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The intestinal epithelium represents a critical interface between the host

and external environment, serving as the second largest surface area in the

human body after the lungs. This dynamic barrier is sustained by specialized

epithelial cell types and their complex interactions with the gut microbiota.

This review comprehensively examines the recent advances in understanding

the bidirectional communication between intestinal epithelial cells and the

microbiome.We briefly highlight the role of various intestinal epithelial cell types,

such as Paneth cells, goblet cells, and enteroendocrine cells, in maintaining

intestinal homeostasis and barrier function. Gut microbiota-derived metabolites,

particularly short-chain fatty acids and bile acids, influence epithelial cell function

and intestinal barrier integrity. Additionally, we highlight emerging evidence

of the sophisticated cooperation between di�erent epithelial cell types, with

special emphasis on the interaction between tuft cells and Paneth cells in

maintaining microbial balance. Understanding these complex interactions has

important implications for developing targeted therapeutic strategies for various

gastrointestinal disorders, including inflammatory bowel disease, metabolic

disorders, and colorectal cancer.
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1 Introduction

As a primary organ for communication between the body and the outside world,

the intestine has the second largest surface area after the lungs (with the lung surface

area being ∼70 square meters), making it the second largest epithelial gathering place

in the body (Helander and Fändriks, 2014; Derman et al., 2025). The intestinal lumen

is home to a rich community of symbiotic bacteria. In addition to bacteria, archaea,

fungi, viruses, and protozoa also reside in the gut (Underhill and Iliev, 2014). The

intestinal epithelium is closely associated with trillions of microorganisms. Although the

presence of these microorganisms is usually beneficial, the spread of gut microbes to

extraintestinal organs or the overgrowth of pathogenic microbes can be disastrous for

the body. On the one hand, after colonization, microbes can aid in the absorption of

nutrients and play an important role in maintaining the integrity of the intestinal epithelial

barrier and shaping the mucosal immune system; on the other hand, inappropriate

microbial colonization can also affect host health. The ability of gut microbes to influence

host health is now recognized, for example, the gut microbes colonized early in life

affect children’s growth and development (Robertson et al., 2019), and are associated
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with neonatal sepsis, neonatal necrotizing enterocolitis, childhood

eczema, asthma, and diseases such as hypertension and type 2

diabetes in adulthood. In addition, some chronic gastrointestinal

diseases, such as Crohn’s disease, are related to the continuous

immune response to gut microbes (Stappenbeck and McGovern,

2017). The intestinal epithelium, as an important part of the gut

barrier, faces the huge challenge of microbes breaking through the

single-layer epithelial cells of the gut to avoid abnormal immune

responses. Epithelial cells construct chemical and physical barriers

to isolate gut microbes from immune cells, thereby establishing

a symbiotic and mutually beneficial relationship. In this review,

we focus on the latest advances in the study of the interaction

mechanisms between intestinal epithelium and gut microbes,

understanding the close relationship between gut microbes and

intestinal epithelial cells, which may promote the progress of

disease diagnosis and treatment methods.

2 The structure and function of the
intestinal epithelial barrier

The intestinal epithelium is composed of a layer of adjacent

cells and intercellular junctions. In the small intestine, the

epithelium extends over the structures that protrude into the

lumen, forming finger-like projections (known as villi), which

increase the mucosal surface area and facilitate nutrient absorption.

The villi are primarily covered by absorptive columnar epithelial

cells, and the spaces between the villi are the Lieber-kuhn

crypts (Spence et al., 2011), which are invaginations that protect

intestinal stem cells and give rise to all intestinal epithelial

cell lineages. Mature intestinal epithelial cells are continuously

shed into the lumen and are replaced by proliferation and

differentiation of intestinal stem cells located near the base of

the crypts. Under homeostatic conditions, the entire crypt is

renewed approximately every 4–5 days (Moloney et al., 2016; van

der Flier and Clevers, 2009). The length of the villi gradually

decreases along the intestine from top to bottom, and there

are no villi in the colon, resulting in a relatively flat mucosal

surface that reduces potential damage caused by the passage

of feces through the large intestine. The colon has expanded

crypts that aid in the absorption of water and metabolic products

produced by microbes (Kiela and Ghishan, 2016). Intestinal

epithelial cells include a variety of different mature cell types,

each with important physiological functions, including nutrient

absorption (small intestine absorptive enterocytes), metabolic

regulation (intestinal endocrine cells), and immune modulation

(tuft cells) (Beumer and Clevers, 2016; Hooper, 2015; Kurashima

and Kiyono, 2017).

The integrity of the intestinal epithelial barrier function

requires not only a continuous cellular layer but also the

composition of tight junctions between epithelial cells. These

junctions serve to connect epithelial cells and regulate epithelial

polarity as well as the exchange of solutes and fluids between

cells (Furuse, 2010). At the same time, they physically impede

microbial invasion through the paracellular route, which is of great

significance for maintaining the integrity of the intestinal epithelial

barrier function. Schematic diagram of the intestinal epithelial

barrier can be found in Figure 1.

3 Characteristics of intestinal epithelial
cell subtypes

The intestinal epithelium comprises various specialized

cell types, each with distinct functions: Paneth cells secrete

antimicrobial peptides (e.g., defensins) to regulate microbial

balance, goblet cells produce mucins to forma a protective mucus

layer, tuft cells detect helminths and initiate immune response;

Microfold cells (M cells) transport antigens to the immune cells;

enteroendocrine cells secrete hormones regulating gut physiology,

and intestinal absorptive cells (enterocytes) absorb nutrients and

water, respectively. Most cell types typically found in the colon

are also present in the small intestine. However, certain cell types

are unique to the small intestine, such as Paneth cells located at

the base of the small intestinal crypts and M cells found on the

follicle-associated epithelium of Peyer’s patches. Table 1 provides

an overview of the subtypes of intestinal cells and their main

functions. As many reviews have detailed the characteristics of

intestinal epithelial cells, this section will briefly summarize their

key features and signaling pathways to better understand their

interaction with gut microbiota.

3.1 Intestinal stem cells

Intestinal stem cell were first characterized by Cheng and

Leblond (1974), identifying slender cells scattered among Paneth

cells at the crypt base. These cells showed continuous cell flow from

crypt to villi but not definitively proven as stem cells. Later studies

confirmed the presence of stem and progenitor cells through short-

lived and long-lived clones (Bjerknes and Cheng, 1999; Winton

et al., 1988). LGR5+ was identified as an active stem cell marker

at crypt base, while Bmi1 marks quiescent stem cells at the “+4”

position (Barker et al., 2007; Potten et al., 2002). Under normal

circumstances, LGR5+ cells divide rapidly for epithelial renewal

(Bloemendaal et al., 2016), while “+4” position cells activated

during stress to replace damaged intestinal cells (Montgomery et al.,

2011; Takeda et al., 2011). The crypt balances these cell types for

self-renewal and repair (Li and Clevers, 2010). Stem cells activity is

regulated bymultiple signaling pathways (Hou et al., 2017).WNT3,

mainly produced by Paneth cells, is essential (Farin et al., 2016),

with R-spondin-1 enhancing WNT signaling (Koo et al., 2012; Yan

et al., 2017). Notch and BMP signaling also contribute to their

proper self-renewal and differentiation (He et al., 2004).

3.2 Paneth cells

Paneth cells are specialized secretory cells located at the base

of small intestinal crypts, interspersed among intestinal stem cells.

They are characterized by large eosinophilic secretory granules

containing multiple antimicrobial components such as defensins

and lysozyme, which are released into the intestinal lumen to

support the mucosal barrier (Clevers and Bevins, 2013). Paneth

cells also play a key role in maintaining the intestinal stem cell

niche (Sato et al., 2011; Clevers, 2013). They achieve this by

secreting key signaling molecules such asWNT3, epidermal growth
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FIGURE 1

Schematic representation of the intestinal epithelial barrier and associated components. The image depicts the various cellular and structural

elements that make up the intestinal barrier, from the lumen to the lamina propria. Key cell types include: absorptive cell (enterocyte), goblet cell,

Paneth cell, intestinal stem cell, enteroendocrine cell, Microfold cell, and tuft cell. Created in BioRender. Liu, Y. (2025) (https://BioRender.com/

m83s629).

TABLE 1 An overview of intestinal epithelial cell subtypes and their main functions.

Type of intestinal
epithelial cell

Distribution
location

Introduction to functional features References

Intestinal stem cells Small intestinal crypt,

colon crypt

Replenishes the epithelial cell layer every 4–5 days van der Flier and Clevers, 2009; Beumer and

Clevers, 2016; Barker et al., 2007

Paneth cells Small intestine Secretes antimicrobial peptides (e.g., defensins,

lysozyme); supports the stem cell niche

Clevers and Bevins, 2013; Sato et al., 2011;

Ayabe et al., 2000

Goblet cells Small intestine, colon Secretes mucin to form a mucus barrier Birchenough et al., 2015; Pelaseyed et al.,

2014; Gustafsson and Johansson, 2022

Tuft cells Small intestine, colon Triggers type 2 immune response against parasites (e.g.,

via IL-25 secretion)

Schneider et al., 2019; Gerbe et al., 2016; von

Moltke et al., 2016

M cells Small intestine (Peyer’s

patches)

Transports antigens to immune cells to regulate

microbial composition

Knoop et al., 2009; Kanaya et al., 2012

Enteroendocrine cells Small intestine, colon Secretes hormones (e.g., GLP-1, serotonin) to regulate

microbial metabolism

Beumer et al., 2020; Yu et al., 2020

Absorptive cells Small intestine, colon Forms a physical barrier; absorbs nutrients and water;

facilitates epithelial cell shedding

Kiela and Ghishan, 2016; Yin et al., 2014

factor (EGF), and Notch ligands, which promote the proliferation

and differentiation of LGR5+ stem cell. Genetic ablation of

Paneth cells in mice leads to the loss of LGR5+ stem cells,

highlighting their essential role in supporting the stem cell niche

(Geiser et al., 2012). Abnormalities in Paneth cells are associated

with many human disease processes, including Crohn’s disease
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and graft-vs.-host disease (Eriguchi et al., 2012). WNT signaling

drives Paneth cell maturation and migration to the base of the

small intestinal crypts. In contrast, Notch signaling inhibits their

development by suppressing ATOH1, which is critical for secretory

cell differentiation (Batlle et al., 2002; Shroyer et al., 2007).

3.3 Goblet cells

Intestinal goblet cells are scattered among absorptive cells in

the intestinal epithelium. They are characterized by a narrow

cytoplasmic base and an expanded apical region filled with

mucin-containing secretory granules, giving them a goblet-like

appearance. These cells produce mucins, which combine with

water to form mucus, creating a protective and lubricating

intestinal barrier. Mucin genes are mainly divided into secreted

and membrane-bound types (Dekker et al., 2002; Birchenough

et al., 2015), with MUC2 being the most studied, forming a

protective mucus layer (van der Post et al., 2019). Goblet cells

also secrete factors like trefoil factor 3 (TFF3), which promote

epithelial repair by enhancing cell migration and survival during

injury (Taupin et al., 2000). In addition, goblet cells may contribute

to gut homeostasis by releasing other bioactive molecules, such

as antimicrobial peptides and cytokines. Their differentiation is

regulated by inhibition of WNT and Notch signaling pathways.

3.4 Tuft cells

Tuft cells are chemosensory sentinel cells in organs such

as the intestine and lungs, responding to stimuli such as

hypoxia and infection (Schneider et al., 2019). They modulate

mucosal immunity through G protein-coupled receptors (e.g., taste

receptors). Following helminth infection and allergen deposition,

the number of tuft cells and goblet cells increases rapidly. This

expansion is driven by IL-4 and IL-13 secreted by type 2 innate

lymphoid cells (ILC2s), which act through the STAT6 signaling

pathway to promote the differentiation of tuft and goblet cells.

Tuft cells further amplify this response by secreting IL-25, which

enhances ILC2 activity in a positive feedback loop, aiding in innate

immune responses against helminths (Gerbe et al., 2016; Sunaga

et al., 2022).

3.5 Intestinal M cells

M cells are specialized epithelial cells that transport luminal

antigens to underlying lymphoid tissues, inducing mucosal

immune responses. Their differentiation relies on receptor

activator of nuclear factor κB ligand (RANKL) signaling from

Peyer’s patch stromal cells. Experimental mice lacking RANKL

signaling failed to develop M cells. RANKL induce M cell

differentiation in organoids (Knoop et al., 2009) and even outside

of Peyer’s patches (Kanaya et al., 2012). SPIB, a transcription

factor downstream of RANKL signaling (van Es et al., 2019), is

essential for M cell differentiation. Its deficiency in mice results

in a complete absence of M cells, impaired T cell activation,

and compromised musical immune response during Salmonella

infection (Kanaya et al., 2012). Enteric neurons secreting calcitonin

gene-related peptide (CGRP) modulate M cell differentiation by

sensing pathogens and releasing CGRP. Loss of CGRP gene

eliminates the dynamic control of M cell differentiation during

Salmonella infection (Lai et al., 2020).

3.6 Enteroendocrine cells

Enteroendocrine cells are very scarce, accounting for <1% of

the total number of intestinal epithelial cells. These basal granule

cells contain numerous secretory granules and exhibit neuronal-

like traits, such as the ability to produce neurotransmitters and

synapses-like structure (Beumer et al., 2020). The progenitors

of enteroendocrine cells express neurogenin 3 (NEUROG3),

which is inhibited by the Notch target HES1 (Beumer et al.,

2020). NEUROG3 knockout eliminates all enteroendocrine cell

subtypes in both the small and large intestine, while its

overexpression increases their numbers (Li et al., 2021). The

zinc finger transcription repressor GFI1 regulates secretory

lineages fate, with its absence converting goblet and Paneth

cells into enteroendocrine cells (Kolev and Kaestner, 2023). The

differentiation of enteroendocrine cells is independent of the

WNT signaling pathway, as β-catenin deletion in NEUROG3+

progenitors does not affect their development (Kolev and Kaestner,

2023; Kretzschmar and Clevers, 2017). Their differentiation

requires reduced activity of the Notch and WNT pathways,

a characteristic that distinguishes them from Paneth cells and

absorptive cells.

3.7 Intestinal absorptive cells

Intestinal absorptive cells (enterocytes) are the most abundant

cell type in the intestinal epithelium, responsible for absorbing

ingested molecules. Notch signaling does not directly promote

their differentiation but indirectly maintains their proportion

by suppressing secretory lineage differentiation. When Notch

signaling is inhibited in ATOH1-deficient crypts, absorptive cells

develop normally and are even more abundant, likely due to

reduction in secretory cell differentiation, which shifts progenitor

cell fate toward the absorptive lineage (Kazanjian et al., 2010; Kim

and Shivdasani, 2011). Their differentiation is further determined

by the partial inhibition of WNT signaling, as demonstrated by the

increased number of absorptive cells observed in organoid cultures

under WNT pathway inhibition (Yin et al., 2014). Transcription

factors hepatocyte nuclear factors HNF4A and HNF4G play a key

role in the differentiation of absorptive cells, as knockout of HNF4G

or both HNF4A and HNF4G significantly reduces absorptive cell

numbers in organoids and mice (Lindeboom et al., 2018).

4 Influences of gut microbiota to
intestinal epithelial cells

Gut microbiota primarily signal to intestinal epithelial cells

through metabolic products, bacterial components, and intrinsic

bacterial features. The main bacterial metabolic products include
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FIGURE 2

Schematic diagram of regulatory signaling pathways from intestinal microecology to intestinal epithelial cells. A. Short-chain fatty acids (SCFAs),

including acetate, butyrate, and propionate, act through G-protein-coupled receptors (GPRs) such as GPR43 and GPR81 to enhance claudin-1

expression and stem cell proliferation, thereby maintaining epithelial barrier integrity. They also stimulate goblet cells to increase mucus production

and Paneth cells to secrete α-defensins. B. Bile acids, converted from primary to secondary forms by gut microbes, regulate epithelial tight junction

proteins (claudin-1 and occludin) via farnesoid X receptor (FXR) and TGR5 signaling. C. Lactate, activates GPR81 to support stem cell proliferation. D.

Tryptophan metabolites, through the indole pathway—a hallmark microbial-mediated route in the gut—enhance tight junctions and reinforce

epithelial barriers via AHR signaling. Additionally, succinate stimulates tuft cells to secrete IL-25, which activates type 2 innate lymphoid cells (ILC2) in

the lamina propria, promoting the secretion of IL-5 and IL-13. Goblet cells are regulated by microbial metabolites to upregulate mucus production

and MUC gene expression, strengthening the mucus barrier. Dendritic cells in the lamina propria sense microbial signals via GPR43 and produce

anti-inflammatory cytokines (e.g., IL-10, TGF-β), further supporting epithelial homeostasis. This integrated network highlights the complex interplay

between gut microbiota metabolites and distinct epithelial cell types, including goblet cells, Paneth cells, tuft cells, enteroendocrine cells, and

enterocytes, in maintaining intestinal homeostasis. Created in BioRender. Liu, Y. (2025) (https://BioRender.com/f74q585).

short-chain fatty acids (SCFAs), lactate, bile acids (BAs), and

tryptophan; bacterial components include lipopolysaccharides and

flagellin, among others; intrinsic bacterial features involve bacterial

adhesion, which have also been proven to play a significant

role in maintaining the integrity of the intestinal epithelium

(Kayama et al., 2020). Figure 2 summarized the regulatory signaling

pathways from gut microbiota to intestinal epithelial cells.

4.1 Short-chain fatty acids and intestinal
epithelial cells

In the gut, SCFAs are produced throughmicrobial fermentation

of dietary fiber, mainly as acetate, propionate, butyrate, and small

amounts of valerate, caproate, and isovalerate (Koh et al., 2016).

SCFAs, especially butyrate, serve not only as an energy source for

the host but also as regulators of the physiological functions of

intestinal epithelial and immune cells (Marchix et al., 2018). They

also play an important role in maintaining the integrity of the

epithelial layer and tissue repair after intestinal mucosal damage.

Butyrate may enhance epithelial barrier function by upregulating

Claudin-1, activating HIF-1 pathway, or promoting tight junction

protein assembly by activating AMPK signaling pathways (Suzuki,

2020; Kelly et al., 2015; Hodgkinson et al., 2023). It also regulates

histone acetylation by activating low concentrations of histone

acetyltransferase (HAT) or inhibiting high concentrations of

histone deacetylase (HDAC) classes I and II (Hodgkinson et al.,

2023; Abdalkareem Jasim et al., 2022). Research has demonstrated

that the effects of butyrate on cell proliferation are dose-dependent

and vary across different cell types. At concentrations below 2mM,

butyrate promoted colon cell proliferation, whereas higher doses
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in vitro suppressed the growth of human colon epithelial cells

(Hodgkinson et al., 2023). Oral supplementation with butyrate

enhanced the villus height to crypt depth ratio in juvenile

animal models, such as piglets and calves (Wang et al., 2018).

Intestinal epithelial cells, especially enteroendocrine cells, express G

protein-coupled receptors (GPCRs), which are crucial for immune

activation and signaling molecule metabolism. SCFAs activated

at least three different G protein-coupled receptors: GPR41 (free

fatty acid receptor 3; FFAR3), GPR43 (free fatty acid receptor

2; FFAR2) and GPR109A (hydroxy-carboxylic acid receptor 2;

HCAR2) (Parada Venegas et al., 2019). For example, GPR41/43

activation dependent on SCFAs upregulates the production of

colonic epithelial cytokines and chemokines, which helps to clear

pathogens (Abdalkareem Jasim et al., 2022; Hodgkinson et al., 2023;

Kimura et al., 2013). Among SCFAs, butyrate primarily activates the

GPR109A receptor on intestinal epithelial cells or dendritic cells in

the intestinal lamina propria, while acetate and propionate exert

their effects by activating the GPR43/GPR41 receptors. Table 2

briefly summarizes the main characteristics of acetate, butyrate,

and propionate.

Additionally, SCFAs enhance the production and release of

mucus by goblet cells (Finnie et al., 1995). They specifically

upregulate the expression of MUC genes in intestinal goblet cells

(Fekete and Buret, 2023) and trigger Paneth cells in the small

intestine to secrete α-defensin (Takakuwa et al., 2019), thereby

strengthening the intestinal chemical barrier. Intestinal epithelial

cells can also recognize certain byproducts such as SCFA or

succinate produced by pathogens. For instance, intestinal tuft cells

are chemosensors that can detect succinate produced by invading

helminths. Upon activation, tuft cells trigger a type 2 innate

immune pathway by producing IL-25 to clear the worms (von

Moltke et al., 2016; Nadjsombati et al., 2018).

A small number of clinical trials and observational studies have

found that butyrate plays a positive role in ulcerative colitis (UC)

and inflammatory bowel disease (IBD). Through enema or oral

administration of microencapsulated sodium butyrate, the clinical

symptoms of UC or IBD patients can be improved, which may be

closely related to its ability to enhance intestinal barrier function

(Recharla et al., 2023; Facchin et al., 2020; Vernero et al., 2020;

Scheppach et al., 1992). However, some studies have shown that

butyrate enemas do not improve UC symptoms (Hamer et al.,

2010). Further in-depth studies with larger sample sizes are needed.

4.2 Lactate and intestinal epithelial cells

Lactate is an organic acid produced by microbial fermentation

of dietary fiber and other carbohydrates, such as lactose and

glucose. Bifidobacteria, Lactobacilli, and Enterococci in the neonatal

gut microbiota are the main producer of lactate, with some

Staphylococci strains also capable of lactate production (Jost

et al., 2012). Organoid models have confirmed that newly

isolated Paneth cells from the mouse small intestine support

intestinal stem cell function by providing lactic acid to enhance

mitochondrial oxidative phosphorylation in Lgr5+ base columnar

cells (Rodríguez-Colman et al., 2017). Recent studies have shown

that lactate has unique biological activities, such as participating

in the regulation of immune responses and tissue regeneration

in the intestinal mucosa (Garrote et al., 2015). Lactate produced

by microbial fermentation can reduce activation dependent

on Toll like receptors (TLRs) and IL-1β pathways, thereby

decreasing inflammatory responses in intestinal epithelial and bone

marrow cells (Iraporda et al., 2015). In the Lgr5-GFP mouse

model, oral administration of lactate-producing human probiotics

(Bifidobacterium and Lactobacillus) significantly increased crypt

height, as well as the number of Lgr5 intestinal stem cells, Paneth

cells, and goblet cells in the small intestine (Lee et al., 2018).

Further studies revealed that lactate signals through the G protein-

coupled receptor GPR81 to induce intestinal stem cell proliferation.

Additionally, pre-feeding with probiotics or lactate effectively

protected mice from intestinal damage caused by radiotherapy and

chemotherapy (Lee et al., 2018).

Clinical applications have also been explored, with probiotics

containing Lactobacillus acidophilus and Bifidobacterium bifidum

proving effective in alleviating diarrhea in cancer patients

undergoing radiotherapy (Chitapanarux et al., 2010). These

findings suggest that the use of lactobacilli symbionts or lactate

salts may potentially prevent intestinal damage in humans during

radiotherapy.Moreover, studies have shown that GPR81 expression

is downregulated in the intestinal mucosal tissues of patients

and mice with colitis. Oral administration of lactate has been

found to enhance the expression of tight junction proteins,

including Claudin-1, ZO-1, and Occludin, through GPR81, thereby

alleviating experimental colitis and inhibiting the NF-κB/MMP9

signaling pathway (Li et al., 2024).

4.3 Bile acids and intestinal epithelial cells

Bile acids are synthesized from cholesterol in the liver and are

mostly reabsorbed by ileal epithelial cells after entering the intestine

(de Aguiar Vallim et al., 2013). Approximately 90–95% of bile acids

absorbed by epithelial cells are released into the ileal lamina propria

through heterodimeric organic solute transport proteins OSTα and

OSTβ on the epithelial cells (Li and Chiang, 2014). In addition

to playing a key role in lipid digestion and absorption, bile acids

also interact with intestinal epithelial cells to maintain intestinal

homeostasis, regulate immune responses, and influence the gut

microbiota. They regulate the functions of intestinal epithelial cells

by activating nuclear receptors such as the farnesoid X receptor

(FXR) andmembrane receptors like the G protein-coupled bile acid

receptor TGR5 (Fiorucci et al., 2010; Dhakal and Dey, 2022). These

signaling pathways not only participate in the regulation of bile acid

synthesis and metabolism but also affect intestinal barrier function,

cell proliferation, and apoptosis. For example, the activation of

FXR can enhance the integrity of the intestinal barrier and reduce

intestinal inflammation (Verbeke et al., 2015; Gadaleta et al., 2011).

Bile acids play a dual role in maintaining intestinal barrier

function (Hegyi et al., 2018). Primary bile acids, including cholic

acid and chenodeoxycholic acid, may exert toxic effects on

intestinal epithelial cells. In contrast, secondary bile acids, such as

deoxycholic acid and lithocholic acid, can enhance intestinal barrier

function by regulating the expression of tight junction proteins

like Claudin and Occludin, although their effects may vary under
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TABLE 2 The main characteristics of acetate, propionate, and butyrate.

Function Butyrate Acetate Propionate References

Energy source Primary energy source for

intestinal epithelial cells

Energy source for the liver and

peripheral tissues

Secondary energy source

metabolized in the liver

Marchix et al., 2018

Mucus

secretion

Strongly promotes MUC gene

expression, enhancing chemical

barrier

Promotes mucus secretion, but

weaker effect compared to

butyrate

Promotes mucus secretion, effect

between butyrate and acetate

Kimura et al., 2013

Barrier

function

Upregulates Claudin-1, Occludin,

and enhances tight junction

proteins

Activates GPR43/GPR41,

indirectly enhances barrier

function

Activates GPR43/GPR41, indirectly

enhances barrier function

Kelly et al., 2015; Hodgkinson

et al., 2023; Kimura et al., 2013

Anti-

inflammatory

Inhibits HDAC activity, directly

anti-inflammatory

Regulates immunity via GPR43,

indirectly anti-inflammatory

Activates GPR43, suppresses

inflammatory cytokine production,

indirectly anti-inflammatory

Abdalkareem Jasim et al., 2022;

Kimura et al., 2013

Antimicrobial Promotes α-defensin secretion,

enhancing antimicrobial ability

Lowers pH levels, inhibiting

pathogenic bacteria

Lowers pH levels, inhibiting

pathogenic bacteria

Kimura et al., 2013; von Moltke

et al., 2016

Immune

regulation

Activates GPR109A, modulates

immune cell functions

Activates GPR43, regulates

dendritic cells and Tregs

Activates GPR43/GPR41, regulates

dendritic cells and Tregs, promotes

IL-10 secretion

Abdalkareem Jasim et al., 2022;

Kimura et al., 2013; Finnie et al.,

1995

different physiological or pathological conditions (Camilleri, 2022;

Di Vincenzo et al., 2022). Moreover, bile acid metabolism disorders,

such as excessive accumulation of secondary bile acids or impaired

reabsorption of primary bile acids, are often associated with

impaired intestinal barrier function. This may lead to increased

intestinal permeability and contribute to the development of IBD

(Long et al., 2023).

Research on bile acid signaling pathways has introduced

new strategies for treating intestinal diseases (Wahlström et al.,

2016). For example, FXR and TGR5 agonists have demonstrated

preclinical benefits for IBD by regulating intestinal barrier function

and suppressing inflammatory responses, making them promising

candidates for treating IBD and metabolic disorders (Stepanov

et al., 2013). Additionally, probiotics that regulate bile acid

metabolism, such as by modulating gut microbiota composition or

promoting the production of secondary bile acids, have also shown

potential in managing diseases like IBD (Chen et al., 2019; Gadaleta

et al., 2022).

4.4 Tryptophan and intestinal epithelial cells

Tryptophan and its metabolites play important roles in various

physiological processes, including maintaining cell growth, being a

component of proteins, and coordinating the organism’s response

to the environment as signaling molecules (Cervenka et al.,

2017). There are several metabolic pathways for tryptophan in

the gastrointestinal tract: (1) the kynurenine pathway, which

accounts for approximate 95% of total tryptophan metabolism;

(2) the indole pathway mediated by gut microbiota, which is

the characteristic metabolic pathway in the intestine; (3) the

5-hydroxytryptamine (serotonin) pathway, accounting for about

1–2% tryptophan metabolism (Ghiboub et al., 2020; Zelante

et al., 2013; Yu et al., 2024). While the kynurenine pathway

dominates over tryptophan metabolism systemically, the indole

pathway represents the major microbial-mediated metabolic route

specifically within the gut environment.

Gut microbiota metabolize tryptophan into indole and its

derivatives, such as indole-3-acetic acid and indolepropionic acid.

These metabolites can activate the aryl hydrocarbon receptor

(AHR), which is widely present in Paneth cells, goblet cells,

intestinal stem cells, absorptive cells, and enteroendocrine cells.

By activating AHR, these metabolites promote the proliferation

of intestinal epithelial cells and expression of tight junction

proteins, maintaining the integrity of the intestinal barrier, and

regulating intestinal immunity. However, excessive activation of

AHR may also contribute to inflammatory responses under certain

pathological conditions (Roager and Licht, 2018). Metidji’s research

shows that AHR regulates Wnt/β-catenin signaling in intestinal

epithelial cells, which helps to differentiate epithelial cells from

crypt stem cells. Meanwhile, the absence of the aryl hydrocarbon

receptor in intestinal epithelial cells leads to reduced expression

of MUC2 and Car4, thereby weakening resistance to pathogenic

bacterial infections (Metidji et al., 2019). Some members of the

human gut microbiota, such as Clostridium sporogenes, have been

found to decarboxylate tryptophan, leading to the production of the

neurotransmitter tryptamine (Williams et al., 2014). Furthermore,

Clostridium sporogenes can lead to the production of indole acetic

acid and indole propionic acid, both of which affect intestinal

permeability and host immunity (Dodd et al., 2017; Lamas et al.,

2018). Tryptophan and indole active transport proteins have been

identified in Escherichia coli. These studies indicate that indole,

a tryptophan metabolic product dependent on the microbiota,

plays an important role in maintaining the integrity of the

epithelial barrier.

4.5 Gut bacterial components and
intestinal epithelial cells

Intestinal epithelial cells express various innate receptors,

including TLRs, NOD-like receptors (NLRs), RIG-I-like receptors

(RLRs), and C-type lectin receptors (CLRs). These receptors

rapidly recognize microorganisms and their components (such as
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lipopolysaccharides, peptidoglycan, flagellin,), activate downstream

signaling pathways, and subsequently promote epithelial cell

proliferation as well as the expression and secretion of various

cytokines and chemokines. However, excessive activation of these

receptors may also lead to pathological inflammation or epithelial

damage under certain conditions. This complex receptor network

is essential for maintaining intestinal health and defending against

pathogen invasion.

In the small intestine, Paneth cells secrete the antimicrobial

peptides RegIII-β, RegIII-γ, and α-defensins in a TLR/MyD88-

dependent manner under homeostatic conditions. These

antimicrobial peptides play critical roles in inhibiting the

proliferation of pathogenic bacteria and maintaining the balance

of the intestinal microbiota (Gong et al., 2010). In the colon, goblet

cells require TLR/MyD88 signaling to achieve compound mucin

granule exocytosis. TLR ligands, including lipopolysaccharides

and flagellin, can induce colonic goblet cells to secrete MUC2

(Birchenough et al., 2016). Studies have shown that MyD88

deficiency in intestinal epithelial cells leads to reduced expression

of MUC2 and decreased production of antimicrobial peptides,

particularly RegIII-γ, showing a high sensitivity to colitis and

Salmonella enterica serovar Typhi or Citrobacter infection (Frantz

et al., 2012; Vaishnava et al., 2011).

NLRs are innate cytoplasmic receptors that also participate in

maintaining mucosal barrier function. Studies have shown that the

activation of NLRP6 in the NLR family promotes the secretion of

mucin granules by goblet cells, which is crucial for preventing the

proliferation of colitis bacteria (such as Prevotellaceae) (Wlodarska

et al., 2014). Intestinal endocrine cells, Paneth cells, and goblet

cells can specifically express Chitinase 3-like protein 1 (Chi3l1)

and secrete it into the intestinal lumen when stimulated by the gut

microbiota. Chi3l1 interacts with the gut microbiota through the

cell wall component peptidoglycan, affecting the colonization of

Gram-positive bacteria. This interaction not only prevents colitis

but also contributes to the regulation of immune responses and the

maintenance of the intestinal barrier (Chen et al., 2024).

4.6 Bacterial intrinsic features and intestinal
epithelial cells

Some commensal bacteria have evolved specific strategies that

allow them to adhere to the intestinal mucosal surface and induce

the expression of specific genes in intestinal epithelial cells, which

is related to the intrinsic features of the bacteria.

Segmented filamentous bacteria (SFB) are natural gut

commensals. Through comparative studies in humans, mice, and

chickens, it has been found that while SFB distribution in the

gastrointestinal tract shows species specificity, the small intestine

(particularly the ileum) serves as the primary colonization site

across all studied species (Yin et al., 2013). SFB communicates with

host ileal epithelial cells through endocytic vesicles formed at the

SFB-epithelial cell synaptic interface. These vesicles contain SFB

cell wall-associated proteins P3340 that can induce the activation

of antigen-specific Th17 cells in the lamina propria by promoting

antigen presentation. This confirms direct communication

between resident gut microbiota and the host, and indicates that

under physiological conditions, intestinal epithelial cells acquire

antigens from commensal bacteria to generate T cell responses

to the resident microbiota (Ladinsky et al., 2019; Yang et al.,

2014). SFB colonization in the small intestine promotes overall

transcriptional changes in host epithelial cells, including the

induction of antimicrobial peptides and stress response genes, such

as serum amyloid A (SAA1 and SAA2) (Ivanov et al., 2009).

Unlike SFB, which colonizes the small intestine, Bacteroides

predominantly resides in the colonic crypts. Bacteroides plays a

crucial role in maintaining gut microbiota balance by fermenting

polysaccharides to produce short-chain fatty acids. Studies (Lee

et al., 2013) in germ-free mice showed that animals were easily

colonized first by Bacteroides fragilis, followed by Bacteroides

thetaiotaomicron or Bacteroides vulgatus, with the sequence of

microbial exposure having no effect on colonization results. Further

investigation showed that intestinal Bacteroides possess conserved

polysaccharide utilization loci, known as commensal colonization

factors (CCF). During intestinal colonization, the CCF gene in

Bacteroides fragilis are upregulated. Deletion of the CCF gene in

the symbiont Bacteroides fragilis led to colonization defects and

reduced horizontal transmission in mice. Notably, mutant strains

lacking CCF failed to penetrate deep into the colonic crypts despite

binding to the epithelial surface. These findings demonstrate

that intestinal Bacteroides have developed unique, host-specific

interactions that ensure stable and resilient gut colonization, with

the CCF serving as an innovative mechanism driving this symbiotic

relationship (Lee et al., 2013).

The intrinsic features of commensal bacteria play a crucial role

in their ability to interact with intestinal epithelial cells and establish

stable colonization. Understanding these interactions provides

valuable insights into the dynamic relationship between gut

microbes and their host, offering potential avenues for advancing

gut health research.

5 Regulation of gut microbiota by
intestinal epithelial cells

The mucosal barrier system of the intestine includes physical

and chemical barriers. The physical barrier consists of the mucus

layer, a protective layer formed by carbohydrates on the cell

membrane surface, and the intercellular junction layer (Pelaseyed

et al., 2014). The chemical barrier is primarily composed of

antimicrobial peptides, the Reg3 family of proteins, and other

secreted substances within the mucus layer that covers intestinal

cells (Vaishnava et al., 2011; Ayabe et al., 2000; Mukherjee and

Hooper, 2015).

Furthermore, the initiation of inflammatory cascade reactions

in intestinal epithelial cells can lead to antimicrobial responses,

thereby regulating bacterial composition. Paneth cells have a

significant impact on the microbial composition in the small

intestine by secreting various antimicrobial peptides, such as α-

defensins and Reg3 proteins, which regulate bacterial colonization.

Changes in the chemical and genetic characteristics of Paneth

cells in mice can lead to significant and lasting changes in the

microbiome, including a substantial reduction in Proteobacteria

(Lueschow et al., 2018; Gassler, 2017). Among these, α-defensins

protect the host from pathogenic bacterial infections by disrupting
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bacterial cell membrane (Selsted and Ouellette, 2005). Studies

have shown that antimicrobial peptides produced by human

α-defensin 5 (HD5) have direct bactericidal effects on several

members of the human microbiome, thus altering the bacterial

community within the body (Ehmann et al., 2019). Researchers

compared the gut microbiota of mice expressing human α-defensin

5 with that of mice lacking the enzyme required for processing

α-defensins and found significant α-defensin-dependent changes

in the composition of the microbiota (Salzman et al., 2010).

Moreover, HD5 transgenic mice were resistant to Salmonella

infection (Salzman et al., 2003). In addition, the Reg3 family of

proteins, mainly produced by Paneth cells, exhibit bactericidal

activity against Gram-positive bacteria (Cash et al., 2006). Multiple

studies have shown that Paneth cell dysfunction is closely associated

with Crohn’s disease, whichmay also be associated with disruptions

in gut microecology (Adolph et al., 2013).

Mucins secreted by goblet cells form mucus with water, which

serves as amedium for the colonization of commensal gut microbes

and a protective barrier against pathogenic bacteria, thereby

maintaining immune homeostasis (Yang and Yu, 2021; Gustafsson

and Johansson, 2022). The highly glycosylatedmucins that make up

the main structural components of the mucus layer are a primary

carbon source for certain gut microbes, such as Akkermansia

muciniphila, whose abundance is inversely proportional to the

severity of inflammatory diseases (Derrien et al., 2004). Therefore,

mucins remain an important way for goblet cells to nourish

microbes and regulate themicrobial composition structure through

this strategy.

Tuft cells play a complex role in regulating gut microbes

through multiple mechanisms. They indirectly regulate gut

microbes during type 2 immune responses. The process involves

triggering ILC2 to release IL-13, which allows tuft cells to interact

with IL-13-responsive goblet cells to release mucus, capable of

clearing both eukaryotic and bacterial pathogens. In the small

intestine, tuft cells differentially express succinate receptor 1,

allowing intestinal protozoan monocytes and certain bacteria that

produce succinate to activate corresponding signaling pathways,

thereby regulating the gut microbiota (Schneider et al., 2019).

Additionally, tuft cells sense bacterial metabolite N-undecanoyl

glycine (N-C11-G) via the vomeronasal receptor Vmn2r26,

activating the production of prostaglandin D2, which in turn

stimulate goblet cells to secrete mucus and initiates antibacterial

immune response (Coutry et al., 2024). Uniquely, tuft cells are

the only known intestinal epithelial cells to express choline

acetyltransferase (ChAT), the enzyme essential for acetylcholine

biosynthesis. Recent studies have shown that tuft cell-derived

acetylcholine plays a pivotal role in clearing worm infections

(Billipp et al., 2024). Furthermore, latest research highlights the

ability of tuft cells to maintain intestinal microecological balance

with Paneth cells, underscoring their significant role in regulating

gut homeostasis (Coutry et al., 2023).

As the primary epithelial medium for antigen uptake, M cells

are also crucial for regulating gut microbes. Studies have shown that

the transient depletion of M cells leads to an increase in the levels

of ileal SFB, indicating that M cells can regulate the abundance of

ileal SFB (Lai et al., 2020).

As previously mentioned, gut endocrine cells express

multiple G-coupled receptors and toll-like receptors, which can,

respectively, recognize SCFA and respond to TLR ligands of

gut bacteria (Yu et al., 2020). In addition, enteroendocrine cells

synthesize and release serotonin (5-HT), the number of which

and the synthesis and release of 5-HT are regulated by microbes,

parasites, and immune cells (Mawe and Hoffman, 2013). Research

suggests that during intestinal infections, the production of

5-HT helps prevent the invasion of microbes (such as Salmonella

typhimurium) and helminth (Trichomonad) pathogens, possibly by

regulating the functions of intestinal cells. This includes enhancing

antimicrobial peptide secretion and modulating IL-13 receptor

signaling pathway (Essien et al., 2013).

Intestinal stem cells are located at the base of the small

intestinal crypts. Althoughmost gut microbes reside in the mucosal

layer above the villi, a subset known as the crypt-restricted core

microbiome remains within the crypts, adjacent to the stem cell

niche (Hou et al., 2017).

In summary, various intestinal epithelial cell subtypes exert

regulatory effects on the microbiome (as shown in Table 3). While

most of themicrobiome effects of individual intestinal epithelial cell

subtypes have been extensively studied, understanding how these

cell subtypes communicate with each other to coordinate their

response to the microbiome warrants further investigation.

6 Conclusion and future perspectives

The complex interplay between the intestinal epithelium

and gut microbiota is a cornerstone of maintaining intestinal

homeostasis and overall health. This review highlights recent

advances in understanding the bidirectional communication

between intestinal epithelial cells and microbial communities,

emphasizing the specialized roles of epithelial cell subtypes such

as Paneth cells, goblet cells, tuft cells, and enteroendocrine cells.

These cells not only form a physical and chemical barrier but also

actively participate in regulating microbial composition, immune

responses, and metabolic functions.

Emerging evidence underscores the importance of gut

microbiota-derived metabolites, such as short-chain fatty acids

and bile acids, in modulating epithelial cell signaling pathways

and maintaining barrier integrity. Furthermore, the cooperative

interactions among epithelial cell subtypes, particularly between

tuft cells and Paneth cells, reveal a sophisticated network that

ensures microbial balance and host defense. These findings offer

new insights into the dynamic and reciprocal nature of host-

microbe interactions.

Looking forward, several key areas warrant further exploration.

First, the application of single-cell sequencing and organoid

models holds great promise for uncovering previously

unrecognized mechanisms of epithelial-microbiota crosstalk.

Second, understanding how disruptions in these interactions

contribute to the pathogenesis of diseases, such as inflammatory

bowel disease, colorectal cancer, and metabolic disorders, remains

a critical challenge. Finally, translating these findings into targeted

therapeutic strategies, such as microbiota-based interventions or

epithelial cell-specific therapies, represents an exciting frontier in

precision medicine.

In conclusion, advancing our understanding of the intestinal

epithelium-microbiota axis will not only deepen our knowledge of
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TABLE 3 A summary of mechanisms by which intestinal epithelial cells regulate gut microbiota.

Intestinal epithelial
cell subtype

Main function Mechanisms for regulating gut microbiota References

Paneth cells Secrete antimicrobial

peptides (e.g., defensins)

Directly inhibit the growth of harmful bacteria and maintain

microbial balance by secreting antimicrobial peptides (e.g.,

α-defensins and lysozyme)

Clevers and Bevins, 2013; Sato

et al., 2011

Goblet cells Secrete mucus to protect

the barrier

Form a physical barrier by secreting mucus, isolating the

microbiota from epithelial cells to prevent excessive contact

Birchenough et al., 2015; Pelaseyed

et al., 2014

Enteroendocrine cells Secrete hormones (e.g.,

serotonin, GLP-1)

Regulate gut microbiota metabolism by secreting hormones;

some hormones (e.g., serotonin) influence microbiota

composition and activity

Lai et al., 2020; Yu et al., 2020;

Mawe and Hoffman, 2013

Tuft cells Sense microbial

metabolites

Detect microbial metabolites (e.g., N-C11-G) and activate

immune responses, indirectly promoting microbiota balance

Schneider et al., 2019; Billipp et al.,

2024

M cells Antigen sampling Transport antigens to immune cells and regulate the abundance

of specific microbiota (e.g., modulating ileal SFB levels)

Knoop et al., 2009; Kanaya et al.,

2012; Coutry et al., 2023

Enterocytes Nutrient absorption Regulate microbiota metabolism and composition indirectly by

absorbing metabolites such as short-chain fatty acids (SCFAs)

Kiela and Ghishan, 2016; Hou

et al., 2017

Intestinal stem cells Maintain epithelial

renewal

Influence the microenvironment by secreting signaling molecules

(e.g., Wnt and Notch), indirectly regulating microbiota

composition

van der Flier and Clevers, 2009;

Farin et al., 2016

SCFAs, short-chain fatty acids; SFB, segmented filamentous bacteria; GLP-1, glucagon-like peptide-1.

gut physiology but also pave the way for innovative approaches

to treat and prevent a wide range of gastrointestinal and

systemic diseases.
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