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Depression is one of the most prevalent mental disorders today. Over the 
past decade, there has been considerable attention given to the field of gut 
microbiota associated with depression. A substantial body of research indicates 
a bidirectional communication pathway between gut microbiota and the brain. 
In this review, we  extensively detail the correlation between gut microbiota, 
including Lactobacillus acidophilus and Bifidobacterium longum, and 
metabolites such as short-chain fatty acids (SCFAs) and 5-hydroxytryptamine 
(5-HT) concerning depression. Furthermore, we  delve into the potential 
health benefits of microbiome-targeted therapies, encompassing probiotics, 
prebiotics, and synbiotics, in alleviating depression. Lastly, we  underscore 
the importance of employing a constraint-based modeling framework in the 
era of systems medicine to contextualize metabolomic measurements and 
integrate multi-omics data. This approach can offer valuable insights into 
the complex metabolic host-microbiota interactions, enabling personalized 
recommendations for potential biomarkers, novel drugs, and treatments for 
depression.
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Highlights

 •  This paper reviews reported microbiota-based animal studies related to depression and 
microbiome-based clinical trials in depression. We  also summarized the different 
combinations of therapies and the resulting efficacy, and explored possible reasons for the 
poor efficacy.

 •  We briefly describe certain gut microbial metabolites that influence the onset and 
progression of depression via MGB axis, including 5-HT, SCFAs, GABA, GP, choline, 
lactate, BAs and vitamin (folate).

 •  This paper proposes metabolic models as a means of testing new hypotheses and exploring 
new microbial-based therapies for depression.
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Introduction

Depression is the most common mental disorder today, 
characterized by persistent and prolonged feelings of sadness as its 
main clinical feature. It has a high prevalence, high recurrence rate, 
and a tendency towards suicide (Belmaker and Agam, 2008), making 
it one of the most significant types of psychological disorders in 
modern society. Epidemiological studies from various countries 
indicate a depression prevalence rate of approximately 7% in the 
general population (For Anxiety and Depression, R. G. for Treatment, 
2017), and up to 10% of individuals with depression may attempt 
suicide (Bachmann, 2018). Major depressive disorder (MDD) has a 
devastating impact on global public health, not only causing social 
and economic burdens but also being a leading cause of severe 
disability (World Health Organization, 2008). The World Health 
Organization has identified depression as one of the top public health 
priorities, estimating that by 2030, it will be the leading cause of death 
and disability in Western countries (For Anxiety and Depression, 
R. G. for Treatment, 2017).

Over the past decade, there has been a growing interest in the 
relationship between gut microbiota and mental disorders (Sanada 
et al., 2020). The gut microbiota ecosystem contains approximately 
1 kg of bacteria, encompassing all microorganisms, their genes, 
encoded proteins, and metabolites (Eckburg et al., 2005; Korecka and 
Arulampalam, 2012). Additionally, the gut houses a large number of 
neurons, second only to the brain, earning the nickname “the second 
brain” (Ridaura and Belkaid, 2015). Extensive research has established 
the microbiota-gut-brain (MGB) axis (Bercik, 2011; Camilleri et al., 
2012). Along this axis, the microbial community in the gut influences 
brain function through three bidirectional signaling pathways 
(Macpherson and Harris, 2004; Bäckhed et al., 2005; Heijtz et al., 2011; 
Cryan and Dinan, 2012; Breit et  al., 2018). Alterations in these 
signaling pathways may contribute to mental health problems. 
Therefore, investigating the MGB axis provides a novel approach to 
exploring the pathogenesis of depression and developing appropriate 
therapeutic strategies.

In this review, we  will summarize the recent advances in gut 
microbiota research related to depression, focusing on the relationship 
and role of the MGB axis in depression. We aim to explore the value 
and potential of the MGB axis in the diagnosis of depression.

Gut microbes in depression

There are several pathophysiological hypotheses explaining 
depression, including the monoamine, brain-derived neurotrophic 
factor (BDNF), and cytokine hypotheses (Boku et al., 2018). However, 
these hypotheses have their limitations. Increasing evidence suggests 
that the gut microbiota may play a role in depression. In a study by 
McGuinness et al. (2022), it was found that the α-diversity did not 
significantly differ between the majority of MDD cases and the control 
group, with only a few reports indicating higher or lower α-diversity 
between the two groups. However, when statistically tested using 
β-diversity analysis, 87% of MDD cases showed differences in gut 
microbiota composition compared to the control group. The study 
identified 21 bacterial genera with differential abundance at the genus 
level. Higher abundances of Alistipes, Parabacteroides, Streptococcus, 
Veillonella, Enterococcus, Flavonifractor, Eggerthella, Escherichia, and 

lower abundances of Coprococcus, Prevotella, Faecalibacterium, and 
Ruminococcus were observed in MDD cases. Among them, higher 
proportions of lactobacilli and lactic acid-producing bacteria, which 
are generally considered beneficial to the host, were found. These 
bacteria promote gut microbiota balance (Shi et al., 2017), maintain a 
normal microbial environment, and have immunomodulatory effects 
(Pessione, 2012; George et  al., 2018). However, in certain 
circumstances, the production and utilization of lactate can also have 
detrimental effects on host health. Lactate can accumulate in the gut 
and cross the blood–brain barrier (Proia et  al., 2016), potentially 
leading to acidosis, arrhythmias, and neurotoxicity (Duncan et al., 
2004; Pham et  al., 2017). Many psychiatric disorders are also 
associated with mitochondrial energy dysfunction (Regenold et al., 
2009), indicated by increased lactate and decreased pH in the brain. 
Elevated levels of lactate have been observed in the brains of MDD 
patients (Ernst et  al., 2017), suggesting that an increase in the 
abundance of lactate-producing bacteria and subsequent lactate 
accumulation may contribute to the pathophysiology of depression. 
Additionally, there is evidence suggesting an association between 
Clostridium difficile and the onset of depression. In a study conducted 
by Fondden et al. and published in the journal “Nutrients” in 2020, a 
significant finding indicated that an elevated presence of C. difficile is 
associated with an increased risk of depression. The study compared 
individuals with depression to healthy individuals and discovered a 
36% higher abundance of C. difficile in those with depression. 
However, it was also observed that fecal microbiota transplantation 
proved to be an effective method in reducing the levels of C. difficile, 
thereby inhibiting the occurrence of depression (van Nood et al., 2013; 
Austin et al., 2014; Cammarota et al., 2015; Li et al., 2016; Hocquart 
et al., 2018; Fond et al., 2020). The recent study published in ‘Nature 
Communications’ provide some of the most compelling evidence to 
date regarding the relationship between depression and gut microbiota 
(Radjabzadeh et al., 2022). One study, known as HELIUS, specifically 
examined health disparities among individuals of different racial 
backgrounds living in the same urban environment, with the primary 
aim of investigating the general association between the microbiome 
and depression. Interestingly, one of the studies within this research 
did indeed uncover variations in depression risk among different 
racial groups, but these differences could be explained by individual 
variations in the composition of one’s microbiome. Overall, the study 
found a consistent association between overall microbial diversity and 
depression, transcending racial boundaries. The second study delved 
more specifically into the types of gut bacteria that may be linked to 
depression. In a meticulous analysis of fecal samples from 
approximately 1,000 participants in an ongoing population health 
study in Rotterdam, 13 microbial species were directly associated with 
symptoms of depression. The most significant new discovery in this 
research was the connection between Sellimonas and depression 
symptoms. Bacterial species belonging to the Sellimonas genus are 
involved in various inflammatory diseases, potentially linking them 
to inflammation in individuals with depression. These findings suggest 
that a causal relationship between the microbiome and depression is 
entirely plausible, and it is reasonable to consider that depression may 
lead to other physiological changes, subsequently altering the 
microbiome (Radjabzadeh et al., 2022).

Multiple studies have demonstrated the involvement of the gut 
microbiota in the occurrence and development of psychiatric 
disorders, including depression (Desbonnet et al., 2010; Zheng et al., 
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2016; Rincel et al., 2019; Pearson-Leary et al., 2020). Transplanting 
microbiota from depressed patients into normal animals has been 
found to induce depression-like behaviors (Bravo et al., 2011; Savignac 
et al., 2014; Liang et al., 2015; Campos et al., 2016; Gacias et al., 2016; 
Kelly et al., 2016; Zheng et al., 2016). Rats receiving fecal microbiota 
transplantation from depressed patients displayed anhedonia-like 
behavior in a sucrose preference test (Kelly et al., 2016). Germ-free 
mice colonized with microbiota from depressed patients showed 
increased immobility time in tail suspension and forced swim tests, 
along with an increased abundance of Actinobacteria, compared to 
mice colonized with microbiota from healthy individuals (Zheng 
et  al., 2016). These findings, supported by a substantial body of 
evidence, suggest that alterations in the gut microbiota can contribute 
to the onset of depression.

While changes in the gut microbiota can contribute to the onset 
of depression, the gut microbiota also has the potential to improve 
depressive symptoms. Animal studies (Figure 1) have shown that both 
antibiotics (Gacias et  al., 2016; Guida et  al., 2018) and probiotics 
(Bravo et al., 2011) can significantly alter depression-like behaviors in 
rats and mice, demonstrating the beneficial effects of gut microbiota 
as probiotics in alleviating depressive symptoms (Table  1). For 
instance, in rat studies, a combination therapy of eight probiotic 
strains (B. bifidum W23, B. lactis W52, L. acidophilus W37, L. brevis 
W63, L. casei W56, L. salivarius W24, Lactococcus lactis W19, 
Lactococcus lactis W58) significantly reduced diet-independent 
depression-like behaviors (Abildgaard et al., 2017). In mouse studies, 
supplementation of L. helveticus MCC1848 significantly increased 
interaction time in the social interaction test and sucrose preference 
ratio in the sucrose preference test (Maehata et  al., 2019). Oral 
administration of L. kefiranofaciens ZW3 improved depression-like 
behaviors and independent exploration ability, regulating biochemical 
disorders in the hypothalamic–pituitary–adrenal axis, immune 
system, and tryptophan metabolism (Sun et al., 2019). Clostridioides 
butyricum demonstrated significant effects by increasing 5-HT and 
glucagon-like peptide-1 (GLP-1), upregulating BDNF expression, and 
promoting GLP-1 secretion and GLP-1 receptor expression (Sun et al., 
2018) and GLP-1 has been reported to possess the potential to alleviate 
depression by regulating neuroinflammation, neurotransmitters, 
neurogenesis, and synaptic function (Kim et al., 2020). Furthermore, 
treatment with a multi-strain probiotics approach (L. helveticus R0052, 
L. plantarum R1012, and B. longum R0175) attenuated anxiety and 
depression-like behaviors induced by chronic mild stress, significantly 
increased Lactobacillus abundance, and reversed immune changes in 
the hippocampus induced by chronic mild stress (Li et al., 2018). Mice 
subjected to a series of stress stimuli exhibited depression-like 
behaviors and dysbiosis of the microbiota, but this condition could 
be reversed by probiotic administration, supplementation with gut 
bacteria, or antibiotic treatment. Mice subjected to chronic social 
defeat stress and treated with prebiotics or Bifidobacterium orally 
showed a reduction in depression-like behaviors in tests such as tail 
suspension and forced swim (Burokas et al., 2017; Yang et al., 2017). 
Similarly, mice and rats subjected to chronic restraint stress and 
treated with minocycline or oral L. helveticus NS8, respectively, 
reversed the increased depression-like behaviors and altered gut 
microbiota induced by chronic restraint stress (Liang et al., 2015; 
Wong et  al., 2016). Studies involving mice and rats in models of 
unpredictable chronic mild stress (Marin et  al., 2017), learned 
helplessness (Mika et  al., 2017; Takajo et  al., 2019), and maternal 

separation (Zheng et al., 2016) observed a reduction in depression-like 
behaviors following treatment with probiotics and supplementation 
with gut bacteria, while untreated mice and rats showed changes in 
fecal metabolomic profiles associated with depression-like behaviors 
(O’Mahony et al., 2009; Jianguo et al., 2019; Zhang et al., 2019). These 
findings from animal models of depression collectively emphasize the 
significant role of the gut microbiota and underscore the importance 
of animal models in microbiota research.

Metabolites in depression

Certain gut microbial metabolites have been shown to influence 
the occurrence and progression of depression through the MGB axis 
(Figure 2).

Tryptophan metabolism

One important factor in depression is tryptophan, and a study 
focusing on the impact of dietary tryptophan on mood disorders 
emphasizes that a diet rich in tryptophan helps reduce depressive 
symptoms and improve an individual’s emotional state. Conversely, a 
low tryptophan diet can lead to irritability and anxiety (Lindseth et al., 
2015). Tryptophan can be metabolized in two crucial pathways of 
depression: the 5-HT and kynurenine pathways (Comai et al., 2020).

As a key modulator of the gut-brain axis, the neurotransmitter 
5-HT plays a crucial role in the communication between the gut and 
the brain in the signaling of the MGB axis. Recently, an increasing 
number of studies have indicated the significant role of 5-HT, 
including its precursor 5-hydroxytryptophan (5-HTP), in the 
development of depression. Tryptophan hydroxylase (TPH) enzyme 
plays an important role in various psychiatric disorders, including 
depression. Research suggests that stress suppresses the expression of 
this enzyme, thereby reducing the levels of 5-HT (Chen et al., 2017b). 
Peripheral cells involved in the production of 5-HT exhibit TPH1 
dysfunction, leading to insufficient levels of 5-HT in the brain, which 
in turn triggers a homeostatic response of TPH2, an enzyme that is 
overexpressed in individuals with suicidal tendencies, in response to 
low 5-HT levels (Bach-Mizrachi et  al., 2006; Fukuda, 2014). This 
suggests that low 5-HT may contribute to the development of 
depression. The gut microbiota, in turn, influences depression by 
regulating the levels of 5-HT. Antibiotic-treated or germ-free mice 
exhibit reduced synthesis of 5-HT, which can be  reversed by the 
colonization of spore-forming bacteria (Yano et al., 2015). Specific 
spore-forming bacteria from humans and mice increase the levels of 
5-HT in the colon and serum of germ-free mice through the 
production of SCFAs, thereby upregulating the expression of TPH1 in 
ECCs and enhancing 5-HT production (Reigstad et al., 2015; Yano 
et al., 2015). This also improves gut motility disorders associated with 
germ-free conditions (Furusawa et al., 2013). The communication 
between ECCs-released 5-HT and the gut microbiota Turicibacter 
sanguinis, which possesses a 5-HT uptake mechanism, is involved in 
its colonization and host physiology (Fung et al., 2019). The most 
common antidepressant medications are based on blocking the 
reuptake of 5-HT, thereby increasing its levels in the synaptic cleft and 
promoting antidepressant responses (Cowen and Browning, 2015; 
Vahid-Ansari and Albert, 2021). This explains the bidirectional effects 
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observed between certain psychotropic drugs, including selective 
serotonin reuptake inhibitors, and the gut microbiota (Cussotto et al., 
2019), suggesting the facilitatory role of high concentrations of 5-HT 
in antidepressant effects. Furthermore, depression patients show 
inadequate transport of 5-HTP to the brain (Ryan, 1992; Maffei, 
2020), and another study also suggests that the combination of 5-HTP 
with niacinamide is more effective in combating depression compared 
to niacinamide alone (López-Ibor Aliño et al., 1976; Maffei, 2020), 
highlighting the impact of 5-HTP on depression.

Another pathway of tryptophan metabolism is the kynurenine 
pathway. Excessive pro-inflammatory cytokines produced in 
depression over activate the enzymes indoleamine 2,3-dioxygnease 
(IDO) and tryptophan 2,3-dioxygenase (TDO), promoting the 
kynurenine pathway and consequently reducing the activation of the 

5-HT pathway and decreasing the production of 5-HT (Miura et al., 
2008). It is worth mentioning that IDO and TDO inhibitors, by 
inhibiting the activation of IDO and TDO enzymes, can serve as 
potential drugs for the treatment of depression (Qin et al., 2018). 
Studies on germ-free mice have shown that the availability of 
tryptophan increases due to reduced activation of the peripheral 
kynurenine pathway (Clarke et al., 2013). Moreover, in a rodent model 
of chronic unpredictable stress, the decrease in stress-induced 
lactobacillus abundance weakens the inhibition of IDO 1 mediated by 
hydrogen peroxide. This inhibition leads to an increase in the 
conversion of tryptophan to kynurenine, resulting in behavioral 
changes resembling depression in mice exposed to chronic stress 
(Marin et al., 2017). In contrast to 5-HT, kynurenine can cross the 
blood–brain barrier and negatively impact brain health through the 

FIGURE 1

Geographical locations and sample metadata of different animal studies related to depression.
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induction of neuroinflammation and neurodegenerative changes 
(Kennedy et al., 2017). Therefore, the study of 5-HT and kynurenine 
metabolism in tryptophan metabolism holds significant importance 
in depression research, and the balance between the two is closely 
linked to the physiopathology of depression.

SCFAs

In the gut, short-chain fatty acids (SCFAs) serve as common 
microbial metabolites and are closely associated with depression. 
Reports indicate that SCFAs are depleted in patients with MDD 

TABLE 1 Antidepressant effects of probiotics in animal studies.

Model animals Probiotics Administration form Finding PMID

Mice
Lactobacillus (L.) rhamnosus 

JB-1™
Oral administration via drinking water

Adult male BALB/c mice 

responded with greater 

antidepressive-like behavior to 

probiotic while SW mice did not.

29867313

L. helveticus strain MCC1848 Oral intake of heat-killed probiotics

MCC1848 supplementation 

significantly enhanced 

interaction time in social 

interaction test and sucrose 

preference ratio in the sucrose 

preference test.

30898081

L. kefiranofaciens ZW3 Oral administration

ZW3 improved depression-like 

behavior and independent 

exploration ability, regulated 

biochemical disorders in the 

hypothalamic–pituitary–adrenal 

axis, immune system, and 

tryptophan metabolism. 

Probiotic strain stayed in 

intestine 7 days after intervention 

ceased.

30698577

L. helveticus R0052,  

L. plantarum R1012, and 

Bifidobacterium (B.) longum 

R0175

Oral administration

Probiotics attenuated CMS-

induced anxiety-and depressive-

like behaviors, significantly 

increased Lactobacillus 

abundance, and reversed the 

CMS-induced immune changes 

in the hippocampus.

30459574

Clostridioides butyricum Gavage administration

Clostridioides butyricum 

exhibited prominent effects, 

increasing 5-HT and GLP-1 and 

upregulating BDNF expression, 

and secretion of GLP-1 and 

upregulated GLP-1R expression.

30040410

Rat

B. bifidum W23, B. lactis W52, 

L. acidophilus W37, L. brevis 

W63, L. casei W56, L. salivarius 

W24, Lactococcus lactis W19, 

Lactococcus lactis W58

Oral administration via drinking water

Multispecies probiotics treatment 

markedly reduced depressive-like 

behavior independently of diet.

28259042

L. helveticus R0052 and  

B. longum R0175
Gavage administration

Probiotics attenuated post-

myocardial infarction depression 

as well as n-3 fatty acids did.

23068715

L. helveticus R0052 and  

B. longum R0175
Oral administration via drinking water

Probiotics interferes with the 

development of post-MI 

depressive behavior and restores 

intestinal barrier integrity in MI 

rats.

21933458

Details of the samples used in theses studies can be found in Figure 1.
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(Zheng et  al., 2016; Skonieczna-Żydecka et  al., 2018). However, 
administration of SCFAs, especially butyrate, has been shown to 
improve depression-related gut permeability and HPA axis reactivity, 
resulting in antidepressant effects (Van De Wouw et al., 2018; Caspani 
et  al., 2019). Research related to depression suggests that the 
expression of BDNF, can be altered by exogenous SCFAs. Long-term 
administration of exogenous sodium butyrate in mice has significantly 
reduced depressive-like behavior, indicating that SCFAs may influence 
the occurrence and development of depression through their effects 
on the brain (Schroeder et al., 2007).

SCFAs impact the activity of the enteric nervous system (ENS) 
and regulate intestinal motility in rodents through free fatty acid 
receptors present on epithelial cells, enteroendocrine cells (EECs), 
ECCs, immune cells, and endogenous and exogenous neurons 
(Muller et  al., 2020). These pathways modulate local neuronal 

cells in the metabolism and/or ENS and the afferent pathway of 
the vagus nerve, which directly signals to the brain (Morais et al., 
2021). A study showed that germ-free mice, lacking gut 
microbiota, exhibited increased activation of extrinsic neurons 
connecting the brainstem sensory and enteric sympathetic 
neurons. However, the activation of these neurons was inhibited 
by the administration of gut microbiota that produces SCFAs. 
These findings suggest that gut microbiota can regulate the 
gut-brain axis neuronal pathway through SCFAs. Additionally, 
SCFAs have been shown to affect the production of intestinal 
5-HT (Bonaz et al., 2018). In humans and mice, increased dietary 
tryptophan induces the synthesis of SCFAs by gut microbiota, 
leading to increased production and release of 5-HT in ECCs and 
enhanced gastrointestinal motility (Reigstad et  al., 2015; Yano 
et al., 2015; Agus et al., 2018; Yu et al., 2019).

FIGURE 2

Depression-associated metabolic pathways. Gut microbiota regulates the levels of 5-HT to influence depression. Through dietary or drug 
interventions, it upregulates the expression of tryptophan hydroxylase 1 (TPH1) in enterochromaffin cells (ECCs), enhancing the production of 5-HT. 
SCFAs have been shown to affect the production of 5-HT in the gut. An increase in dietary tryptophan induces the synthesis of SCFAs by gut 
microbiota, leading to an increase in 5-HT production and release in ECCs. Gut microbiota has the ability to increase γ-aminobutyric acid (GABA) levels 
in the central nervous system (CNS) of mice. GABA crosses the intestinal barrier and is sensed by the vagus nerve, transmitting signals to 
paraventricular nucleus (PVN) neurons, thereby initiating hypothalamic–pituitary–adrenal (HPA) axis activity and producing an antidepressant effect. In 
the human body, choline positively influences emotions through promoting SAM-dependent DNA methylation. However, oral choline increases the 
concentration of acetylcholine in the brain, promoting depression-like behavior. Choline deficiency or excess may both affect depression, highlighting 
the complexity of the relationship between choline metabolism and depressive behavior. Lactic acid can pass through the blood–brain barrier, and 
studies in rodents and humans have found a connection between depression and lactic acid abnormalities. About one-third of depression patients 
exhibit folate deficiency. Folate supplementation has demonstrated its antidepressant effects, but clinical trials have not yet provided strong evidence 
to support folate as an advantageous adjunctive strategy for depression. The signaling pathway of bile acid metabolism within the gut–liver axis (not 
depicted in the figure), subject to structural modifications by the gut microbiota, can elicit either severe depression or manifest antidepressant effects 
based on the specific receptors involved. Created with BioRender.com.
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However, SCFAs have a relatively short half-life (25 min to 3 h), 
and further research is needed to determine the extent of the influence 
of physiologically relevant concentrations of SCFAs on the brain 
(Margolis et al., 2021).

GABA

γ-aminobutyric acid (GABA) is a naturally occurring amino acid 
found widely in vertebrates, plants, and microorganisms. It is an 
important inhibitory neurotransmitter in the central nervous system 
(Rashmi et al., 2018). In recent probiotic research, it has been reported 
that GABA can be produced by gut microbiota, following a synthesis 
pathway similar to that in the central nervous system (Janik et al., 
2016), and has been shown to alleviate depressive-like behavior in 
mice (Bravo et al., 2011).

Studies have indicated that certain gut microbiota have the ability 
to increase GABA levels in the central nervous system of mice, thereby 
modulating depressive-like behavior. One such microorganism is 
L. rhamnosus JB-1 (Yunes et al., 2016; Strandwitz et al., 2018), which 
produces GABA that can cross the intestinal barrier via the proton-
coupled amino acid transporter hPAT1 (Nielsen et al., 2012; Bonaz 
et al., 2017; Yong et al., 2020) and is sensed by the vagus nerve (Bonaz 
et al., 2017). The vagus nerve activates the GABA signaling pathway 
to regulate the expression of GABAA and GABAB receptors (Yunes 
et al., 2016; Strandwitz et al., 2018), allowing the GABA produced by 
the microbiota to interact with the widely expressed GABA receptors 
and transporters on the afferent neurons of the vagus nerve (Nielsen 
et al., 2012; Yong et al., 2020). Additionally, the vagus nerve initiates 
neural activation in the nucleus tractus solitarius (NTS) of the central 
nervous system. Sensory gut information transmitted to the NTS is 
then integrated into its extensive projections, such as the PVN of the 
hypothalamus, where PVN neurons are responsible for initiating HPA 
axis activity and producing antidepressant effects (Bravo et al., 2011; 
Janik et al., 2016).

Glycerophospholipids

Some evidence suggests that the host’s lipid metabolism is 
influenced by the gut microbiota (Blaszczak et al., 2019). Lipids play 
a crucial role in neuronal function, and the lipid composition of the 
brain may impact perception and emotional behavior, potentially 
leading to depression and anxiety (Adibhatla and Hatcher, 2008; Yadav 
and Tiwari, 2014; Kornhuber et al., 2015). Glycerophospholipids (GP) 
are major structural lipid components of eukaryotic cell membranes 
and are involved in numerous cellular processes. Disruption of the gut 
microbiota, as observed in germ-free mouse experiments, may induce 
depressive-like behavior by modulating host metabolism (Zheng et al., 
2016). Further research has revealed that the gut microbiota primarily 
influences host GP metabolism (Tian et al., 2022). An experiment 
found that the hippocampus exhibited the highest degree of disruption 
in lipid metabolic pathways. The differentially metabolized 
compounds in the hippocampus were mainly enriched in GP 
metabolites, with a small proportion belonging to sphingolipid 
metabolism. Compared to the healthy control (HC) group, the 
depressive-like (DL) group showed upregulation of most hippocampal 
metabolites involved in GP metabolism. Furthermore, two metabolites 

involved in sphingolipid metabolism (dihydroceramide and ceramide-
1-phosphate) were significantly decreased in the DL group compared 
to the HC group. In a chronic unpredictable mild stress rat model of 
depression, a decrease in lipid metabolism-related enzymes associated 
with fatty acid synthesis and metabolism, as well as GP metabolism, 
was observed (Oliveira et  al., 2016). These findings indicate an 
imbalance in hippocampal sphingolipid and GP metabolism 
associated with depressive-like behavior (Zheng et al., 2021).

Consistent results from studies on humans and non-human 
primates indicate that dysbiosis of the bacterial phylum Firmicutes 
may be a hallmark of depression. Zheng et al. found that alterations in 
microbial and metabolic modules related to fatty acyl, sphingolipid, 
and GP metabolism were highly correlated with depressive-like 
behavior (Zheng et al., 2021). Within these microbial modules, several 
microbial genes involved in fatty acyl, sphingolipid, and GP 
metabolism were identified, suggesting that the gut microbiota and 
their regulated host metabolites may play a crucial role in the 
pathophysiology of depression. Interestingly, most of the unsaturated 
fatty acids used for the synthesis of brain neuronal membrane GP 
originate from the gastrointestinal tract rather than the central 
nervous system, indicating that GP metabolism via the gut-brain axis 
interferes with depression.

Choline metabolites

Choline is a constituent of all biological membranes and a 
precursor of acetylcholine in cholinergic neurons. The acquisition of 
choline in the body occurs through food sources such as liver and 
eggs, primarily in the form of phosphatidylcholine (PC), or from 
endogenously synthesized PC through a continuous methylation 
process of phosphatidylethanolamine (PE). Choline itself is not a 
product of bacteria, but under the influence of the gut microbiota, 
choline can be metabolized into a series of compounds, including 
trimethylglycine (betaine) and trimethylamine (TMA). In the liver, 
TMA is converted to trimethylamine N-oxide (TMAO) by flavin 
monooxygenases (Dumas et al., 2006). Studies have found that the 
levels of TMA and TMAO in mouse plasma are positively correlated 
with Clostridiales, Ruminococcus, and Lachnospiraceae in the gut, 
while negatively correlated with the proportions of S24-7, an abundant 
family from Bacteroidetes (Wang et  al., 2015). In the findings by 
Romano et al. (2017), choline and its metabolites were found to affect 
emotional behavior through DNA methylation. Choline regulates the 
production of the methyl donor S-adenosylmethionine (SAM) to 
promote DNA methylation. Bacterial consumption of choline reduces 
the availability of methyl donors, which is consistent with reports of 
decreased hippocampal DNA methylation and abnormal 
neurodevelopment in offspring due to maternal choline deficiency 
(Mellott et al., 2007). In the human body, betaine has a positive impact 
on emotions by promoting SAM-dependent DNA methylation (Di 
Pierro and Settembre, 2015). In a rat model of stress, supplementation 
of choline, betaine, and other methyl donors successfully reversed 
depressive-like behavior (Paternain et al., 2016).

However, oral administration of choline may promote depressive-
like behavior. Choline can actively cross the blood–brain barrier 
(Sawada et al., 2010), and oral choline increases the concentration of 
acetylcholine in the brain (Babb et al., 2004), indicating that abnormal 
choline metabolism may promote depressive-like behavior by altering 
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the choline concentration used for acetylcholine synthesis. Studies 
have shown that the concentration of the neurotransmitter 
acetylcholine is significantly higher in patients with MDD than in 
healthy subjects (Mineur and Picciotto, 2010). All of these findings 
indicate that choline and its metabolites have a significant impact on 
emotions through the gut microbiota. Choline deficiency can impair 
mental health, while excessive choline intake may lead to excessive 
synthesis of acetylcholine and result in depressive-like behavior. This 
also suggests the complexity of the relationship between choline 
metabolism and depressive behavior.

Lactate

Lactic acid is produced through the fermentation of dietary fiber 
by mammalian hosts and specific bacteria such as lactic acid bacteria, 
Bifidobacteria, and Proteobacteria (Ríos-Covián et al., 2016). Although 
the concentration of lactate in the intestine is low, it can be absorbed 
into the bloodstream (Tahara et al., 2018) and can cross the blood–
brain barrier (Knudsen et al., 1991). Studies in rodents and humans 
have indicated a connection between depression and lactate 
abnormalities (Carrard et al., 2018; Karnib et al., 2019), with increased 
urinary lactate levels observed in severe MDD patients (Chen et al., 
2017a). In germ-free mice, elevated lactate concentrations have been 
observed in the hippocampus, while germ-free rats exhibit increased 
lactate concentrations in the frontal lobe (Swann et al., 2017).

Karnib et al. (2019) found that lactate salts have a protective and 
reversing effect on depression. Mice treated with lactate showed 
increased levels and activity of HDAC2/3 in the hippocampus, while 
mice not receiving lactate exhibited depressive-like behavior. The 
efficient exchange of lactate between the peripheral and central 
nervous systems (Knudsen et al., 1991) suggests the crucial role of the 
gut microbiota in mediating the antidepressant effects of lactate salts.

Bile acids

Bile acids (BAs), synthesized from liver cholesterol, are pivotal 
end-products in cholesterol metabolism, constituting essential 
components of bile and primarily existing in the enterohepatic 
circulation system. In humans and rats, the main BAs are cholic acid 
(CA) and chenodeoxycholic acid (CDCA), subject to structural 
modifications by gut microbiota, leading to the formation of 
secondary and tertiary BAs (Russell, 2003). Higher levels of cytotoxic 
secondary BAs, derived from the primary bile acid CDCA by bacterial 
modifications, have been extensively reviewed in correlation with the 
severity of anxiety symptoms (Guzior and Quinn, 2021; Mahmoudian 
Dehkordi et al., 2022; Qu et al., 2022; Sun et al., 2022).

The signaling pathway of BAs is initiated by their binding to 
farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 
(Mertens et al., 2017). FXR is involved in bile acid synthesis, secretion, 
transport, and regulation of cAMP-response element binding protein 
(CREB) activity. By inhibiting the transcription factor CREB, BAs can 
suppress the transcription of BDNF, suggesting a potential influence 
of BAs on depression. Reports have indicated that the abnormal 
activity of BDNF in individuals with depression may be  partially 
caused by changes in bile acid activity. In the chronic unpredictable 
mild stress (CUMS) rodent model of depression, an overexpression of 

FXR in the hippocampus has been observed. Conversely, 
overexpression of FXR in the rat hippocampus induces depression-
like behavior, while the deletion of the FXR gene in juvenile rats 
inhibits the occurrence of depression-like behavior (Chen et al., 2018). 
An independent study has also confirmed the antidepressant effect of 
FXR gene deletion (Huang et al., 2015). Additionally, BAs may disrupt 
tight junction expression, leading to increased permeability of the 
intestinal and central epithelial cells, which can result in severe 
depression (Quinn et  al., 2014). However, some BAs, such as 
ursodeoxycholic acid, have shown good antidepressant effects (Moore 
et al., 2000; Spedding, 2014), indicating that the impact of BAs on 
depression-like behavior may depend on specific receptors involved.

Vitamin (folate)

Humans heavily rely on the gut microbiota, such as lactobacilli 
and bifidobacteria, to produce vitamins (Gu and Li, 2016), which play 
important roles in the human body. In the central nervous system, 
vitamins can influence neurotransmitter production (Kennedy, 2016), 
thereby impacting neuronal function.

Folate, a microbiota-derived vitamin, has been widely implicated 
in depression research (Brocardo et al., 2008, 2009; Molina-Hernández 
et al., 2011; McCoy et al., 2016; Paternain et al., 2016; Gao et al., 2017), 
with approximately one-third of individuals with depression showing 
folate deficiency (Miller, 2008). Administration of folate has 
demonstrated antidepressant effects in animal models of depression 
(Brocardo et  al., 2008; Molina-Hernández et  al., 2011; Gao et  al., 
2017), and some clinical studies have indicated its potential as an 
adjunctive therapy for depression in humans (Coppen et al., 1986; 
Coppen and Bailey, 2000). Folate can synthesize tetrahydrobiopterin, 
which acts as a cofactor for the conversion of phenylalanine and 
tryptophan into neurotransmitters dopamine, nzorepinephrine and 
5-HT (Wolf et  al., 1991), thereby enhancing serotonergic and 
noradrenergic activity in mice and exerting antidepressant effects. 
Furthermore, in addition to increasing central 5-HT, folate can induce 
increased expression of BDNF and glutamate receptor 1  in the 
hippocampus and associated cortex. The active metabolite of folate, 
5-methyltetrahydrofolate, converts homocysteine into methionine, 
which is used as a methyl donor to produce S-adenosylmethionine 
(SAM). SAM has been shown to exert antidepressant effects through 
DNA methylation of phospholipids (Young and Ghadirian, 1989; 
Kagan et  al., 1990; Bottiglieri et  al., 1994). Although significant 
improvements in depression-like behavior have been observed in 
animal studies, clinical trials have not provided strong evidence 
supporting the advantage of folate as an adjunctive strategy for 
depression (Roberts et al., 2018).

The effects of the above metabolites on depression, relevant 
mechanisms, and reference information have been summarized in 
Table 2.

Microbiome-based clinical trials in 
depression

So far, probiotics have received significant attention as potential 
therapies for mood disorders and MDD (Figure  3; Table  3). The 
occurrence of different probiotics across various clinical trials was 
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TABLE 2 Impact of metabolites on depression.

Metabolites Impacts on depression Mechanism PMID

Tryptophan

A diet rich in tryptophan helps reduce depressive 

symptoms and improve an individual’s emotional 

state. A low tryptophan diet can lead to irritability 

and anxiety.

Tryptophan hydroxylase (TPH) enzyme plays an important role in 

various psychiatric disorders, including depression. The peripheral 

cells involved in the production of 5-HT showed TPH1 dysfunction, 

leading to insufficient levels of 5-HT in the brain, which in turn 

triggers a homeostatic response of TPH2. Excessive pro-

inflammatory cytokines produced in depression over-activate the 

enzymes IDO and TDO, promoting the kynurenine pathway, 

thereby reducing the activation of the 5-HT pathway. Kynurenine 

can cross the blood–brain barrier and negatively impact brain health 

by inducing neuroinflammation and neurodegenerative changes.

25858202

28968985

16192985

25540092

25860609

25550456

18465467

22688187

27392632

SCFAs
Short-chain fatty acids shown to have 

antidepressant effects.

Butyrate administration can improve depression-related intestinal 

permeability and responsiveness of the HPA axis, resulting in an 

antidepressant effect. In humans and mice, an increase in dietary 

tryptophan induces the synthesis of SCFAs by the gut microbiota, 

resulting in increased production and release of 5-HT in ECs.

31646148

30066368

16945350

25860609

25550456

31216174

29902437

GABA
GABA has been shown to alleviate depressive-like 

behavior in mice.

JB-1 produce GABA, which crosses the intestinal barrier and is 

sensed by the vagus nerve, which activates the GABA signaling 

pathway, regulates the expression of GABAA and GABAB receptors 

and interacts with GABA. At the same time, the vagus nerve initiates 

neural activation, and PVN neurons initiate HPA axis activity to 

produce antidepressant effects.

21876150

27794467

30531975

22452873

32009871

29163522

26577887

Glycerophospholipid

An imbalance in hippocampal sphingolipid and 

glycerophospholipid metabolism associated with 

depressive-like behavior.

In a chronic unpredictable mild stress rat model of depression, a 

decrease in lipid metabolism-related enzymes associated with fatty 

acid synthesis and metabolism and glycerophospholipid metabolism 

was observed, indicating an imbalance in hippocampal sphingolipid 

and glycerophospholipid metabolism associated with depression-like 

behavior.

25754084

32376998

25803076

18755070

24590317

Choline

Choline deficiency can impair mental health, 

while excessive choline intake may lead to 

excessive synthesis of acetylcholine and result in 

depressive-like behavior.

Choline and its metabolites affect emotional behavior through DNA 

methylation. Supplementation with choline, betaine, and other 

methyl donors successfully reversed depression-like behavior. At the 

same time, cholinergic passage through the blood–brain barrier 

increases the concentration of acetylcholine in the brain, and 

abnormal choline metabolism may promote depression-like 

behavior.

28844887

25678811

26628207

10467961

14972364

Lactate
Lactate salts have a protective and reversing effect 

on depression.

Lactate can cross the blood–brain barrier and elevated levels of 

lactate have been observed in both germ-free rodents and MDD 

patients. Depression-like behavior was reversed by lactate 

administration.

2050746

30647450

28624318

28595107

Bile acids

Bile acid can cause severe depression, but some 

Bile acid, such as Ursodeoxycholic acid, show 

good antidepressant effect.

FXR is involved in bile acid synthesis, secretion, transport and 

regulation of CREB activity. By inhibiting CREB, bile acid can 

inhibit the transcription of BDNF, resulting in abnormal BDNF 

activity in patients with depression.

29163019

29677620

25870546

24629820

Vitamin (folate)

About one-third of depression patients exhibit 

folate deficiency, and administering folate in 

animal models of depression shows antidepressant 

effects.

Folate can synthesize BH4, which converts phenylalanine and 

tryptophan into the neurotransmitters dopamine, norepinephrine 

and 5-HT, thereby exerting an antidepressant effect. BDNF and 

GluR1 expression was also induced in the hippocampus and 

associated cortex.

18078962

20816716

10967371

2939126

1716662
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explored (Figure 4). L. acidophilus and B. longum are the most widely 
used probiotics in clinical trials. In healthy individuals, probiotic 
treatment with L. helveticus R0052 and B. longum R0175 for 30 days 
has been shown to reduce depression scores on the Hospital Anxiety 
and Depression (HAD) scale (Messaoudi et al., 2011). In patients with 
mild to moderate depression, a four-week treatment with a variety of 
probiotics (Bio-Kult Advanced®) significantly decreased PHQ9 scores 
(Baião et  al., 2023). However, some studies have indicated that 

probiotic interventions may not effectively alleviate depressive 
symptoms. In individuals with moderate to severe depression, an 
eight-week administration of a probiotic mixture containing 
L. helveticus R0052 and B. longum R0175 as an adjunctive therapy did 
not improve depressive symptoms (Romijn et al., 2017). This study 
had a larger sample size and a longer treatment duration compared to 
previous successful trials of the same probiotic mixture in healthy 
subjects (Messaoudi et al., 2011). Probiotics are microbial preparations 

FIGURE 3

Geographical locations and sample metadata of different clinical trials related to depression.
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TABLE 3 Antidepressant effects of probiotics observed in clinical trials.

Probiotics Administration form Findings Participant type PMID/DOI

B. longum NCC3001 (BL) Oral administration
BL reduces depression but not anxiety scores and increases quality of life in patients with 
IBS.

Adults with IBS and diarrhea or a mixed-stool 
pattern (based on Rome III criteria) and mild to 
moderate anxiety and/or depression.

28483500

L. casei strain Shirota (LcS) Oral administration
Lactobacillus and Bifidobacteria significantly increased and symptoms of anxiety decreased 
in those taking LcS.

CFS patients 19338686

Probiotic yogurt contained L. acidophilus 
LA5 and B. lactis BB12.
Conventional yogurt contained S. 
thermophilus and L. bulgaricus.
Probiotic capsule contained Lactobacillus 
casei, L. acidophilus, L. rhamnosus, L. 
bulgaricus, B. breve, B. longum, and S. 
thermophilus

Oral administration of probiotic 
yogurt or probiotic capsule

After 6 weeks of intervention, a significant improvement of GHQ was observed in the 
probiotic yogurt and in the probiotic capsule group, as well as a significant improvement in 
DASS scores in the probiotic yogurt and the probiotic capsule group.

Petrochemical workers 25,879,690

L. acidophilus, L. casei, and B. bifidum
Oral administration of probiotic 
capsule with three viable and freeze-
dried strains

8-week intervention decreased Beck Depression Inventory total scores, serum insulin 
concentration, homeostasis model assessment of insulin resistance, and serum hs-CRP 
concentration. Plasma total glutathione concentration was elevated.

Aged 20 to 55 with major depressive disorder 
(MDD).

26706022

L. pentosus strain b240
Oral administration of heat-killed 
probiotics

Oral probiotics significantly reduced the incidence of the common cold in elderly adults. Elderly adults aged 65 and above 22947249

L. gasseri SBT2055 and B. longum SBT2928
Oral administration of yogurt 
containing two different probiotics

Probiotics enhanced immunity and alleviated stress. Healthy adults aged 32 to 76.
10.1016/j.

jff.2014.09.002

L. reuteri DSM17938 Oral administration
No persistent significant effects were observed on the primary or secondary outcome 
measures of the study.

General elderly 27612653

Bifidobacterium (B.) bifidum W23, B. lactis 
W52, Lactobacillus (L.) acidophilus W37, L. 
brevis W63, L. casei W56, L. salivarius W24, 
and Lactococcus lactis (W19 and W58)

Oral administration of freeze-dried 
powder of the probiotic mixture

Consumption of multiple probiotics for 4 weeks significantly reduced overall cognitive 
responses to depression, especially aggression and rumination.

No psychiatric or neurological disorders, no 
personal or family history of depression or 
migraines.

25862297

L. acidophilus, B. bifidum, Streptoccocus (S.) 
thermophiles

Probiotics/magnesium orotate 
formulation adjuvant administered 
with SSRIs

At the end of an 8-week intervention mean changes for depression scores and quality of life 
in the group was clinically significantly improved. The participants who responded to 
treatment reported a subjective increase in well-being and improved energy levels.

Meets criteria for resistant depression, is currently 
taking antidepressants, and has a history of multiple 
depressive episodes that have poor response to 
treatment.

28155119

L. helveticus IDCC3801
Oral administration of fermentation 
of milk using probiotic Lactobacillus 
suis IDCC3801 (LHFM)

Cognitive tests improved after 12 weeks of LHFM administration. Healthy elderly people aged 60 to 75
10.1016/j.

jff.2014.07.007

L. helveticus R0052 and B. longum R0175 Oral administration
Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 (PF) taken in combination 
for 30 days decreased the global scores of hospital anxiety and depression scale (HADs), and 
the global severity index of the Hopkins symptoms checklist (HSCL90).

General population 21983070

L. helveticus, B. longum Oral administration
No significant evidence was found effectively treating low mood or modcrating the levels of 
inflammatory and other biomarker.

Not currently taking psychotropic drugs and 
scoring at least moderate on a self-reported 
emotional measurement.

28068788

Details of the samples used in these studies can be found in Figure 2.
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that, when ingested, can improve the balance of gut microbiota 
(Gibson and Roberfroid, 1995).

Prebiotics are compounds that are not broken down, absorbed, or 
utilized by the human body but promote the growth of gut microbiota, 
ultimately benefiting the host (Valcheva and Dieleman, 2016). 
Compounds evaluated in prebiotic trials include Bimuno®-
galactooligosaccharide (B-GOS), fructooligosaccharide (FOS), GOS, 
and short-chain FOS (scFOS). None of the five depression prebiotic 
trials (Smith, 2005; Silk et al., 2009; Smith et al., 2015; Azpiroz et al., 
2017; Kazemi et  al., 2019) demonstrated a significant impact on 
depressive symptoms. Two studies examining the benefits of prebiotic 

treatment also did not observe a decrease in depression symptom 
scores during the eight-week follow-up period (Heidarzadeh-Rad 
et  al., 2020; Vaghef-Mehrabany et  al., 2021). When studied as 
standalone therapies, prebiotics yielded non-statistically significant 
results (Akkasheh et al., 2016; Kazemi et al., 2019; Rudzki et al., 2019). 
However, no studies have indicated any negative effects of probiotic/
prebiotic interventions on depressive symptoms.

The combination of probiotics and prebiotics is known as 
synbiotics (Sorbara and Pamer, 2022). In a single synbiotic study by 
Ghorbani et al., a reduction in depressive symptoms was observed 
after 8 weeks of synbiotic treatment (Ghorbani et al., 2018). In a recent 

FIGURE 4

The occurrence of different probiotics across various studies. The left bar in the Upset Plot indicating the number of studies related to each microbe. 
Higher bars signify stronger evidence linking the microbe to depression. The upper bar displays the number of studies in which several connected 
microbes simultaneously used. A higher bar indicates that these microbes are found in a greater number of studies.
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systematic review and meta-analysis by Hofmeister et al., evidence 
from 50 randomized controlled trials (RCTs) evaluating probiotics, 
prebiotics, synbiotics, postbiotics, or fecal microbiota transplantation 
interventions in adult populations was synthesized. Improvement in 
depressive symptoms was reported based on the Beck Depression 
Inventory (BDI) and the depression subscale of the Hospital Anxiety 
and Depression Scale (Hofmeister et al., 2021).

Current evidence suggests that prebiotics as standalone therapies 
are unlikely to be  effective for depression (Akkasheh et  al., 2016; 
Ghorbani et al., 2018; Majeed et al., 2018; Miyaoka et al., 2018; Kazemi 
et al., 2019). While probiotics and synbiotics appear to be effective in 
alleviating depressive symptoms, the evidence supporting this 
observation is mixed. One possible explanation for these mixed 
findings is that individuals with mild depression may derive more 
benefits from probiotic and synbiotic treatments compared to those 
with chronic treatment-resistant depression (Wallace and Milev, 
2021). Further studies focusing on different levels of depression 
severity would help clarify the benefits of these treatments. 
Additionally, the use of prebiotic and synbiotic therapies for 
depression is largely understudied, and the evidence is not as specific, 
necessitating multiple studies analyzing each compound.

Prospects and summary

The gut microbiota plays a crucial role in regulating human 
health. Extensive research has shown that the gut microbiota can 
influence the occurrence and development of depression through the 
MGB axis, involving neural, immune, and especially metabolic 
pathways. In reported studies, the gut microbiota has been found to 
play a significant role in the onset and progression of mental disorders, 
including depression. For example, when the microbiota from 
individuals with depression is transplanted into healthy animals, it can 
induce depression-like behaviors. At the same time, the microbiota 
can also improve depression-like behaviors. In animal studies, the 
administration of probiotics has been shown to significantly improve 
depression-like behaviors in both rats and mice.

Diagnosis and treatment of depression based on the gut 
microbiota is considered a future research direction. In human 
studies, administration of probiotics has shown some degree of 
effectiveness in alleviating depression symptoms. However, prebiotics 
as a standalone therapy for depression are unlikely to be effective, and 
the combination of probiotics and prebiotics has not demonstrated 
significant symptom relief. Yet, there is still limited research on the use 
of prebiotics and synbiotics in the treatment of depression, and 
exploring these therapies may uncover beneficial effects.

The CRISPR/Cas9 system is a potent genome editing tool widely 
utilized in basic, preclinical, and clinical studies as extensively 
reviewed for genetic disorders (Zhang et al., 2023). While limited 
studies have employed CRISPR/Cas9  in depression-associated 
research, there are already CRISPR/Cas-based genome editing tools 
for Bacteroides (Zheng et  al., 2022). These tools significantly aid 
mechanistic studies of gut commensals and the development of 
engineered live biotherapeutics.

Constrained-based modeling (Heinken and Thiele, 2015) allows 
for the versatility needed to simulate bacterial communities under 
various conditions that cannot be replicated in vivo, such as C. difficile 
infection. Thus, by employing computational modeling of microbial 

metabolism using software like MICOM (Diener et  al., 2020), a 
framework is provided to infer the growth rates of selected bacteria 
and the metabolic interactions within the gut microbiota. Additionally, 
it offers a high-throughput platform for generating mechanistic 
hypotheses and testing them in clinical analyses. We believe that the 
most valuable application of metabolic models in bacterial 
communities is to provide detailed functional metabolic inferences as 
a means of testing new hypotheses, thereby laying the groundwork for 
the development of more accurate models. While these computational 
approaches have been applied to the study of the gut microbiota, their 
use in exploring the metabolic consequences of depression is 
groundbreaking. The outcomes of this approach include the 
development of more precise models by incorporating information 
about the ecological relationships between the gut microbiota and its 
host. From a metabolic perspective, integrating individual differences 
in genetics and gut microbiota holds promise for personalized 
recommendations of effective therapies for depression.
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