after scaled by x-VAST, while the dif-
ference of these variables was not found by the VAST and s-VAST.
Confirmed by the following PLS-DA result, these two variables
had prominent contribution to the classification.

It could be concluded that the variables, which have stable
values in one class while unstable values near detection limit in
another class, would be assigned to a smaller weights in VAST and
s-VAST. In fact, these variables are the most useful biomarkers,
they should be assigned to the maximum weights, which was the
case in x-VAST.

PLS-DA ANALYSES
PLS-DA was employed as another way to assess the data prepro-
cessing strategy mentioned above. The data scaled by 11 scaling
methods were fed to PLS-DA, respectively. The results were given
in the Supplementary Materials (Table S1, Figure S1). Here, only
the score and loading plots scaled by Pareto-Ctr and Pareto-x-
VAST-Ctr are given in Figure 5. After scaled by x-VAST, A group
of variables were recognized as highly important metabolites (e.g.,
VAR_267, VAR_248, VAR_297, VAR_36, VAR_40) became more

FIGURE 5 | PLS-DA results scaled by Pareto-Ctr and Pareto-x-VAST-Ctr. (A) Pareto-Ctr; (B) Pareto-x-Vast-Ctr. Left, score figure. � hepatitis, � control. Right,
loading figure.
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Table 1 | Using the developed data preprocessing strategy, several differential metabolites were rediscovered.

Before preprocessed After preprocessed

var__ID retention m/z Identification var_ID retention m/z Identification

time (min) result time (min) result

var_5229 17.22 524.5 LPC C18:0 var_4177 15.33 496.5 LPC C16:0

var_4177 15.33 496.5 LPC C16:0 var_3850 14.75 520.5 LPC C18:2

var_4167 15.25 478.2 LPC C16:0 Fragment var_5229 17.22 524.5 LPC C18:0

var_5226 17.21 506.6 LPC C18:0 Fragment var_3849 14.75 502.5 LPC C18:2 fragment

var_3850 14.75 520.5 LPC C18:2 var_4167 15.25 478.2 LPC C16:0 fragment

var_686 a 7.78 235.2 UNa var_4417 15.84 504.4 LPC C18:1 fragment

var_644 a 7.55 235.2 UNa var_6169 19.81 282.4

var_4422 15.85 522.4 LPC C18:1 var_5226 17.21 506.6 LPC C18:0 fragment

var_3849 14.75 502.5 LPC C18:2 Fragment var_4422 15.85 522.4 LPC C18:1

var_2266 12.34 414.2 GCDCA or GDCA Fragment var_6014 19.49 256.4 UN

var_6014 19.49 256.4 UNa var_4022 15.05 478.4 LPC C16:0 fragment

var_6169 19.81 282.4 UNa var_369 b 5.87 188.2 Trp fragment

var_6461 21.06 284.3 UNa var_3705 b 14.52 520.3 LPC C18:2

var_4417 15.84 504.4 LPC C18:1 Fragment var_4021 15.05 184.2 Phosphatidylcholine moiety of
LPC C16:0

var_4022 15.05 478.4 Fragment of LPC C16:0 var_2266 12.34 414.2 GCDCA or GDCA Fragment

var_4024 15.05 496.1 LPC C16:0 var_4024 15.05 496.1 LPC C16:0

var_4021 15.05 184.2 Phosphatidylcholine moiety
of LPC C16:0

var_359 b 5.86 146.1 Trp fragment

var_5104 16.89 524.4 LPC C18:0 var_5104 16.89 524.4 LPC C18:0

va _4178 a 15.34 479.3 Isotope of 478.4 var_3866 b 14.8 544.3 LPC C18:3

var_741 a 7.99 235.3 UNa var_3703 b 14.52 502.3 LPC C18:2 fragment

The following table compared the differential metabolites defined by PLS-DA before and after using developed preprocessing strategy.

The variables in bold font highlighted the different markers before and after the preprocessing strategy used.
aDeleted differential metabolites after preprocessed.
bNewly found differential metabolites after preprocessed.

Table 2 | Rank of markers by PLS-DA using small simulated dataset

(140 variables) preprocessed by none, VAST and x-VAST.

Variable groups Rank 1–10 Rank 11–20 Rank 21–30 Rank 31–40

HG004D (var101-110) 7 2 1 0

HMM (var111-120) 3 6 1 0

LGM (var121-130) 0 1 7 2

LMM (var131-140) 0 1 1 4

PREPROCESSED BY VAST

HGM (var101-110) 7 2 1 0

HMM (var111-120) 3 5 0 0

LGM (var121-130) 0 1 1 4

LMM (var131-140) 0 0 0 4

PREPROCESSED BY x-VAST

HGM (var101-110) 7 2 1 0

HMM (var111-120) 3 6 1 0

LGM (var121-130) 0 2 6 2

LMM (var131-140) 0 0 1 2

important, while other variables (e.g., VAR_333) became less
important.

The comparison of new differential metabolites and old ones
(the first 20 differential metabolites) was given in Table 1, five new

differential metabolites (var_359, var_369, var_3703, var_3705,
var_3866) were identified instead of five old differential metabo-
lites (var_644, var_686, var_741, var_4178, var_6461). In these
deleted old differential metabolites, four of them (var_644,
var_686, var_741, var_4178) were found having too many miss-
ing values. The last one, var_6461, which is corresponding to
VAR_333 in Figure 1C, failed in the t-test.

In the newly found differential metabolites list, two of them
(var_369 and var_359) were tryptophan fragments according
to authentic standard sample run under the same conditions.
Tryptophan is an essential amino acid, a constituent of pro-
teins. In addition, tryptophan is also a substrate for two impor-
tant biosynthetic pathways: tryptophan 5-hydroxylase pathway to
generate neurotransmitter 5-hydroxytryptamine (serotonin); and
the formation of kynurenine derivatives and nicotinamide ade-
nine dinucleotides. In addition, it was reported that tryptophan
catabolites are prognostic biomarkers for the severity of chronic
liver diseases in potential transplant recipients (Lahdou et al.,
2011).

The other three (var_3703, var_3705, var_3866) were
identified as lysophosphatidylcholines (LPCs). LPCs regu-
late many biological processes including cell proliferation,
inflammation and tumor cell invasiveness. LPCs promotes
inflammatory by expressing endothelial cell adhesion molecules
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and growth factors, monocyte chemotaxis, and activating
macrophage.

VALIDATION OF x-VAST WITH SIMULATED DATASETS
In order to validate the proposed method, two simulated datasets
were generated as method section described. The datasets were
fed to SIMCA-P for the followed multivariate data analyses. The
VIP (Yang et al., 2006) order was chose to reflect how these
variables ranked as potential markers. Tables 2, 3 showed the
comparison of markers identified by PLS-DA using the original
datasets, the dataset with VAST and x-VAST treated.

The concept behind VAST and x-VAST is to increase the rank
for stable (high abundant, low variation) variables and decrease
the rank for unstable (low abundant, high variation) variables.

Table 3 | Rank of markers by PLS-DA using big simulated dataset

(1400 variables) preprocessed by none, VAST and x-VAST.

Variable Rank Rank Rank Rank

groups 1–100 101–200 201–300 301–400

HGM (var1001-1100) 67 30 1 2

HMM (var1101-1200) 22 33 33 7

LGM (var1201-1300) 11 37 39 9

LMM (var1301-1400) 0 0 27 54

PREPROCESSED BY VAST

HGM (var1001-1100) 61 28 1 2

HMM (var1101-1200) 18 33 33 7

LGM (var1201-1300) 9 38 38 8

LMM (var1301-1400) 0 0 25 48

PREPROCESSED BY x-VAST

HGM (var1001-1100) 62 33 2 2

HMM (var1101-1200) 18 33 34 10

LGM (var1201-1300) 7 33 44 9

LMM (var1301-1400) 0 0 18 53

So, the rank for HMM variables, which have high abundance and
lower relative variation, will move toward the beginning; the rank
for LMM variables, which have low abundance and higher rel-
ative variation, will move toward the end of VIP lists. In both
tables, the LMM variables did move toward to the lower rank
when preprocessed by VAST and x-VAST.

Comparing VAST and x-VAST, there are more markers were
kept by x-VAST. For example, in Table 2, there is more markers
identified in HMM groups. Figure 6 shows an example of the new
identified biomarker (var 114). It clearly shows that, the responses
of the var 114 are low abundant in one class. The preprocess
of VAST did not identify this variable as biomarker because of
the bigger variation from two classes. On the contrary, the pre-
process of x-VAST can pick up this difference and identified this
biomarker. The scenario of Var114 is just like what we saw in the
real metabolomics dataset mentioned above.

The biggest difference between VAST and x-VAST was found
for variables in LGM group, which has low abundance and big-
ger difference between two classes. As both Tables 2, 3 shown,
VAST removed many markers because of low stability (aver-
age/variation) for these variables inspite of big difference between
two classes. On the contrary, x-VAST used the higher stability
calculation (average/variation) in one class as the weight for the
variables. Then, more variables in this group were rescued back in
biomarker list.

CONCLUSIONS
The data preprocessing is a critical step in information mining
of metabolomics studies, it directly influences the discovery of
differential biomarkers. In this work, the missing values and the
relationship between mask effect and scaling methods were stud-
ied. An optimal strategy including a ‘modified 80% rule’, Pareto
scaling and x-VAST was suggested. When a dataset from acute
deterioration in liver function of chronic hepatitis B was fed to the
suggested strategy, several new differential metabolites masked
by noise or other big peaks were rediscovered. Furthermore, two

FIGURE 6 | The response of var114 in small simulated dataset. It clearly shows that this variable is a good marker to differentiate two groups.
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simulated datasets were used to test proposed method. It was
shown that some masked marker was rescued by x-VAST. In the
future, we will test it in another separate study to assess how use-
ful this strategy is in a general metabolomics study. Although we
use HPLC-MS dataset as a test dataset, it should be noted that the
strategy could be used in other metabolomics research and other
omics’ datasets from different analytical platforms.
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