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Introduction: It is well-known that di�erent populations and animals, even

experimental animals with the same rearing conditions, di�er in their

susceptibility to obesity. The disparity in gutmicrobiota could potentially account

for the variation in susceptibility to obesity. However, the precise impact of gut

microbiota on gut metabolites and its subsequent influence on susceptibility to

obesity remains uncertain.

Methods: In this study, we established obesity-prone (OP) and obesity-

resistant (OR) mouse models by High Fat Diet (HFD). Fecal contents of cecum

were examined using 16S rDNA sequencing and untargeted metabolomics.

Correlation analysis and MIMOSA2 analysis were used to explore the association

between gut microbiota and intestinal metabolites.

Results: After a HFD, gutmicrobiota and gutmetabolic profiles were significantly

di�erent between OP and OR mice. Gut microbiota after a HFD may lead to

changes in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), a variety

of branched fatty acid esters of hydroxy fatty acids (FAHFAs) and a variety of

phospholipids to promote obesity. The bacteria g_Akkermansia (Greengene ID:

175696) may contribute to the di�erence in obesity susceptibility through the

synthesis of glycerophosphoryl diester phosphodiesterase (glpQ) to promote

choline production and the synthesis of valyl-tRNA synthetase (VARS) which

promotes L-Valine degradation. In addition, gut microbiota may a�ect obesity

and obesity susceptibility through histidine metabolism, linoleic acid metabolism

and protein digestion and absorption pathways.

KEYWORDS

susceptibility to obesity, gut microbiota, untargeted metabolomics, high-fat diet,

obesity-prone, obesity-resistant

1 Introduction

Obesity is one of the main health problems worldwide, with more than 1 billion obese

people reported globally (United Nations, 2022). The obesity rate has been consistently

increasing worldwide (Geng et al., 2022). The occurrence of obesity is influenced by various

factors, such as genetics, dietary behavior, individual activity, and energy expenditure

(Reddon et al., 2016; Bluher, 2019). Additionally, obesity is causally linked to diseases like

diabetes, hypertension, and heart disease (Collaborators et al., 2017). It is urgent to address

the health crisis of obesity. Studies have shown that individuals differ in their susceptibility

to obesity, even if they have the same genetic background and dietary environment
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(Gu et al., 2019). Obesity sensitive animals induced by HFD are

defined as the obesity-prone (OP) phenotype, while those that are

not sensitive are defined as the obesity-resistant (OR) phenotype

(Zhang et al., 2018).

The gut microbiome is considered to be the “second human

genome” that controls human health and may affect the body’s

energy balance (Turnbaugh et al., 2006). Intestinal microbial

imbalance can alter the function of gut barriers and gut associated

lymphoid tissues (GALT), allowing bacterial components (such

as LPS) to pass through the intestinal wall. This can induce

the production of inflammatory cytokines and promote the

development of insulin resistance. Additionally, it can also alter

gastrointestinal peptide production and lipid metabolism, increase

food intake, and contribute to body obesity (Gomes et al., 2018). At

the same time, the susceptibility to obesity is also influenced by gut

microbiota. Studies have demonstrated significant differences in the

gut microbiota between OP mice and OR mice, with a decrease in

the proportion of Firmicutes and Bacteroides, and an increase in

the proportion of Proteobacteria. The enrichment of Parasutterella

from the Proteobacteria phylum in OP mice is essential for the

development of obesity (Gu et al., 2019). C. Butyricum, when

enriched in the rat gut, can participate in energy metabolism

and storage (Obanda et al., 2021). The decrease of Bacteroidetes

and Firmicutes in the intestinal tract of mice leads to ineffective

absorption of carbohydrates, which may result in obesity resistance

(Li et al., 2014). Dysregulation of the BA signaling pathway

mediated by intestinal flora also leads to obesity susceptibility (Wei

et al., 2020).

Existing studies have explored the influence of gut microbiota

on obesity susceptibility through metagenomic and serum

metabolome methods (Gu et al., 2019; Wei et al., 2020). However,

the effect of gut microbiota on obesity susceptibility through gut

metabolites is inconclusive. In this study, we induced obesity-prone

(OP) and obesity-resistant (OR) mouse models to investigate the

differences in gut microbiota andmetabolites in mice with different

susceptibility to obesity. We used 16S rDNA sequencing and non-

targeted metabolomics methods for this purpose. Additionally,

we aimed to explore the mechanism by which gut microbiota

affects obesity susceptibility through gut metabolites. The findings

of this study will provide a scientific basis for improving obesity

susceptibility by adjusting gut microbiota.

2 Materials and methods

2.1 Animal feeding and sample collection

Six-weeks-old specific pathogen-free male C57BL/6 mice

(weighing 17–19 g) were purchased from Beijing Weitong Lihua

Laboratory Animal Technology Co., LTD and housed at 22 ±

2◦C and 50%-60% relative humidity in a specific pathogen-free

facility maintained on a 12-h light/dark cycle in the Laboratory

Animal Center of Southwest Medical University. After 1 week of

acclimatization, 60 mice were randomly divided into two groups

for a period of 10 weeks: the control (CK) group (n = 15)

and the high-fat diet (HFD) group (n = 45). The CK mice

were fed a normal diet, while the HFD mice were fed a high-

fat diet. The normal diet comprised 65.08 kcal% carbohydrates,

23.07 kcal% proteins and 11.85 kcal% fats, while the HFD diet

contained 20 kcal% carbohydrates, 20 kcal% proteins and 60

kcal% fats. The compositions of the normal and HFD diet are

detailed in Supplementary Table 1. All experimental animals ate

and drank freely. By week 9, mice on a high-fat diet that were

1.2 times heavier than the mean weight of CK mice were defined

as obesity-prone (OP, n = 14). Those weighing <1.1 times the

mean weight of CK mice were defined as obesity-resistant (OR,

n = 14), and the remaining mice were eliminated. Four mice

in each group were randomly selected for glucose tolerance and

insulin tolerance tests, while the remaining mice were kept on the

original diet for another week. At the end of the prescribed feeding

period, the remaining mice were fasted overnight, anesthetized by

intraperitoneal injection of 1% pentobarbital sodium (50 mg/kg

body weight) and then sacrificed by cervical dislocation. Samples of

liver and perirenal and epididymal fat were collected and weighed

immediately. The cecum contents below the ileocecal valve were

collected and frozen at −80◦C for 16S microbiome and non-

targeted metabolome detection.

2.2 Glucose tolerance test

At week 9, randomly selected mice were fasted for 12 h. Blood

samples were collected from the tail vein and blood glucose

concentration was measured using a glucometer (Roche, ACCU-

CHEK). Additionally, a 10% glucose solution (2 g/kg) was injected

intraperitoneally. Blood glucose levels were monitored at 15, 30, 60,

90, and 120min after administration. At the end of the test, themice

were kept on their original diet for another week.

2.3 Insulin tolerance test

At week 10, randomly selected mice were fasted for 4 h,

and blood glucose concentrations were measured using the same

method described above. This was followed by an intraperitoneal

injection of 0.0075 IU/mL insulin solution at a dosage of 0.75 IU/kg.

Blood glucose levels were monitored at 30, 60, 90, and 120min after

the administration.

2.4 Biochemical analysis of serum

Blood samples were collected in the morning and centrifuged

at 4◦C at 3,500 r/min for 10min. Serum was collected for testing

triglyceride (TG), total cholesterol (TC), low density lipoprotein

(LDL) and high density lipoprotein (HDL) by a fully automatic

veterinary biochemical analyzer (Jiangxi Tekang Technology Co.,

Ltd., TC220).

2.5 Liver histopathology

Freshly isolated liver was soaked and fixed in 4%

paraformaldehyde. After rinsing with running water, the

tissues were dehydrated, embedded in paraffin, sectioned at
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4µm and stained with hematoxylin and eosin. Histopathological

characteristics of each sample were assessed under the microscope

and three photographs were taken under a light microscope

with ×100 and ×400 magnification. The NAFLD activity

scoring (NAS) was performed according to the Kleiner score

system (Kleiner et al., 2005) in accordance with the National

Institutes of NASH Clinical Research Network Pathology

Working Group guidelines. Freshly isolated livers were

embedded in optimal cutting temperature compound (OCT)

and cryogenically preserved at −80◦C. Subsequently, the tissues

were sectioned at 4µm and stained with Oil red O (RUIBIO,

Y07512). Histopathological characteristics of each sample were

assessed under the microscope and three photographs were taken

under a light microscope with ×400 magnification. Image Pro

Plus was used to measure and analyze the lipid droplet area in

liver tissue.

2.6 Fat histopathology

Freshly isolated adipose tissue around the epididymis was

soaked and fixed in 4% paraformaldehyde. After rinsing with

running water, the tissues were dehydrated, embedded in

paraffin, sectioned at 4µm and stained with hematoxylin and

eosin. Histopathological characteristics of each sample were

assessed under the microscope and three photographs were

taken under a light microscope with ×400 magnification.

Image Pro Plus was used to measure and analyze the

adipocyte area.

2.7 16S rDNA gene sequencing

Genomic DNA extraction kit (D3141, Guangzhou

Meiji Biological Co., LTD., China) was used to extract

genomic DNA from cecum contents. The V3-V4 region

of 16S rDNA (341F, CCTACGGGRBGCASCAG; 806R:

GGACTACNNGGGTATCTAAT) was amplified using a specific

primer with Barcode sequence. The amplified products were

purified, quantified by ABI StepOnePlus RealTime PCR System

(Life technologies, USA) and sequenced by computer. According

to the sequences of different samples of specific markers, through

the use of FLASH (V1.2.11, http://ccb.jhu.Edu/software/FLASH/),

joining together the sequence for raw reads. DADA2 (V1.14.1,

https://benjjneb.github.io/dada2/) software was used to filter and

control raw reads. Amplicon Sequence Variants of single base

accuracy were clustered, which was equivalent to OTU of 100%

similarity clustering. The SILVA database was used to compare

taxonomic information, and microbial composition analysis was

performed at the phylum, class, order, family, genus and species

levels. QIIME (V1.9.1, http://qiime.org/) software was used for

Alpha diversity analysis and R software was used for Alpha

diversity index and Beta diversity analysis. LEfSe was used to

analyze the differential abundance of the microbes. Results with

LDA scores >4 were retained by default in this experiment to

determine the genus of marker bacteria in each group. PICRUSt2

was used to predict the metabolic pathways of the gut microbiota.

2.8 Untargeted metabolomics

A 100mg tissue sample grounded in liquid nitrogen was added

to 500 µL of 80% methanol solution for Vortex oscillation, and

then placed in ice bath for 5min and centrifuged at 15,000 g at

4◦C for 20min. The supernatant was collected and diluted to

53% methanol content, centrifuged again for 20min, and then

the supernatant was collected again and injected into LC-MS for

analysis. Equal volume samples were taken from each experimental

sample and mixed as quality control (QC) samples. The Vanquish

UHPLC system (ThermoFisher, Germany) combined with the

Orbitrap Q ExactiveTM HF-X mass spectrometer (Thermo Fisher,

Germany) was used for UHPLC-MS/MS analysis. The samples were

injected into a Hypesil Gold column (100×2.1mm, 1.9µm) with

a linear gradient of 17min and a flow rate of 0.2 mL/min. The

positive ion mode mobile phase A was 0.1% formic acid and the

mobile phase B was methanol. Negative ion mode mobile phase

A was 5mM ammonium acetate (pH 9.0) and mobile phase B

was methanol. Solvent gradient setting: 2% B, 1.5min; 2–100%

B, 12.0min; 100% B, 14.0min; 100–2% B, 14.1min; and 2% B,

17min. Q ExactiveTM HF-X working conditions of the mass

spectrometer: spray voltage of 3.2 kV, capillary temperature of

320◦C, sheath gas flow rate of 40 arb and aux gas flow rate

of 10 arb. The raw data file generated by UHPLC-MS/MS was

peak aligned, peak picked and quantified for each metabolite

using Compound Discoverer 3.1 (CD3.1, Thermo Fisher). The

main parameters were set as follows: retention time tolerance,

0.2min; actual mass tolerance, 5ppm; signal intensity tolerance,

30%; signal/noise ratio, 3; and minimum intensity, 100,000. After

that, a blank sample was used to remove the ionic background and

the peak intensity was normalized to the total spectral intensity.

Based on additive ions, molecular ion peaks and fragment ions,

normalized data was used to predict molecular formula. It was

compared with mzCloud (https://www.mzcloud.org/), mzVault

and Masslist databases to obtain accurate qualitative and relative

quantitative results.

2.9 Statistical analysis

In this study, GraphPad Prism 9.0.0 was used to calculate

the area under the curve and SPSS 24.0 statistical software

was used for statistical analysis. The Shapiro-Wilk test was

employed to assess the normality of the data, while the Levene

test was utilized to examine the homogeneity of variance.

The data that adhered to a normal distribution and exhibited

homogeneity of variance were subjected to single-factor ANOVA.

Conversely, the data that adhered to a normal distribution

but displayed heterogeneity of variance were analyzed using

the Welch test. Lastly, the data that did not conform to a

normal distribution were analyzed using the Kruskal-Wallis

rank sum test. All values were expressed as mean ± SD.

Spearman statistical method was used to analyze the correlation

coefficient between significantly different metabolites and marker

microorganisms in the test samples. In addition, R language

(V2.15.3, http://www.R-project.org/) and Cytoscape software

(V3.8.2, https://cytoscape.org/) were used for matrix heat

mapping, hierarchical clustering and related network analysis.
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P < 0.05 indicates that there were significant differences in the

experimental results.

MIMOSA2 analysis was used to further explore the relationship

between intestinal flora and intestinal metabolites. MIMOSA2

analysis is a regression analysis that predicts microbial metabolic

potential based on database and correlates the predicted metabolic

potential with actual metabolomics data (Noecker et al., 2022).

MIMOSA2 first compared all the ASV sequences in the 16S rDNA

sequencing results with the data in KEGG, NCBI, EMBL-EBI,

VMH and other databases, and constructed a network prediction

model of the metabolic capacity of each microbial unit according

to the sequence abundance. This metabolic network prediction

model was then used to calculate the Metabolic Potential (MP)

score at the level of each microbial taxon to predict the effect

of each taxon on each metabolite in each sample. Then all the

degradation reaction potential scores were subtracted from the

synthetic reaction potential scores in the microbial unit to obtain

a Community-level metabolic potential (CMP) score. A regression

model based on rank prediction was then used to regression the

CMP score with the metabolomic test results to assess whether

the CMP score significantly predicted metabolite levels. P < 0.1

is considered to be a microbial controlled metabolite. Finally, the

overall model was decomposed into the contribution of each taxa,

and the specific taxa that can affect the change of each metabolite

was identified.

3 Results

3.1 Obesity-prone and obesity-resistant
model was successfully established

After high-fat diet consumption, the body weight of OP mice

was consistently significantly higher than that of OR and CK mice

(P < 0.05), while the body weight of OR mice was significantly

higher than that of CKmice only fromweek 4 to week 8 (Figure 1A,

P < 0.05). Adipose tissue weights were significantly higher in OP

mice than in CK and OR mice (Figure 1B, P < 0.01). Cecal weights

were significantly higher in CK mice than in OP and OR mice

(Figure 1C, P < 0.05). Compared with CK mice, the blood glucose

levels and their corresponding area under curve (AUC) in both

insulin tolerance test (ITT) and glucose tolerance test (GTT) of OP

mice were significantly higher than those of CK and OR mice (P

< 0.01), but there was no significant difference between CK and

OR mice (Figures 1D–G). This suggests that insulin resistance and

glucose tolerance were impaired in OP mice but not in OR mice.

Hematoxylin and eosin (H&E) staining of liver tissue sections

revealed extensive steatosis in the livers of OP mice but not in

CK and OR mice (Figure 1H). Meanwhile, the liver NAS scores

of OP mice were significantly higher than those of CK and OR

mice (P < 0.05), while there was no significant difference between

CK and OR mice (Figure 1I). Oil red O staining of liver tissue

sections showed that the total area of lipid droplets in the liver of

OP mice was significantly larger than that of CK and OR mice,

and that of OR mice was also significantly larger than that of CK

mice (Figures 1J, K, P < 0.01). H&E staining of periepididymal

adipose tissue showed that the mean adipocyte area of OPmice was

significantly larger than that of CK and OR mice (Figures 1L, M,

P < 0.01). Serum TG levels of OP and OR mice were significantly

higher than those of CK mice (P < 0.05), and serum LDL levels

of OP mice were significantly higher than those of CK mice

(Figure 1N, P < 0.05).

The body weight, adipose tissue weight, glucose tolerance,

insulin tolerance, NAS score, and mean adipocyte area of OR

mice were not significantly different from those of CK mice, but

were significantly different from those of OP mice. This indicates

that obesity did not develop in OR mice but did in OP mice.

Therefore, we have successfully established obesity-prone and

obesity-resistant models.

3.2 The gut microbiota of obesity-prone
and obesity-resistant mice were
significantly di�erent

3.2.1 Alpha diversity analysis and Beta diversity
analysis

Alpha diversity analysis showed that ACE, Chao1 and Shannon

values of gut microbiota of OP and OR mice were significantly

lower than those of CK mice (P < 0.05), and ACE and Chao1

values of OR mice were significantly higher than those of OP

mice (Figures 2A–D, P < 0.05). These results show that the species

richness and homogeneity of the gut microbiota of OP and OR

mice were significantly lower than those of CK mice, and the

species richness of OP mice was significantly lower than that of OR

mice, but there was no significant difference in species homogeneity

between OP mice and OR mice.

In the analysis of Beta diversity, both Principal Co-ordinate

Analysis (PCoA) based on linear microbial community structure

and Non-metric analysis of microbial structure Multidimensional

Scales (NMDS) based on nonlinear microbial structure have shown

that the samples of the three groups of mice were well aggregated

within the group and the trend of separation between the groups

was obvious (Figures 2E, F). This indicates that the gut microbiota

structure of mice in each group was highly consistent, and the gut

microbiota structure of mice in each group was different.

3.2.2 Species composition analysis and functional
prediction

The venn diagram showed that 279 OTUs were shared among

the three groups of mice and that 6,577 OTUs were unique to

CK mice, with more than 4,571 OTUs being unique to OP mice

and 5,601 OTUs being unique to OR mice (Figure 2G). At the

phylum level, the gut microbiota of the three groups of mice was

mainly composed of Firmicutes, Bacteroidetes, Verrucomicrobia

and Proteobacteria (Figure 2H). At the genus level, the top

ten bacteria genera in relative abundance were Akkermansia,

Blautia, Bacteroides, Lachnospiraceae_NK4A136_group,

Ruminiclostridium_9, Helicobacter, Alistipes, Dubosiella,

Mucispirillum, and Bilophila (Figure 2I).

LEfSe analysis was used to determine the specific bacterial

index groups in the three groups, and species with LDA

score > 4 are considered biomarkers. At the genus level, the

gut microbiota biomarkers of CK mice were Dubosiella and
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FIGURE 1

The obesity-prone and obesity-resistance models were successfully established, and there were significant di�erences in phenotype data among the

CK, OP, and OR groups of mice. Body weights of CK, OP and OR groups of mice at 0–10 weeks (A); fat tissue weights (B); cecum weights (C); blood

glucose levels in GTT (D) and ITT (E); and their corresponding area under the curve: GTT AUC (F) and ITT AUC (G). HE staining of liver tissue sections

revealed steatosis (H); liver NAS score (I); liver tissue sections stained with oil red O (J); total area of lipid droplets (K); HE staining of adipose tissue

slices around the epididymis (L); average area of adipocytes (M); and serum TG, TC, HDL, and LDL levels (N). Single factor ANOVA analysis showed

statistical di�erences (P < 0.05). Di�erent lowercase letters indicate significant di�erences between groups. *P < 0.05 and **P < 0.01.

Frontiers inMicrobiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1343511
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wen et al. 10.3389/fmicb.2024.1343511

FIGURE 2

There was a significant di�erence in gut microbiota between obesity-prone and obesity-resistant mice. Alpha diversity analysis showed Ace (A),

Chao1 (B), Shannon (C) and Simpson (D) values of intestinal microbiota in CK, OP and OR groups of mice; PCoA (E) and NMDS (F) in Beta diversity

analysis; the venn plot showed the number of OTUs (G); stacking diagram of species abundance at phylum level (H) and genus level (I); and

histogram (J) and cadogram (K) of LDA values of biomarkers in the LEfSe analysis. In the cadogram, the circles radiating from inside to outside

represented the taxonomic level from kingdom to species, each circle at di�erent taxonomic levels represented a species at that taxonomic level,

and the size of the circle was proportional to the relative abundance. The Kruskal-Wallis rank-sum test showed statistical di�erences. Di�erent

lowercase letters indicate significant di�erences between groups (P < 0.05).
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Lachnospiraceae_NK4A136_group, while the biomarkers of OP

mice were Blautia, Ruminiclostridium_9 and Helicobacter. The

biomarkers of OR mice were Bacteroides, Butyricimonas, Alistipes,

Rikenellaceae_RC9_gut_group, Mucispirillum, Bilophila and

Eubacterium_coprostanoligenes_group (Figures 2J, K). Among the

top ten relative abundance bacteria genera, except forAkkermansia,

all belong to biomarkers. Akkermansia was significantly down-

regulated in OP mice compared with CK and OR mice (P < 0.05),

while other biomarkers were significantly up-regulated in their

represented groups (Supplementary Figures 1a–m, P < 0.05).

Based on 16S rDNA sequencing, we used PICURSt2 to make

functional predictions of the gut microbiota. The results show that

there were significant differences in the enrichment of functional

genes in 124 tertiary metabolic pathways among the three groups

of mice.

3.3 There were significant di�erences in gut
metabolites between obesity-prone and
obesity-resistant mice

3.3.1 Multivariate statistical analysis
In both positive and negative ion modes, PCA, PLS-

DA and OPLS-DA results showed that CK mice showed a

significant separation trend from OP and OR mice, while

OP and OR mice showed no significant separation trend

(Supplementary Figures 2a–c). Q2 intercepts of OPLS-DA

models established under positive and negative ion modes

were all <0, indicating that the models were stable and

reliable without overfitting (Supplementary Figure 2d). We

identified VIP > 1 and P < 0.05 metabolites as differential

metabolites. A total of 267 differential metabolites were

identified. There were 190 different metabolites between CK

and OP mice, 160 different metabolites between CK and OR

mice, and 93 different metabolites between OP and OR mice

(Supplementary Figure 2e).

3.3.2 Obesity-related di�erential metabolites
The cluster heat map reflects the differences in the distribution

of metabolites (Figure 3A). In this study, most of the fatty

acid esters of hydroxy fatty acids (FAHFAs), which were

negatively associated with obesity, were significantly down-

regulated in both OP and OR mice compared to CK mice,

including FAHFA (20:4/20:3), FAHFA (20:5/3:0), FAHFA (20:5/9:0)

and FAHFA (3:0/26:4) (Figures 3B–E, P < 0.01). Omega-3

polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and

docosahexaenoic acid (DHA) were significantly down-regulated

in both OP and OR mice compared to CK mice (Figures 3F,

G, P < 0.01). L-Valine was significantly up-regulated in OR

mice compared with OP and CK mice (Figure 3H, P <

0.01). Choline was significantly down-regulated in OP mice

compared with CK mice (Figure 3I, P < 0.05). In addition, the

abundance of various phospholipids, including PE, PC, PI and

PG, also differed significantly among the three groups of mice

(Supplementary Table 2).

3.3.3 KEGG pathway analysis
To further explore the metabolic pathways affected by the

differential metabolites, KEGG pathway enrichment analysis was

performed on the differential metabolites. The analysis found that

eight and seven KEGG pathways were significantly enriched in OP

and OR mice, respectively, as compared to CK mice (Figure 3J,

P < 0.05). Among them, phenylalanine, tyrosine and tryptophan

biosynthesis and biosynthesis of unsaturated fatty acids were both

significantly changed in OP and OR mice. Seventeen KEGG

pathways were significantly enriched between OP and OR mice,

including those involved in protein digestion and absorption and

histidine metabolism (Figure 3J, P < 0.05).

The above results show that the types, structures and metabolic

pathways of the intestinal metabolites of three groups of mice, have

significant differences.

3.4 Association analysis of gut 16S rDNA
sequencing and untargeted metabolome

3.4.1 Correlation analysis between gut microbiota
and di�erential metabolites

In order to explore the relationship between the changes

of metabolites and gut microbiota, 12 biomarkers with LDA

> 4 in LEfSe analysis were correlated with all 267 differential

metabolites. To make the results easier to observe, we divided the

267 differential metabolites into fatty acids and their derivatives

(Figure 4A), amino acids and their derivatives (Figure 4B) and

other types of metabolites (Supplementary Figure 3). Results

show that FAHFA (20:4/20:3), FAHFA (20:5/3:0), FAHFA

(20:5/9:0), FAHFA (3:0/26:4), EPA and DHA, which were all

significantly down-regulated in both OP and OR mice, were

significantly positively correlated with CK mouse biomarkers

Lachnospiraceae_NK4A136_group, negatively correlated with

OP mouse biomarkers Blautia and Ruminiclostridium_9,

and negatively correlated with OR mouse biomarkers

Rikenellaceae_RC9_gut_group, Alistipes and Bilophila (Figure 4A, P

< 0.05). In addition, multiple phospholipids including various PE,

PC, PI and PG were also significantly associated with biomarkers

in LEfSe analysis (Figure 4A, P < 0.05).

3.4.2 MIMOSA analysis
To further explore the role of gut microbiota on differential

metabolites, a regression analysis based on database to predict

microbial metabolic potential, namelyMIMOSA analysis, was used.

The results show that there was a significant regression relationship

between the CMP values of six metabolites and the abundance

of these metabolites detected in the metabolome (P < 0.1).

These six metabolites were UDP-N-acetyl-alpha-D-glucosamine,

5-Aminopentanoate, choline, urocanate, L-Threonine and L-

Valine (Figure 5A). This suggests that changes in the abundance

of these six metabolites are regulated by the gut microbiota.

Subsequently, we decomposed the overall model into the

contribution of each taxon. The results showed that g_Akkermansia

(Greengene ID: 175696) could produce glycerophosphoryl diester

phosphodiesterase (glpQ) to synthesize choline (KEGG ID:
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FIGURE 3

There was a significant di�erence in gut metabolites between obesity-prone and obesity-resistant mice. Cluster analysis heat map (A); abundance of

metabolites FAHFA (20:4/20:3) (B), FAHFA (20:5/3:0) (C), FAHFA (20:5/9:0) (D), FAHFA (3:0/26:4) (E), Eicosapentaenoic acid (F), Docosahexaenoic acid

(G), L-valine (H) and choline (I); KEGG pathway enrichment analysis (J). The Kruskal-Wallis rank-sum test showed statistical di�erences (P < 0.05). “*”

indicates P < 0.05 and “**” indicates P < 0.01.

C00114) and valyl-tRNA synthetase (VARS) to degrade L-

Valine (KEGG ID: C00183) and it positively contributed to the

changes in choline (KEGG ID: C00114) and L-Valine (KEGG ID:

C00183) (Figure 5B). In addition, the abundance of g_Akkermansia

(Greengene ID: 175696) was also significantly down-regulated in

OP mice as compared to CK and OR mice in MIMOSA analysis

(Supplementary Figure 1n, P < 0.05). This suggests that down-

regulation of g_Akkermansia (Greengene ID: 175696) abundance

leads to down-regulation of choline (KEGG ID: C00114) and up-

regulation of L-Valine (KEGG ID: C00183).

3.4.3 Correlation analysis of gut microbiota,
di�erential metabolites and obesity-related
phenotypes

The biomarkers from LEfSe analysis, the top 10 genera

in relative abundance and some differential metabolites were

correlated with obesity-related phenotypes. The results showed

that FAHFA (20:4/20:3), FAHFA (20:5/3:0), FAHFA (20:5/9:0),

FAHFA (3:0/26:4), DHA and EPA, which were significantly

down-regulated in both OP and OR mice, were all significantly

negatively correlated with liver NAS scores, oil red O staining

positive area, body weight and serum TG (Figure 5C, P <

0.05). Notably, Akkermansia and choline, which were both

significantly down-regulated in OP mice, were both significantly

negatively correlated with liver NAS score and oil red O staining

positive area (Figure 5C, P < 0.05). In addition, Akkermansia

was significantly negatively correlated with adipocyte area and

body weight (Figure 5C, P < 0.05). The correlations among

genus, metabolite and obesity-related phenotypes were visualized

by the correlation network map. Among them, Akkermansia

was significantly positively correlated with choline, while both

Akkermansia and choline were significantly negatively correlated

with obesity-related phenotypes (Figure 5D). The above results

suggest that the effect of Akkermansia on choline may be a key

factor in the influence of gut microbiota on obesity susceptibility.

3.4.4 Correlation analysis between PICURSt2
function prediction and metabolic pathways

To further explore the metabolic pathways that may be

affected by gut microbiota, correlation analysis was performed

on metabolic pathways that were significantly different in

PICURSt2 function prediction and metabolic pathways that were
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FIGURE 4

Heat map for correlation analysis between gut biomarkers and di�erential metabolites. Heat map for fatty acids and their derivatives (A) and amino

acids and their derivatives (B). The correlation coe�cient r is shown in color. r > 0 represents a positive correlation and is shown in red; r < 0

represents a negative correlation and is shown in blue. The darker the color, the stronger the correlation. “*” indicates P < 0.05, and “**” indicates P <

0.01.

significantly enriched in the metabolome. The venn diagram

showed that 14 metabolic pathways were significantly different

in PICURSt2 function prediction and were also significantly

enriched in the metabolome (Figure 6A). We correlated the

predicted functional gene abundance of these 14 metabolic

pathways with the total abundance of all metabolites in the

pathway. The results show that the abundances of functional genes

for histidine metabolism, linoleic acid metabolism and protein

digestion and absorption were significantly positively correlated

with the degree of metabolite enrichment (Figure 6B, P < 0.05).

This suggests that histidine metabolism, linoleic acid metabolism

and protein digestion and absorption may be affected by

gut microbiota.

4 Discussion

4.1 Establishment of obesity-prone and
obesity-resistant models

In our study, mice weighing more than 1.2 times the

average weight of CK mice were considered susceptible to
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FIGURE 5

MIMOSA analysis and correlation analysis between bacterial genera, di�erential metabolites and phenotypes. Scatter plot of regression analysis

between CMP values of six metabolites and actual abundance (A); heat map of contribution values of each taxonomic unit to changes in these six

metabolites (B); heat map of correlation analysis between bacterial genera and some di�erential metabolites with phenotype (C). The correlation

coe�cient r is shown in color. r > 0 represents a positive correlation and is shown in red; r < 0 represents a negative correlation and is shown in blue.

The darker the color, the stronger the correlation. “*” indicates P < 0.05 and “**” indicates P < 0.01. Network diagram for correlation analysis of

bacterial genera, metabolites and obesity related phenotypes (D). The size of a node represents the number of connected nodes, and the thickness

of a line represents the size of the correlation coe�cient r. r>0 represents a positive correlation and is shown in red; r < 0 represents a negative

correlation and is shown in blue.

obesity, while those weighing <1.1 times the average weight

of CK mice were considered resistant to obesity. In the

actual experiments, the number of obese-prone mice and

obese-resistant mice were both approximately one-third of the

total, which is consistent with the findings of previous studies

conducted by Zhang et al. (2018) and Gu et al. (2019). In

addition, there were significant differences in many obesity-

related phenotypes between OP and OR mice, suggesting

that the obesity-prone and obesity-resistant models were

successfully established.

Compared with OR mice, OP mice showed significant insulin

resistance. This may be due to higher levels of circulating fatty
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FIGURE 6

Metabolic pathways that may be a�ected by gut microbiota. Venn analysis between KEGG metabolic pathways with significant di�erences in

PICURSt2 functional prediction and KEGG metabolic pathways significantly enriched in the metabolome (A); bubble plot of the correlation between

the predicted functional gene abundance of the 14 crossed pathways in Venn analysis and the total abundance of all metabolites in the pathways (B).

acids and systemic inflammation, including fat and intestinal

inflammation, in OP mice than in OR mice. As a result, OP

mice exhibit higher serine phosphorylation of insulin receptor

substrate 1 (IRS-1) and more severe insulin signaling blocking

(Johnson and Olefsky, 2013; Ardiansyah et al., 2018). In addition,

different metabolites produced by the gut microbiota of OP and OR

mice, such as SCFAs and bile acids, enter the circulation and pass

through G-protein coupled receptors (GPCRs), nuclear hormone

receptors or host proteins post-translational modifications (such as

lysine acetylation), thereby affecting whole-body insulin sensitivity

(Johnson and Olefsky, 2013).

4.2 E�ects of gut microbiota on obesity

In recent years, Akkermansia, especially Akkermansia

muciniphila, has been generally recognized as being negatively

associated with obesity and insulin resistance (Dao et al.,

2016; Hasani et al., 2021). For the top ten genera in relative

abundance, all the genera except Akkermansia were biomarkers

for each group. Among them, Lachnospiraceae_NK4A136_group,

a biomarker of the CK group, has been shown to produce

butyrate, increase the anti-inflammatory factor IL-10 and have

a positive anti-inflammatory effect in obese mice (Hu et al.,

2019). In addition, Lachnospiraceae_NK4A136_group also

contributes to weight loss (Wang et al., 2020) and improves

insulin sensitivity through spermidine (Ma et al., 2020; Zhao et al.,

2021). Among the biomarkers in the OP group, both Blautia and

Ruminiclostridium_9 have been found to promote obesity. Blautia

is known to contribute to promoting obesity-related metabolic

diseases such as hypertriglyceridemia, fatty liver disease and insulin

resistance (Zeng et al., 2019). Additionally, studies have shown

that Blautia can catalyze the synthesis of deoxycholic acid (DCA)

by synthesizing 7α-dehydroxylase (Lin et al., 2019). Due to its

high hydrophobicity, high levels of DCA in the gut may disrupt

the integrity of the intestinal epithelial barrier (Stenman et al.,

2013). Ruminiclostridium_9 is widely considered to be a high-fat

diet-dependent genus (Hou et al., 2021; Li et al., 2022b; Zhao et al.,

2022) and is significantly positively correlated with serum LPS

levels (Zhao et al., 2021; Lan et al., 2023). Among the biomarkers

of the OR group, Alistipes and Rikenellaceae_RC9_gut_group have

been shown to be significantly negatively correlated with body

weight and adipose tissue weight, and they may play a key role in

the prevention of obesity (Fu et al., 2022). In previous studies, the

role of Bilophila in the development of obesity has been debated. In

some studies, Bilophila has been identified as a potentially harmful

genus producing LPS and reducing intestinal sulfate (Dostal

Webster et al., 2019). However, in other studies, Bilophila was

significantly negatively correlated with HFD-induced multi-tissue

metabolic disorders and may play an important role in the process

of α-Linolenic acid improving multi-tissue homeostasis in HFD

mice (Dostal Webster et al., 2019).
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4.3 E�ect of gut microbiota on the
susceptibility to obesity through gut
metabolites

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are

composed of one molecule of fatty acid (FA) and one molecule

of hydroxy fatty acid (HFA) linked by an ester bond. Among

them, FAHFAs (16:0/18:0), specifically palmitic acid esters of

hydroxy stearic acids (PAHFAs), particularly 9-PAHFAs, have

been shown to improve glucose tolerance and reduce adipose

tissue inflammation in high-fat diet mice (Brejchova et al.,

2020). In addition, polyunsaturated FAHFAs have a stronger anti-

inflammatory function relative to PAHFAs (Brejchova et al., 2020).

FAHFA (20:5/n1:n2) and FAHFAs containing eicosapentaenoic acid

(EPA) can increase the expression of NrF2-dependent antioxidant

enzymes in HCC cells (B Gowda et al., 2020). It has also been shown

that Bacteroides acidifaciensmay improve glucose homeostasis and

inflammation in mice through FAHFAs (Yan et al., 2023). In our

study, FAHFA (20:4/20:3), FAHFA (20:5/3:0), FAHFA (20:5/9:0)

and FAHFA (3:0/26:4), all of which belong to the polyunsaturated

FAHFAs, were significantly down-regulated in OP and OR mice

compared to the CK group. All of them were significantly

positively correlated with Lachnospiraceae_NK4A136_group and

significantly negatively correlated with most of the OP and OR

group biomarkers. Additionally, these four FAHFAs were also

significantly negatively correlated with phenotypic measures of

obesity. This suggests that HFD-induced gut microbiota may

promote obesity by down-regulating FAHFAs.

As omega-3 polyunsaturated fatty acids (ω-3 PUFAs), EPA and

DHA can activate AMPK to promote the β-oxidation of fatty acids

and can also act on PPARγ to inhibit lipogenesis (D’Angelo et al.,

2020; Fu et al., 2021). Additionally, EPA and DHA can improve

insulin sensitivity by up-regulating plasma adiponectin (D’Angelo

et al., 2020). Other studies have shown that ω-3 PUFAs can

improve gut microbiota imbalance and the impaired gut immune

function caused by obesity, and gut microbiota can also reverse the

effects on the absorption and metabolism of ω-3 PUFAs (Fu et al.,

2021). In our study, both EPA and DHA were significantly down-

regulated in OP and OR mice compared to CK mice. However,

there was no difference between OP and OR mice. EPA and DHA

were also significantly positively correlated with biomarkers in

the CK group. They were significantly negatively correlated with

most biomarkers in the OP group and the OR group, as well as

significantly negatively correlated with obesity-related phenotypes.

This suggests that the significant down-regulation of gut EPA and

DHA after a high-fat diet may be caused by the gut microbiota

induced by high-fat diet. Down-regulated EPA and DHA may

contribute to obesity, but do not affect the generation of differences

in susceptibility to obesity, similar to FAHFAs.

Phosphoethanolamine (PE), phosphocholine (PC),

phosphoinositol (PI), and phosphoglycerol (PG) are the main lipid

components found in bacterial membranes (Brown et al., 2023).

These bacterial phospholipids are highly diverse, and bacteria

can adapt to different environments by changing the length and

unsaturation of the acyl chain and adding different groups (such

as adding ethanolamine, choline, inositol, or glycerol) to produce

PE, PC, PI, or PG, respectively (Zhang and Rock, 2008; Brown

et al., 2023). Furthermore, in the mouse gut, gut microbiota has

been shown to influence the phospholipid levels of host gut cells

(Manca et al., 2020). Alterations in membrane phospholipid levels

in the host gut can increase intestinal permeability, resulting

in a range of systemic effects, including obesity (de La Serre

et al., 2010; Ammendolia et al., 2021). In our study, a variety

of phospholipids, including PE, PC, PI and PG, all changed

significantly after a high-fat diet. Additionally, these phospholipids

were also significantly associated with multiple biomarkers in

the LEfSe analysis. This suggests that a high-fat diet may induce

obesity by altering phospholipid levels in the gut microbiota.

Branched chain amino acids (BCAA) are thought to be

positively associated with obesity and insulin resistance (Yuan et al.,

2023). However, it is important to note that in most studies, the

increase in BCAA levels is only a consequence of obesity, rather

than the cause. It has been demonstrated that glucose metabolism is

not impaired, but rather improved in obese patients after additional

BCAA supplementation (Woo et al., 2019; Simonson et al., 2020).

As a BCAA, valine, when combined with TDCA, can inhibit the

release of hypothalamic MCH in obese mice, thereby reducing

appetite, body weight and improving glucose tolerance (Quante

et al., 2021). Other studies have shown that valine supplementation

alone can improve insulinemia induced by a high-fat diet, reduce

intrahepatic lipid accumulation and improve lipid metabolism

by inhibiting SREBF1 and activating PPARGC1A, ACOX1 and

AMPK (Gart et al., 2022). Additionally, the metabolism of valine

is also affected by the gut microbiota. Studies have shown that

Akkermansia muciniphila can significantly affect the level of valine

in the culture medium when mucin reaches a certain concentration

(Liu et al., 2021). In our experiments, L-Valine was significantly up-

regulated in OR mice compared to CK and OP mice. MIMOSA2

analysis revealed that g_Akkermansia (Greengene ID: 175696) was

capable of producing VARS to degrade L-Valine and positively

contributed to the change in L-Valine. Therefore, g_Akkermansia

(Greengene ID: 175696) could contribute to differences in obesity

susceptibility by affecting L-Valine levels after a high-fat diet.

Numerous studies have shown that excessive dietary choline

intake can be metabolized to trimethylamine (TMA) by gut

microbiota, resulting in increased circulating TMAO levels (Yoo

et al., 2021). TMAO has been shown to be positively correlated with

obesity (Dehghan et al., 2020). However, it should be noted that

in our study, choline levels in OP mice were significantly down-

regulated compared with CK mice on a normal diet. Therefore,

OP mice are in a state of choline deficiency, rather than choline

excess. Studies have shown that choline is significantly up-regulated

in obese insulin-sensitive individuals compared to obese insulin-

resistant individuals (Al-Sulaiti et al., 2019), which is similar to our

results. Additionally, PC synthesis in the liver is mainly dependent

on choline intake, and the lack of PC can limit VLDL secretion

(Noga and Vance, 2003). Abnormally secreted VLDL can lead

to abnormal triglyceride secretion, which causes hepatic steatosis

(Corbin and Zeisel, 2012). In addition, inhibition of PC synthesis

also leads to increased lipogenesis (Su et al., 2022). Other studies

have shown that Haemophilus influenzae can produce and use

glycerophosphoryl diester phosphodiesterase (glpQ) to remove

choline from glycerophosphoryl phosphocholine (Fan et al., 2001).

In our study, MIMOSA2 analysis showed that g_Akkermansia
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(Greengene ID: 175696) was able to produce glpQ to synthesize

choline and positively contribute to changes in choline levels.

This suggests that g_Akkermansia (Greengene ID: 175696) can

promote obesity proneness by reducing choline levels through glpQ

production after high-fat diet.

Studies have shown that gut microbiota can participate in the

development of obesity through histidine metabolism, linoleic acid

metabolism and protein digestion and absorption (Zhang et al.,

2019; Xie et al., 2021; Li et al., 2022a; Ning et al., 2022; Guo

et al., 2023). In our study, the abundances of functional genes

for histidine metabolism, linoleic acid metabolism and protein

digestion and absorption were significantly positively correlated

with the degree of metabolite enrichment. This suggests that, at the

pathway level, gut microbiota may regulate histidine metabolism,

linoleic acid metabolism and protein digestion and absorption to

regulate the difference in obesity and obesity susceptibility after a

high-fat diet.

5 Conclusion

Gut microbiota and gut metabolites were significantly different

among the CK, OP, and OR mice. The consumption of a

high-fat diet induces alterations in the gut microbiota, resulting

in perturbations of EPA, DHA, various FAHFAs, and diverse

phospholipids, thereby facilitating the development of obesity.

G_Akkermansia (Greengene ID: 175696) may contribute to the

difference in obesity susceptibility through the synthesis of

glpQ, which promotes choline production and the synthesis

of VARS, which promotes L-Valine degradation. Additionally,

gut microbiota may affect obesity and obesity susceptibility

through histidine metabolism, linoleic acid metabolism and

protein digestion and absorption pathways. In conclusion, the gut

microbiota has the potential to exert an impact on the susceptibility

to obesity in mice by means of gut metabolites.
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