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Introduction: Recent researches have demonstrated that microbes are crucial 
for the growth and development of the human body, the movement of nutrients, 
and human health. Diseases may arise as a result of disruptions and imbalances 
in the microbiome. The pathological investigation of associated diseases and 
the advancement of clinical medicine can both benefit from the identification 
of drug-associated microbes.

Methods: In this article, we proposed a new prediction model called MDSVDNV 
to infer potential microbe-drug associations, in which the Node2vec network 
embedding approach and the singular value decomposition (SVD) matrix 
decomposition method were first adopted to produce linear and non-linear 
representations of microbe interactions.

Results and discussion: Compared with state-of-the-art competitive methods, 
intensive experimental results demonstrated that MDSVDNV could achieve the 
best AUC value of 98.51% under a 5-fold CV, which indicated that MDSVDNV 
outperformed existing competing models and may be an effective method for 
discovering latent microbe–drug associations in the future.
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Introduction

The microbial community is crucial for both health and disease. It contains bacteria, 
archaea, viruses, protozoa, and fungi that are present in various organs of the human body and 
may be deficient in beneficial functions as well as harmful functions (Ventura et al., 2009). 
Therefore, the imbalances in the composition of the microbial community may lead to several 
diseases (Kashyap et al., 2017). For instance, obesity and inflammatory diseases might result 
from a lack of microbial diversity (Huttenhower et al., 2012), and the higher microbial diversity 
in the vagina is associated with bacterial vaginal diseases (Huang et al., 2017). Thus, repairing 
missing beneficial functions and eliminating harmful microbial activity functions could help 
in treating certain diseases. Many possible human microbe–drug connections are yet to 
be uncovered, and the mechanism of association between bacteria and medication has only 
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received a limited amount of research; however, in practice, antibiotic 
treatment of microbial communities produces some collateral damage, 
traditional clinical trials are tedious and costly, and it can sometimes 
take at least 10 years for a novel therapy to reach the market. Moreover, 
from lab research to the market, a new drug might cost up to a billion 
dollars (Adams and Brantner, 2006; Cummings et al., 2018). Currently, 
since the known associations between microbes and drugs are very 
limited, and it is quite expensive and time-consuming to discover 
them through a large number of experiments conducted by medical 
means, it will save plenty of time and money to predict the potential 
associations between them based on computational models and then 
verify them through medical experiments. In addition, the discovery 
of latent associations between human microorganisms, drugs, and 
diseases can provide further understanding of the potential mechanism 
of disease occurrence from the perspective of human microorganisms 
and drugs, so as to provide great help for the study of pathogenesis, 
facilitate early diagnosis, and improve the precision of medication.

Due to the rapid expansion of computer storage and processing 
capacity in recent years, a large collection of biological databases of 
related microbes and drugs, such as MDAD, aBiofilm, and DrugVirus, 
as well as HDVD and the COVID-19 database, have been established 
successfully, based on which it becomes possible to adopt machine 
learning techniques to infer new microbe–drug interactions. For 
instance, Zhu et al. proposed a computational model HMDAKATZ 
based on the KATZ measure by fusing the chemical structure-similarity 
of pharmaceuticals with the GIP nuclear similarity of microbes to infer 
potential microbe–drug associations (Zhu et al., 2019). Dong et al. 
proposed a method called HNERMDA by incorporating a network 
embedding technique called metapath2ve with a two-part network 
recommendation algorithm to detect latent associations between 
microbes and drugs (Dong et  al., 2017). Although the KATZ 
measurement can simultaneously reconstruct potential associations in 
large-scale networks, the similarity will inevitably be biased toward 
those known associations when calculating the GIP kernel similarity. 
Different from KATZ, HeteSim is a general framework for correlation 
metrics in heterogeneous networks that can efficiently capture the 
subtle semantics of search paths. Shi et al. proposed a HeteSim-based 
method for relevance measure in heterogeneous networks, which can 
effectively capture potential subtle semantic associations but cannot 
accomplish the prediction of microorganisms (drugs and diseases) 
without any known association (Shi et al., 2014). Therefore, for the past 
few years, scholars have introduced matrix completion and matrix 
decomposition to break down missing value matrices into two or more 
separate matrices first, and then these matrices will be multiplied to 
provide an approximation of the original matrix. As a result, in 2018, 
Shi et al. introduced a prediction model called BMCMDA based on the 
completion of binary matrices (Shi et al., 2018), which involves complex 
singular value decomposition. Zhu et  al. suggested a fresh 
computational technique named LRLSMDA based on the Laplacian 
regularized least square algorithm by using the minimization of the cost 
function to compute the two objective functions and transforming 
them into the prediction matrices using the linear averaging method 
(Zhu et al., 2021). In 2022, Cheng et al. proposed a computational 
model NIRBMMDA based on neighborhood reasoning and restricted 
Boltzmann machines, which searches for similar neighbors of drugs or 
microbes through different thresholds to obtain a scoring matrix of 
potential microbe–drug associations (Cheng et  al., 2022). In 
comparison to existing methods, this sort of regularization method 

generates fewer model parameters, which saves time and improves 
robust performance. It also aims to build different regularized least 
squares classifications (a squared loss regularization network with a 
kernel) to resolve various prediction problems. Whereas, the later 
emergence of neural networks is considered a revolutionary change and 
performs well in the direction of biological prediction. For example, 
Huang et al. presented a prediction model GNAEMDA based on graph 
normalized convolutional networks, which constructs a multimodal 
attribute map by collecting features, then inputs them into a graph 
normalized convolutional network, and finally uses the reconstructed 
map output from the network to make unknown association 
predictions (Huang et al., 2023). Additionally, Huang et al. designed a 
prediction model called Graph2MDA based on the variational graph 
autoencoder (VGAE) (Deng et al., 2021), which develops a deep neural 
network-based classifier to infer potential microbe–drug associations 
by using a two-layer graph convolutional network (GCN)-based 
encoder to train low-dimensional representations. In 2020, Long et al. 
proposed a calculation model named GCNMDA by combining a 
GCN-based encoder with a CRF layer and a decoder to forecast 
potential microbe–disease associations (Long et al., 2020). At present, 
attention mechanisms have been widely used to increase the effect of 
important data points, based on which graph attention network (GAT)-
based encoders have been popular in recent years for biological 
prediction. For instance, Long et al. introduced an integrated GAT 
framework named EGATMDA (Long et al., 2020), which includes two 
attention mechanisms and three kinds of networks such as the 
microbe–drug two-part network, the microbe–drug heterogeneous 
network, and the microbe–disease–drug heterogeneous network. Later, 
in order to ensure the sparsity of the hidden layer, the sparse 
autoencoder (SAE) added a penalty clause to the autoencoder. For 
example, Jiang et al. designed a novel approach called SAEROF to 
predict potential disease–drug associations by utilizing the SAE and the 
principal component analysis (PCA) for feature extraction and a 
rotating forest classifier for the final prediction (Jiang et al., 2020). Since 
one of the fundamental tasks in the field of bioinformatics is to forecast 
possible associations between biological entities, researchers not only 
have produced excellent results in the field of microbe–drug association 
prediction but also have developed a wealth of wonderful techniques 
for the microbe–disease association prediction, the virus–drug 
association prediction, the circRNAs–disease association forecasting, 
and the interactions forecasting between molecules and miRNAs. For 
instance, Qu et al. introduced a calculation model MHBVDA to predict 
antiviral drugs based on both heterogeneous graphical inference matrix 
decomposition and bounded kernel paradigm regularization (Qu et al., 
2023). In 2023, Wang et al. designed a prediction method TNRGCN for 
microbe–disease association prediction based on a tripartite network 
of microbes–drugs–diseases and a relational graph convolutional 
network (RGCN) (Wang et  al., 2023). Chen presented a detection 
model MATHMDA by integrating meta-path aggregate graph neural 
networks and heterogeneous networks to infer latent relationships 
between microbes and diseases (Chen and Lei, 2022). In addition, Peng 
et  al. created a prediction model named GATCL2CD by assessing 
similarities between circRNAs and diseases, in which a heterogeneous 
network was built first, and then, based on the heterogeneous network, 
a graph attention network for feature convolution learning was 
proposed to predict circRNA disease connections (Peng et al., 2023). 
Additionally, Peng et al. employed a scalable tree-enhanced model to 
predict potential correlations between each pair of small-molecule 
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miRNAs, in which a deep autoencoder was adopted to produce 
probable feature representations of each pair (Peng et al., 2022).

Although the above models performed reliably in some aspects, 
there are still some limitations. Taking neural networks widely used in 
the field of prediction as an example, the pooling layer of a convolutional 
neural network (CNN) will lose a lot of valuable information, which 
would result in a decline in the resolution of the output features and a 
decrease in the predictive ability of the model (Min et al., 2021). In 
addition, although GCN can improve the inapplicability of translation 
invariance to non-matrix structures it cannot learn better representative 
sample features through the convolution operation of the graph 
Laplacian-based structure information and input sample information 
(Sichao et al., 2021). As for GAT and SAE, GAT can effectively enhance 
the aggregation of graph neural networks, but it is difficult to aggregate 
higher-order objects and is sensitive to parameter initialization. SAE 
can extract abstract features of lower dimensionality and sparsity, but 
it cannot specify whether a node is active or hidden, and in addition, 
the sparsity parameter setting is poor (Wang et al., 2022). Inspired by 
the successful application of network embedding and matrix 
decomposition methods in the field of bioinformatics, in this article, 
singular value decomposition and Node2Vec are integrated into the 
prediction model MDSVDNV to infer potential microbe–drug 
correlations. The prediction performance on datasets of different scales 
shows that MDSVDNV can adapt to a large range of datasets with 
strong robustness. In MDSVDNV, we first extracted the linear feature 
representations of the interactions between microbes and drugs based 
on the matrix decomposition approach of singular value decomposition. 
Then, we acquired the network topological information-containing 
non-linear features between microbes and drugs via the node2vec 
algorithm. Finally, we fused its linear and non-linear features to form 
an integrated feature vector for each microbe and drug and inputted 
these integrated feature vectors into XGBoost, a machine learning 
classifier, to gain the anticipated scores of potential microbe–drug 
associations and convert the microbe–drug association prediction issue 
to a binary classification problem while predicting potential correlations 
between microbes and drugs.

Compared with state-of-the-art competitive methods, intensive 
experimental results demonstrated that MDSVDNV could achieve the 
best AUC value of 98.51% under the 5-fold CV, which indicated that 
MDSVDNV is superior to existing competing models and may play 
an important role in predicting potential microbe–drug associations 
in the future. The main contributions to this article are as follows:

 ∙ MDSVDNV can be regarded as an open framework in which 
more feature extraction methods can be applied flexibly for the 
fusion of linear and non-linear features.

 ∙ MDSVDNV is able to adapt to a large range of datasets, since 
it is robust and less time-consuming.

Materials and methods

Datasets

In experiments, we  first downloaded known microbe–drug 
associations from the MDAD database (https://figshare.com/
search?q=10.6084%2Fm9.figshare.24798456) and the aBiofilm 
database (https://bioinfo.imtech.res.in/manojk/abiofilm/) separately. 

As a result, we  downloaded obtained 5,505 clinically reported or 
experimentally validated microbial–drug correlations between 1,388 
drugs and 174 microorganisms collected in 993 articles from the 
MDAD database, and after excluding duplicates, we  obtained a 
microbial–drug dichotomous network containing 1,373 drugs and 173 
microorganisms, and 2,470 relationships between 1,373 drugs and 140 
microorganisms, while 2,884 known microbe–drug associations 
between 1720 drugs and 140 microorganisms were obtained from the 
aBiofilm database. Based on these newly downloaded known 
microbe–drug associations, we created an adjacency matrix A∈Rn nr m∗  
as follows: If there is a known link between the drug ri and the microbe 
mj , then there is Aij=1; otherwise, there is Aij=0. Here, nr  and nm  
denote the number of medicines and microorganisms, respectively.

Our MDSVDNV model

Figure  1 illustrates the flowchart of the MDSVDNV, which 
consists of the following five major steps:

 • Step1: Constructing the microbe–drug association matrix and 
corresponding microbe–drug association network (MDN).

 • Step2: Applying the singular value decomposition, a matrix 
decomposition method, on the microbe–drug association matrix 
to extract the linear features of microbes and drugs.

 • Step3: Applying Node2vec, a network embedding method, to the 
microbe–drug–disease association network to obtain the 
non-linear features of microbes and drugs.

 • Step4: Fusing the linear and non-linear features of each microbe 
and drug to construct an integrated feature vector.

 • Step5: The predicted scores of probable connections between 
microbes and drugs are obtained by feeding all these integrated 
feature vectors into the XGBoost machine learning classifier.

Linear feature extraction based on the 
singular value decomposition (SVD)

One of the most prevalent algorithms in recommendation systems 
is matrix decomposition (Ma and Liu, 2022). As a standard 
recommendation system for collaborative filtering based on SVD 
(Vozalis and Margaritis, 2007), the idea of SVD is to transform an 
arbitrary matrix AM N× into A=U VΣ T by a set of orthogonal basis 
transformations. Typically, as illustrated in the following Equation (1), 
three matrices are combined to decompose a matrix in SVD:

 
T

M N M C C C C NA U V× × × ×= Σ 

 
(1)

Based on the Equation (2), the singular values in the matrix Σ are 
arranged as follows:
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In Equations (2), supposing that there is λ1 ≥ λ2 ≥ ... ≥ λr, and λr≥0 
(i = 1, 2, …, r) is the singular value of the matrix Σ. It is well known that 
the magnitude of the singular values indicates the importance of the 
corresponding vector; moreover, the singular values are arranged in 
descending order; the singular values at the top must reflect the original 
data better than the singular values at the bottom; especially, the singular 
values decay exceptionally fast from the largest to the smallest; and in 
most cases, the sum of the top 10% or even 1% of the singular values 
exceeds 99% of the sum of all the singular values (Wu et al., 2019). This 
is one of the principles of SVD data compression, which can handle large-
scale data very well. Similarly, applying the singular value decomposition 
to the microbe–drug association matrix AM N×  yields the matrices 
U VT, ,  Σ  representing the microbe feature matrix, the matrix of feature 
weights, and the drug feature matrix, respectively. Especially in the 
microbe–drug association prediction problem, the most useful 
information about the microbe and drug features in a biomedical sense 
will be contained in the first 10% or even less of the singular values. 
During the dimensional reduction process, the useful data will not 
be lost, but the redundant information will be discarded. That is, we can 
obtain an approximate representation of the matrix A by keeping the k 
largest singular values based on the Equation (3):

 
T

M N M K K K K NA U V× × × ×≈ ⋅Σ ⋅  (3)

We draw an example of SVD as in Figure 2. It is obvious that, based 
on the singular value decomposition method, each row in UM K×  
represents a microbe’s k-dimensional linear feature vector. Similarly, each 
column in VK N

T
×  represents a drug’s k-dimensional linear feature vector.

Node2vec-based non-linear feature 
extraction

In order to train our model more accurately and realistically, 
we  employed an accurate and sophisticated network embedding 
method called Node2vec to capture the mapping of microbe and drug 
nodes in low-dimensional space to features in low-dimensional space 
while maximizing the possibility of preserving network properties. 

Node2vec is a semi-supervised method for representing feature 
embeddings of nodes in a network (Grover and Leskovec, 2016). The 
algorithm is an innovative stochastic wandering by adjusting two 
parameters, p and q, so that the randomly sampled node moves to the 
next node with bias, unlike the traditional unbiased stochastic 
wandering in the past, which explored the neighborhoods of both 
breadth-first sampling and depth-first sampling. Node2vec generates 
the feature vectors of the nodes by using the Skip-gram model 
(Mikolov et al., 2013a), a word embedding approach that seeks to 
classify a word as accurately as possible based on other words in the 
same phrase and learns distributed vector representations from a huge 
text corpus. In reality, each node in the sequence of nodes produced 
by a biased random walk algorithm represents a word. The sequence 
encoding of nodes serves as the input of the model, and the nodes 
before and after the sequence serve as its output. We  kept all the 
original parameter settings and extracted 16, 32, 64, 128, and 256 
dimensions in our experiments. The experimental results showed that 
256 dimensions would make the whole evaluation index higher, so 
we set the dimensions to 256 dimensions.

Biased random wandering sampling 
strategy

For random wandering, we  illustrated a schematic diagram in 
Figure 3, in which, supposing that the node v is the current node and its 
previous node is the node t. Then, as illustratred in the Equation (4), the 
next node will be selected based on the following static edge weights:

 ( ),vx pq vxt x wπ α= ⋅
 (4)

where wvx is the static edge weights and ≠vx is the non-normalized 
transition deflection degree on the edge (v, x) induced by v, which will 
be affected by the weight tuning parameter α. When the number of 
nodes in the sequence reaches the predetermined walk length l, the 
algorithm will be ended. In addition, the parameter α is defined in the 
following Equation (5):
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FIGURE 1

Flowchart of MDSVDNV.

https://doi.org/10.3389/fmicb.2023.1303585
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Tan et al. 10.3389/fmicb.2023.1303585

Frontiers in Microbiology 05 frontiersin.org

 

α pq

tx

tx

tx

t x
p
if d

if d

q
if d

,  ( ) =

=

=

=














1
0

1 1

1
2

 

(5)

where the value of dtx  might be  either 0 or the shortest 
distance between t and v, and the shortest distance between t and 
v might be 1 or 2. The value of q determines whether to favor the 
breadth-first sampling or the depth-first sampling, and the value 
of p governs the deflection degree that the next walk will return 
to the previous node; if p is greater than 1, the random walk will 
have a reduced inclination to return, which guides the deviation 
of the random walk; if q is higher, the random walk will deviate 
less frequently. p is also the return parameter, which controls the 

deflection degree of returning to the original node. In  
summary, the settings of p and q can be  summarized in the 
following way:

 1) When dtx = 0, then the random walk will return from x to t. 
Since the search bias at this point is 1/p, going back to the 
previous step has a chance of 1/p.

 2) When dtx = 1, then x is a direct neighbor of t, and the 
deviation is 1.

 3) When dtx = 2, then x is a neighbor of t, and the deviation is 1/q.

The Node2vec stochastic process refers to the biased random 
wandering mentioned above, where the machine randomly selects 
sequences and learns their vectorial features in a fixed step size set in 
advance. In experiments, we will adopt the original parameter choices 
by setting p to 0.25 and q to 4.
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× ×
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Example of how to use SVD on the microbe–drug relationship matrix.
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labels indicate search biases α.
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Node2vec feature learning implementation

In our method, we will transform the problem of extracting the 
characteristics of any given node in a network into a problem of 
optimizing an objective function of “likelihood” so that the node can save 
information about its neighbors. Hence, in the graph G = (V, E), where 
V is the set of nodes and E is the set of edges, as illustrated in the 
Equation (6), the objective function for maximizing the logarithmic 
property can be described as follows:

 
( ) ( )( )max log Pr |s

f v V
N v f v

∈
∑

 (6)

where the function f : v→Rd represents the mapping of vertices 
to feature representations, and d is a preset hyper-parameter indicating 
the dimension of the feature representation of each vertex. Thus, f is a 
function of size |V| × d, v V∈ , and N v Vs ( ) ⊂  denotes the neighboring 
vertices of vertex v under the sampling strategy s.

During implementation, we will apply the following two common 
conditional independence assumptions to make the optimization 
issue tractable:

·The assumption of conditional independence: In order to 
decompose the conditional probability, as shown in the Equation (7), 
we assume that, given the feature representation of the source node, 
the probability of the occurrence of its nearest-neighbor vertices is 
independent of the remaining vertices in the nearest-neighbor set, 
which can be represented as:

 
( ) ( )( )

( )
( )( )Pr | Pr |

i s

s i
n N v

N v f v n f v
∈

= ∏
 (7)

·Symmetry in feature space: Considering that the source node and its 
neighbor nodes have a symmetry effect on each other in the feature space, 
which means that a vertex shares the same set of embedding vectors as a 
source vertex and as a near-neighbor vertex; therefore, by parameterizing 
each source-neighborhood node pair as a softmax unit, as illustrated in the 
Equation (8), we can model the conditional probability as follows:

 
( )( ) ( ) ( )( )

( ) ( )( )
exp

Pr |
exp

i
i

x V

f n f v
n f v

f x f v
∈

⋅
=

⋅∑  (8)

The above two assumptions aim to help with the optimization 
challenge and allow for the objective function to be simplified in the 
manner shown in the following Equation (9):

 ( )
( ) ( )max log

i s

v i
f v V u N v

Z f v f v
∈ ∈

 − + ⋅
  

∑ ∑  (9)

For each node, as illustrated in the Equation (10), there are:

 ( ) ( )( )expv
x V

Z f v f x
∈

= ⋅∑  (10)

For large networks, the matching function ( ) ( )( )expZ f v f xv
x V

= ⋅
∈
∑

at each node is computationally expensive, and we  use negative 
sampling (Mikolov et al., 2013b) to approximate it. It is a method used 

to increase the training speed and improve the quality of the resulting 
feature vectors. A small, randomly selected negative sample is used to 
update the corresponding weights. Unlike the original method, where 
all the weights are updated for each training sample, negative sampling 
allows a training sample to be updated with only a small portion of the 
weights at a time, which reduces the amount of computation in the 
gradient descent process.

Feature fusion

In the microbe–drug association network, we get the U VT, , and 
non-linear feature representations of the disease and microbe nodes 
based on the decomposition of AM N×  and the semi-supervised 
algorithm Node2vec. The following is the feature fusion rule for each 
microbe i and drug j: The i th row of U, which is transformed into a 
column vector and given the symbol LMi , is the linear feature 
corresponding to the microbe i. Similar to this, the jth column of VT

, designated as LDi , is the linear features related to the drug j. In 
addition, after designating the non-linear feature corresponding to i 
as NM j  and the non-linear feature relating to j as NDj, as shown in 
the Equations (11) and (12), the combined final features of the nodes 
i and j can be featured as follows:

 FM
LM
NMi

i

i
=








  (11)

 FD
LD
NDj

j

j
=








  (12)

where [] denotes a vector connection operation.
Ultimately, we  use the final combined features of drugs and 

microbes as the input to the XGBoot classifier, which converts the 
prediction task to a binary classification task, and the output of the 
XGBoot classifier yields a linear relationship (i.e., association 
probability) between each pair of microbes and drug, thus we can 
determine the hidden associations between microbes and drugs. In 
experiments, we  finally set max depth = 2, min child weight = 50, 
subsample = 0.3, and the remaining parameters to their default values.

Evaluation metrics

As in most other works, we performed 5-fold cross-validation to 
evaluate the performance of MDSVDNV, and in experiments, 
we adopted five kinds of evaluation metrics such as the true positive 
rate (TPR), false positive rate (FPR), accuracy, and recall associated 
with the ROC and PR curves, which were defined in the following 
Equations (13), (14), (15), (16) and (17):

 TPR
TP

TP FN
=

+
 (13)

 FPR
FP

TN FP
=

+
 (14)

 Precision
TP

TN FP
=

+
 (15)

https://doi.org/10.3389/fmicb.2023.1303585
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Tan et al. 10.3389/fmicb.2023.1303585

Frontiers in Microbiology 07 frontiersin.org

 Recall
TP

TP FN
=

+
 (16)

 Accuracy = +
+ + +

TP TN

TP TN FP FN
 (17)

where TP and TN denote the number of correctly predicted 
positive and negative samples, respectively, and FN and FP represent 
the number of incorrectly identified positive and negative samples, 
respectively.

Results

In order to validate the capability of MDSVDNV, we conducted 
intensive experiments under the framework of k-fold cross-validation 
to compare the performance of MDSVDNV with existing state-of-
the-art prediction models. Experimental results show that MDSVDNV 
outperformed all these competing methods. Additionally, we further 
performed ablation experiments under quintuple cross-validation to 
verify whether the combination of linear and non-linear features 
would favor the predictive ability of MDSVDNV. Finally, case studies 
of two commonly used antimicrobial drugs and a microorganism have 
demonstrated the effectiveness of MDSVDNV in real-world 
applications as well, which means that MDSVDNV can achieve 
acceptable predictive performance and may be a useful method for 
revealing potential microbe–drug interactions in the future.

Performance comparison with other 
algorithms

In this section, we  will compare MDSVDNV with a few 
representative methods for the association prediction problem. Since 
microbial–drug association prediction is a novel problem, there are 
currently few available computational methods and codes. In addition, 
we will also compare MDSVDNV with four state-of-the-art microbe–
drug association prediction models, including HMDAKATZ  
(Zhu et al., 2021), LAGCN (Yu et al., 2020), NTSHMDA (Luo and 
Long, 2020), and BPNNHMDA (Li et al., 2021), utilizing the 5-fold 
CV. There will be no overlap between the training set and the test set, 
and each sample can be examined by our model through the 5-fold 
CV, in which the average training loss and the average validation loss 
of the five models are taken to measure the advantages and 
disadvantages of hyperparameters. In the 5-fold CV, we will randomly 
divide all microbe–drug susceptibility correlations into five equal 

parts, each as a test set, and the remaining four as the training set. 
After eventually finding a suitable hyper-parameter, we will train one 
model using the entire set of data as the hyper-parameter. The 
performance of the approach is then measured by plotting the receiver 
operating characteristic (ROC) curve and determining the area under 
the ROC curve (AUC). Overall, the higher the AUC value, the better 
the prediction performance, and an AUC value less than 0.5 indicates 
a strong random classification ability. Among them, HMDAKATZ is 
a KATZ-based microbial-drug association prediction method; 
NTSHMDA is a random walk and restart-based model designed to 
detect potential microbial–disease associations; and BPNNHMDA is 
a neural network-based model designed to infer potential microbe–
disease associations. LAGCN is a graph convolutional network and 
attentional mechanism-based method. The aforementioned models 
will go through a 5-fold CV test based on MDAD and aBiofilm for a 
fair comparison. Additionally, although the aforementioned models 
employ several assessment metrics, we only use AUC, AUPRC, and 
accuracy values to assess how well these models predict outcomes in 
this section. Therefore, Table 1 lists the AUC and AUPRC values as 
well as the accuracy values for MDSVDNV, HMDAKATZ, LAGCN, 
NTSHMDA, and BPNNHMDA. From Table 1, it can be seen that 
MDSVDNV can obtain the best AUC and AUPRC values at the 
same time.

In order to visualize the advantages of the method, we drew ROC 
curves based on the two datasets as shown in Figures 4, 5 and PR 
curves based on the two datasets as shown in Figures 6, 7. It is obvious 
that MDSVDNV can achieve the highest AUC value of 0.9851 and the 
highest AUPRC value of 0.9893 under the 5-fold CV and MDAD/
aBiofilm. Moreover, by combining linear and non-linear features in 
the training process, MDSVDNV obtained the highest average AUC 
value of 0.9703 as well. The results show that MDSVDNV is overall 
superior to all these competing methods.

Ablation experiment

Ablation experiments are conducted by systematically removing 
or modifying a component (a module) of an algorithm, model, or 
system to evaluate the effect of that component on overall 
performance. The purpose of ablation experiments is to study the 
contribution and role of a component of an algorithm, model, or 
system on performance in order to better understand how the 
algorithm, model, or system works. In order to anticipate the 
microbe–drug connection, we  incorporate information from two 
different perspectives in this study. We  conducted ablation 
experiments under a 5-fold CV to further confirm whether the 
combination of two linear and non-linear features favors the 

TABLE 1 AUCs, AUPRCs, and accuracy of compared methods based on datasets MDAD and aBiofilm under a 5-fold CV.

Methods
AUC(%) AUPRC(%) Accuracy(%)

MDAD aBiofilm MDAD aBiofilm MDAD aBiofilm

LAGCN 0.8533 ± 0.0070 0.8641 ± 0.0109 0.3571 ± 0.0051 0.3671 ± 0.0055 0.9413 0.9373

NTSHMDA 0.8483 ± 0.0020 0.8610 ± 0.0022 0.1892 ± 0.0056 0.1962 ± 0.0078 0.9896 0.9882

HMDAKATZ 0.8712 ± 0.0010 0.8993 ± 0.0021 0.2327 ± 0.0068 0.3066 ± 0.0077 0.9774 0.9796

BPNNHMDA 0.8410 ± 0.0320 0.8438 ± 0.0186 0.0391 ± 0.0105 0.0476 ± 0.0067 0.9894 0.9869

MDSVDNV 0.9851 ± 0.0034 0.9875 ± 0.0045 0.9731 ± 0.0070 0.9763 ± 0.0053 0.9434 0.9401
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FIGURE 6

PR curves of five competitive methods on MDAD.

FIGURE 7

PR curves of five competitive methods on aBiofilm.

prediction power of the MDSVDNV model. The microbe–drug 
association prediction model using linear features is MDSVDNV-L, 
and the microbe–drug association prediction model using only 
non-linear features is MDSVDNV-N. The ROC curves of the 
prediction performance achieved by MDSVDNV at five times CV are 
plotted in Figure 8, and the comparison of the AUC and AUPRC 
performance of MDSVDNV-L, MDSVDNV-N, and MDSVDNV is 
shown in Figure 9. As can be seen in Table 2 and Figure 8, the highest 
AUC and AUPRC values of MDSVDNV reached 0.98, which proved 
that MDSVDNV has good overall performance. Table 3 and Figure 8 
summarize the comparison of MDSVDNV and MDSVDNV- L with 
MDSVDNV-N. The AUC values of MDSVDNV- L, MDSVDNV - N, 
and MDSVDNV are 0.9724, 0.9540, and 0.8804, respectively. The 
AUPRC values of MDSVDNV- L, MDSVDNV- N, and MDSVDNV 
are 0.9748, 0.9555, and 0.8629, respectively. In different performance 
comparisons, MDSVDNV can achieve better results than 
MDSVDNV- L and MDSVDNV- N. The AUPRC values of 
MDSVDNV- L, MDSVDNV- N, and MDSVDNV are 0.9748, 0.9555, 
and 0.8629, respectively. In short, it is obvious that combining these 
two kinds of features can lead to better performance of MDSVDNV 
than models using only linear or non-linear features.

Case studies

We applied the MDSVDNV model to two widely used 
antimicrobial medications, Ciprofloxacin and moxifloxacin, as well as 
the microbe Mycobacterium tuberculosis, as our case studies in order 
to further assess the predictive efficacy of the method. The general 
procedure for each case study was as follows: First, the same number 
of negative samples and all microbe–drug association data were 
utilized to train the XGBoost classifier. After that, every microbe in 
the trial data that is not linked to the chosen drug is screened, and its 
feature vector is joined with the one for the present drug. All of these 
microbe–drug feature pairings are then sent through the trained 
classifier, and the output scores are used to calculate the likelihood 
that the microbe and drug will coexist. After ranking these scores in 
descending order, the top 20 microbe–drug associations were selected, 
and for the top 20 predicted microbes or drugs, we verified that the 
predicted microbe or drug associations were reported by searching the 
PubMed literature.

In terms of drugs, Ciprofloxacin is a fluoroquinolone antimicrobial 
agent used primarily for the treatment of most infectious diseases of 
tissues and body fluids caused by Gram-negative pathogens. More and 

FIGURE 4

ROC curves of five competitive methods on MDAD.

FIGURE 5

ROC curves of five competitive methods on aBiofilm.
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more reports show that it has intimate relationships with a variety of 
human bacteria (Davis et al., 1996). Ciprofloxacin, for instance, has 
been shown by Gollapudi et al. to inhibit human immunodeficiency 
virus type 1 (HIV-1) (Gollapudi et  al., 1998). Additionally, 
Ciprofloxacin has been shown by Hacioglu et al. to be effective against 
Candida albicans (Hacioglu et al., 2019). Enterococcus faecalis was 
demonstrated by Kim and Woo to be a highly Ciprofloxacin-resistant 

bacterium (Kim and Woo, 2017). After everything was said and done, 
the findings revealed that 18 of the top 20 anticipated Ciprofloxacin-
associated microbes could be  supported by previously written 
research. A total of 90% of the time, MDSVDNV’s predictions were 
correct, suggesting that it may be  somewhat useful for screening 
potential drug candidates in practical settings. The top 20 projected 
potential bacteria linked to Ciprofloxacin are listed in Table  4. 
Meanwhile, moxifloxacin is a fluoro antibacterial drug with notable 
effectiveness in the treatment of inflammatory disorders of the pelvis 
and the lungs (Balfour and Wiseman, 1999). Moxifloxacin is closely 
related to a variety of human bacteria, according to numerous studies. 
For instance, Villain and Dubois (2019) demonstrated the bactericidal 
efficacy of moxifloxacin against Staphylococcus aureus. It was 
discovered that moxifloxacin has anti-Candida abilities. Moxifloxacin 
has been shown to be  a potent therapeutic option for S. aureus 
infections (Greimel et al., 2017). As shown in Tables 5, 18 of the top 20 
candidate moxifloxacin-associated microorganisms were verified in 
previous literature.

Additionally, Mycobacterium tuberculosis is one of the 
microorganisms that we selected to employ for our case study. This 
Gram-positive aerobic bacterium may infect all bodily organs and is 
the source of tuberculosis, one of the deadliest diseases in the world. 
According to the 2019 Global Tuberculosis Report (WHO Global 
Tuberculosis Report, 2019), due to tuberculosis, 1.5 million people 
perished in 2018. Table  6 shows that 17 of the top  20 potential 
medicines for Mycobacterium tuberculosis are supported by previous 
research. In light of this, we  can say that MDSVDNV exhibits 
satisfactory prediction ability in case studies involving both drugs 
and microbes.

FIGURE 8

Prediction performance achieved by MDSVDNV under a 5-fold CV.

FIGURE 9

Performance comparison between MDSVDNV-L, MDSVDNV-N, and 
MDSVDNV.

TABLE 2 Five-fold cross-validation results achieved by MDSVDNV.

1 2 3 4 5 Average

AUC 0.9668 0.9735 0.9712 0.9814 0.9708 0.9724

AUPRC 0.9694 0.9765 0.9734 0.9840 0.9707 0.9748

TABLE 3 Comparison between MDSVDNV and its variants.

MDSVDNV MDSVDNV-L MDSVDNV-N

AUC 0.9724 0.9540 0.9623

AUPRC 0.9748 0.9555 0.9667

TABLE 4 Top 20 predicted Ciprofloxacin-associated microbes.

Top Drug Microbe Evidence

1 Ciprofloxacin Staphylococcus aureus PMID: 32488138

2 Ciprofloxacin Candida albicans PMID: 31471074

3 Ciprofloxacin Escherichia coli PMID: 33106267

4 Ciprofloxacin Clostridium perfringens PMID: 24944124

5 Ciprofloxacin Serratia marcescens PMID: 27052490

6 Ciprofloxacin Staphylococcus epidermis PMID: 10632381

7 Ciprofloxacin Streptococcus sanguis PMID: 11347679

8 Ciprofloxacin Streptococcus epidermidis PMID: 10632381

9 Ciprofloxacin Enterococcus faecalis PMID: 27790716

10 Ciprofloxacin Streptococcus PMID: 30502964

11 Ciprofloxacin Stenotrophomonas maltophilia PMID: 14982788

12 Ciprofloxacin Burkholderia cenocepacia PMID: 27799222

13 Ciprofloxacin Actinomyces oris Unconfirmed

14 Ciprofloxacin Morganella morganii PMID: 29942700

15 Ciprofloxacin Vibrio harveyi PMID: 27247095

16 Ciprofloxacin Plasmodium falciparum PMID: 31451506

17 Ciprofloxacin Candida spp. PMID: 30781782

18 Ciprofloxacin Klebsiella planticola PMID: 25465871

19 Ciprofloxacin Pichia anomala Unconfirmed

20 Ciprofloxacin Proteus vulgaris PMID: 34638966
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Discussion and conclusion

Humans and microorganisms are interconnected and dependent 
on one another, according to clinical research. Predicting microbe–
drug interactions can help with the development of microbe-derived 
treatments and drugs, which is crucial for the early detection, 
diagnosis, and treatment of disease. In this article, by combining the 
linear and non-linear features of drugs and microbes, we suggest a 
unique computational model, MDSVDNV, for predicting probable 
connections between microbes and drugs. The AUC and AUPRC 
values of MDSVDNV were higher than those of the five competitive 
prediction methods, which means that MDSVDNV may be a useful 
tool for the identification of potential microbial–drug associations 
and has the potential for pharmacological clinical treatments in the 
future. Moreover, MDSVDNV can be seen as an open framework in 
which more feature extraction methods can be  applied flexibly. 
However, MDSVDNV also has certain limitations, which are mainly 
caused by the limitations of the datasets (e.g., heterogeneous network 
MDN) used in this study, and it is almost impossible to fully reflect 
the complex interactions between microbes and drugs by relying only 
on the relevant data. Meanwhile, Node2vec is unable to retain the 
rich and valuable information of different node types in the 
heterogeneous network, which will be improved by the expansion of 
the experimental data and the introduction of more advanced 
representation learning methods in future research.
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TABLE 5 The top 20 predicted Moxifloxacin-associated microbes.

Top Drug Microbe Evidence

1 Moxifloxacin Candida albicans PMID: 28409362

2 Moxifloxacin Pseudomonas aeruginosa PMID: 31691651

3 Moxifloxacin Staphylococcus aureus PMID: 31689174

4 Moxifloxacin Escherichia coli PMID: 31542319

5 Moxifloxacin Bacillus subtilis PMID: 30036828

6 Moxifloxacin Candida tropicalis PMID: 20455400

7 Moxifloxacin Haemophilus influenzae PMID: 11856249

8 Moxifloxacin Bacillus cereus PMID: 21834669

9 Moxifloxacin Human immunodeficiency virus 1 Unconfirmed

10 Moxifloxacin Staphylococcus epidermis PMID: 11249827

11 Moxifloxacin Staphylococcus epidermidis PMID: 31516359

12 Moxifloxacin Mycobacterium avium PMID: 21353489

13 Moxifloxacin Citrobacter freundii PMID: 15992072

14 Moxifloxacin Eikenella corrodens PMID: 11897609

15 Moxifloxacin Neisseria gonorrhoeae PMID: 26603424

16 Moxifloxacin Listeria monocytogenes PMID: 28739228

17 Moxifloxacin Human herpesvirus 5 Unconfirmed

18 Moxifloxacin Clostridium perfringens PMID: 29486533

19 Moxifloxacin Burkholderia pseudomallei PMID: 15731198

20 Moxifloxacin Actinomyces oris PMID: 26538502

TABLE 6 Top 20 predicted Mycobacterium tuberculosis-associated 
drugs.

Top Microbe Drug Evidence

1 Mycobacterium tuberculosis Calanolide A PMID: 14980631

2 Mycobacterium tuberculosis Ceforanide PMID: 7624446

3 Mycobacterium tuberculosis Ciprofloxacin PMID: 16154314

4 Mycobacterium tuberculosis Rilpivirine Unconfirmed

5 Mycobacterium tuberculosis Pyrazinamide PMID: 26521205

6 Mycobacterium tuberculosis Vanillylacetone Unconfirmed

7 Mycobacterium tuberculosis Hydrogen peroxide PMID: 30551469

8 Mycobacterium tuberculosis Vitamin C PMID: 23695675

9 Mycobacterium tuberculosis Lopinavir PMID: 21442799

10 Mycobacterium tuberculosis Gentamicin PMID: 22143521

11 Mycobacterium tuberculosis Darunavir PMID: 28193650

12 Mycobacterium tuberculosis Minocycline PMID: 30597040

13 Mycobacterium tuberculosis Amikacin PMID: 29311078

14 Mycobacterium tuberculosis Tobramycin PMID: 19723387

15 Mycobacterium tuberculosis Zinc oxide PMID: 33845951

16 Mycobacterium tuberculosis Saquinavir PMID: 33841429

17 Mycobacterium tuberculosis Polysorbate 80 Unconfirmed

18 Mycobacterium tuberculosis Vitamin E PMID: 26491981

19 Mycobacterium tuberculosis beta-Pinene PMID: 19753839

20 Mycobacterium tuberculosis Zidovudine PMID: 16154314
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