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Obesity-related metabolic diseases such as type 2 diabetes (T2D) are major global 
health issues, affecting hundreds of millions of people worldwide. The underlying 
factors are both diverse and complex, incorporating biological as well as cultural 
considerations. A role for ethnicity – a measure of self-perceived cultural affiliation 
which encompasses diet, lifestyle and genetic components – in susceptibility to 
metabolic diseases such as T2D is well established. For example, Asian populations 
may be  disproportionally affected by the adverse ‘TOFI’ (Thin on the Outside, 
Fat on the Inside) profile, whereby outwardly lean individuals have increased 
susceptibility due to excess visceral and ectopic organ fat deposition. A potential 
link between the gut microbiota and metabolic disease has more recently come 
under consideration, yet our understanding of the interplay between ethnicity, the 
microbiota and T2D remains incomplete. We present here a 16S rRNA gene-based 
comparison of the fecal microbiota of European-ancestry and Chinese-ancestry 
cohorts with overweight and prediabetes, residing in New Zealand. The cohorts 
were matched for mean fasting plasma glucose (FPG: mean  ±  SD, European-
ancestry: 6.1  ±  0.4; Chinese-ancestry: 6.0  ±  0.4  mmol/L), a consequence of which 
was a significantly higher mean body mass index in the European group (BMI: 
European-ancestry: 37.4  ±  6.8; Chinese-ancestry: 27.7  ±  4.0  kg/m2; p <  0.001). Our 
findings reveal significant microbiota differences between the two ethnicities, 
though we  cannot determine the underpinning factors. In both cohorts 
Firmicutes was by far the dominant bacterial phylum (European-ancestry: 
93.4  ±  5.5%; Chinese-ancestry: 79.6  ±  10.4% of 16S rRNA gene sequences), with 
Bacteroidetes and Actinobacteria the next most abundant. Among the more 
abundant (≥1% overall relative sequence abundance) genus-level taxa, four 
zero-radius operational taxonomic units (zOTUs) were significantly higher in the 
European-ancestry cohort, namely members of the Subdoligranulum, Blautia, 
Ruminoclostridium, and Dorea genera. Differential abundance analysis further 
identified a number of additional zOTUs to be disproportionately overrepresented 
across the two ethnicities, with the majority of taxa exhibiting a higher abundance 
in the Chinese-ancestry cohort. Our findings underscore a potential influence 
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of ethnicity on gut microbiota composition in the context of individuals with 
overweight and prediabetes.
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1. Introduction

Type 2 diabetes (T2D) is a significant global health issue and 
among the fastest growing chronic disease worldwide 
(International Diabetes Federation, 2021). When considering 
prediabetes, where individuals develop dysglycaemia indicative 
of increased risk of later T2D, the situation is even starker. 
Among the ~5.5 million residents of New Zealand, for example, 
it is estimated that ~4% have T2D (Te Whatu Ora: Health 
New Zealand, 2021) and a further ~20% have prediabetes (New 
Zealand Society for the Study of Diabetes, 2023). Fortunately, 
there is strong evidence that lifestyle (including dietary) change 
in those with prediabetes can delay or even prevent progression 
to frank T2D (Liu et al., 2015). It is therefore of considerable 
importance to understand the factors which influence 
prediabetes. Ethnicity, defined here as a measure of self-perceived 
cultural affiliation, encompassing diet, lifestyle as well as 
underlying genetics, is one such factor. An association between 
ethnicity and susceptibility to obesity, T2D and other metabolic 
disorders is well documented (Spanakis and Golden, 2013; Yip 
et al., 2017). Certainly, differences in glucose metabolism and 
insulin resistance have been observed between ethnic groups, but 
with complex causes (Golden et  al., 2012). Another potential 
contributor to (pre)diabetes is the gut microbiota (Deschasaux 
et  al., 2018). Although the underlying mechanisms remain 
unclear, a combination of biological, clinical and social factors 
likely play a role, with metabolic susceptibility and microbiota 
profile also potentially associated through mechanisms yet to 
be determined.

Given that T2D progression is a result of both environmental and 
genetic factors, a higher T2D risk profile observed in Asian ethnicities 
at low body mass index (BMI) (Haldar et al., 2015) has been suggested 
to reflect a general inability to adapt to the Western lifestyle and 
dietary changes popularized with the rise of urbanization and 
increased globalization over the past two centuries (Akiyama, 2008). 
As the gut microbiota plays a prominent role in regulating host 
metabolic homeostasis (Sears, 2005; LeBlanc et al., 2013; Quigley, 
2013; Clarke et al., 2014; Duvallet et al., 2017), the utility of microbial 
community characteristics as non-invasive diagnostic indicators of 
health has in recent years become widely recognized (Duvallet et al., 
2017). However, although associations between disease pathogenicity 
and the gut microbiota have been established, the taxonomic 
composition is highly personalized among individuals (Gaulke and 
Sharpton, 2018) and the noise projected strongly influences the 
accuracy of microbiota-based investigations. Yet the extent of 
contribution, if any, to this inter-individual variation by ethnicity 
remains largely unresolved: indeed, large observational studies 
examining the gut microbiota of participants of varied ethnic 
backgrounds but with shared geography have produced findings both 

in support of ethnicity explaining more of the variation than 
environmental factors (in 2,084 participants) (Deschasaux et  al., 
2018), and vice versa (in 1,046 participants) (Rothschild et al., 2018).

The higher T2D risk profile in the absence of high BMI in Asian 
cohorts is characterized by adverse body fat distribution, including 
excess abdominal, visceral and ectopic fat deposition compared with, 
for example, European-ancestry individuals (Lear et al., 2007; Nazare 
et  al., 2012; Jo and Mainous, 2018). An inability to expand 
subcutaneous fat stores (Misra and Khurana, 2011; Ramachandran 
et al., 2012) may contribute to this adverse Asian TOFI (Thin on the 
Outside, Fat on the Inside) phenotype (Thomas et al., 2012), where 
ectopic lipid infiltration into pancreas and liver (Dickinson et al., 2002; 
Liew et al., 2003; Cortés and Fernández-Galilea, 2015) may occur even 
in individuals with low BMI and whole body adiposity (WHO Expert 
Consultation, 2004). This condition may both inhibit glucose-
mediated β-cell insulin secretion (Lee et al., 1994) and decrease insulin 
sensitivity (Shibata et al., 2007), and could potentially be associated 
with disparate microbiota.

The primary aim of this study was to describe the fecal microbiota 
in individuals with prediabetes. Previous research has implicated 
metabolic characteristics such as BMI and body weight as being of 
relevance, with ethnicity also potentially playing a role. We  thus 
leveraged a subset of a previously published 16S rRNA gene dataset 
which focused on adults of European descent living in New Zealand 
[from the multi-national PREVIEW lifestyle intervention (Raben 
et al., 2021; Jian et al., 2022)], and an unpublished dataset from a 
cohort of Chinese-descent adults also residing in New Zealand (Tū 
Ora dietary intervention). Mean fasting plasma glucose (FPG) was 
matched between cohorts in this sub-analysis, a consequence of which 
was a higher mean BMI in the European group. The issue of 
confounding due to difference in BMI was mitigated through the use 
of permutational analysis of variance (PERMANOVA). Cohorts were 
defined and named in accordance with Statistics New  Zealand 
terminology. This allowed us to consider differences which may relate 
to ethnicity as well as glucoregulatory markers and body composition.

2. Materials and methods

2.1. Study design and participants

This study utilized cross-sectional baseline data from two 
separate clinical trials, each focusing on prevention of T2D in 
individuals with overweight and prediabetes. The dataset from the 
Chinese-ancestry cohort was obtained from the Tū Ora dietary 
intervention, and the European-ancestry cohort from the PREVIEW 
lifestyle intervention (Raben et al., 2021; Jian et al., 2022). Cohorts 
were defined and named in accordance with Statistics New Zealand 
terminology. Both clinical trials were conducted at the University of 
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Auckland Human Nutrition Unit, New  Zealand, with study 
participants resident predominantly in Auckland (~85%), or in 
Wellington (~15%), New  Zealand. Participants for the current 
analysis were selected from their respective larger cohorts based on 
confirmed prediabetes, defined by raised FPG of 5.6–6.9 mmol/L 
(American Diabetes Association, 2018) measured in clinic. The two 
cohorts were matched for mean FPG. Both cohorts were also required 
to meet the following inclusion criteria, as named in accordance with 
the original publications: self-reported ‘Chinese’ (Tū Ora) or 
‘Caucasian’ (PREVIEW) descent, currently resident in New Zealand, 
25–70 years of age, overweight or obese defined as BMI ≥23 kg/m2 for 
Chinese-ancestry adults and ≥25 kg/m2 for European-ancestry 
adults, Finnish Diabetes Risk Score (FINDRISC) ≥9 for Chinese-
ancestry adults and ≥12 for European-ancestry adults indicative of 
increased future risk of T2D (Lindström and Tuomilehto, 2003; 
Silvestre et al., 2017), and stable body weight for 2 months prior to the 
trial (<5% change, self-reported). Exclusion criteria for both cohorts 
were: smoking, pregnancy, diagnosis of any significant co-morbidities 
such as diabetes or cancer, medications or supplements that may 
influence glycaemia (self-reported). None of the participants from 
either cohort reported antibiotic use within 1 month prior to the trial. 
All participants who met all inclusion, but none of the exclusion, 
criteria were selected from each cohort for this current study. Human 
ethics approval was granted by the Health and Disabilities Ethics 
Committee (HDEC), New  Zealand, and participants provided 
written, informed consent before enrolment. Tū Ora was registered 
with the Australian New Zealand Clinical Trial Registry (Trial ID: 
ACTRN12618000476235) and PREVIEW with ClinicalTrials.gov 
(Trial ID: NCT01777893). Thirty-two Chinese-ancestry and 39 
European-ancestry participants with overweight and prediabetes 
were selected for the purpose of this analysis.

2.2. Clinical assessments

Participants attended their clinic visit in the morning, following 
an overnight fast, with procedures conducted as previously described 
for the PREVIEW study (Fogelholm et al., 2017). Body weight, height, 
waist and hip circumference, and body composition were all measured 
in the clinic. Body weight was measured using digital scales (Mettler 
Toledo Spider 2, Zurich, Switzerland) and height using a wall-
mounted stadiometer (Seca 222, Hamburg, Germany), both while 
lightly clad and without shoes. Waist and hip circumference were 
measured using a non-stretch tape (Abbott Laboratories, Illinois, 
USA). Waist was measured at the midpoint of the lowest palpable rib 
and the hip joint bone, around the belly and not under, and hip at the 
widest point over the greater trochanter. Body composition was 
assessed using dual energy x-ray absorptiometry (iDXA, GE 
Healthcare, Madison, WI, USA). Total body fat % and abdominal fat 
% estimates were calculated according to the formulae:

 

Total body fat
total body fat mass g

total body fat mass g
%( ) = ( )

( )
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×100
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×100

A fasted venous blood sample was also collected for analysis of 
glucose (FPG) and insulin. Demographic information for participants 
is presented in Table 1.

TABLE 1 Baseline characteristics of study participants.

European-
ancestry cohort 

(n =  39)
n

Chinese-
ancestry cohort 

(n =  32)
n p-val

Demographic

Clinic site (Auckland: Wellington) 39:0 39 23:9 32 <0.001 *

Sex (male: female) 11:28 39 21:11 32 0.002 *

Age (years) 49.7 (46; 28–70) 39 48.1 (49; 28–72) 32 0.561

Anthropometry

Body weight (kg) 104.0 (107.1; 70–152) 39 77.6 (74; 59–120) 32 <0.001 *

Height (m) 1.7 (1.7; 1.5–1.8) 39 1.7 (1.7; 1.5–1.8) 32 0.992

Body mass index, BMI (kg/m2) 37.4 (36.1; 28–63) 39 27.7 (27.6; 23–40) 32 <0.001 *

Waist circumference (cm) 111 (112; 82–143) 39 95.6 (92.9; 77–130) 32 <0.001 *

Hip circumference (cm) 122.1 (119; 101–163) 39 103.2 (101.5; 91–130) 32 <0.001 *

Waist: Hip ratio 0.9 (0.9; 0.8–1.1) 39 0.9 (0.9; 0.8–1.1) 32 0.439

Body composition

Total body fat (%) 44.9 (46.2; 25–57) 29 31.6 (31.4; 22–43) 21 <0.001 *

Abdominal fat (% of total abdominal mass) 52.4 (53.7; 35–64) 29 40.3 (40.1; 30–53) 21 <0.001 *

Glucoregulatory markers

Fasting plasma glucose, FPG (mmol/L) 6.1 (6; 5.6–6.9) 39 6.0 (5.8; 5.6–6.8) 32 0.221

Fasting insulin (μU/mL) 12.0 (9.7; 4.0–31.8) 29 16.7 (15.1; 1.8–44.0) 32 0.04 *

HOMA-IR index 3.3 (2.5; 1.1–8.8) 29 4.4 (3.9; 0.5–11.1) 32 0.05 *

Mean (median; range). Missing fasting insulin data in the European-ancestry cohort are due to limitations in available metadata; missing body composition data for either cohort are due to no 
DXA scan. *Value of p: Fisher test was utilized for categorical variables clinic site and sex, with unpaired two sample t-tests used for all continuous variables.
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2.3. Blood analyses

FPG was measured using the hexokinase method (Cobas C311 
analyzer, Roche Diagnostics, Indianapolis, USA) from plasma samples 
in Chinese-ancestry participants, and whole blood with manual 
conversion to plasma glucose in European-ancestry participants 
(Reflotron Plus Desk Top Analyser, Mannheim, Germany) (Kim, 
2016). Insulin was analyzed using Elecsys immunoassay with 
electrochemiluminescence technology (Cobas e411 Analyser, Roche 
Diagnostics, Indianapolis, USA).

2.4. Fecal sample collection

Fecal sample collection, processing and microbiological analyses 
were performed for both studies in the same laboratory using 
identical methodologies. Fecal samples were collected at home by 
participants into a sterile collection tube, frozen at −18°C in their 
home freezers and then delivered to the research clinic in a chilly bin 
without sample thawing (sample tubes were encased in an “ice jacket” 
to prevent rapid thawing). All fecal samples were then stored in the 
clinic at −80°C prior to DNA extraction.

2.5. DNA extraction

Genomic DNA was extracted from 0.25 g fecal sample using 
International Human Microbiome Standards (IHMS) Protocol #9 
(Costea et  al., 2017), which is a repeated bead-beating method 
utilizing 0.1 mm silica and 3 mm glass beads. Cell lysis was performed 
using a non-commercial lysis buffer recipe (500 mM NaCl, 50 mM 
Tris–HCl at pH 8.0, 50 mM EDTA and 4% SDS) as per the protocol, 
however a Qiagen Tissuelyser II (Retch) was used (frequency of 30 Hz, 
for two cycles of 1.5 min) to break cells instead of the FastPrep® -24 
Instrument advised by the protocol. A QIAamp DNA Minikit (Qiagen, 
51306) was utilized in the final steps of the protocol for removal of 
RNA, protein and for DNA purification, as recommended by the 
protocol. Negative control extractions containing 250 μL of sterile 
water instead of 0.25 g fecal sample were also carried out to test for 
potential contamination. All extracts were subsequently analyzed on 
a Nanodrop 3,300 fluorospectrometer (Nanodrop Technologies Inc., 
Wilmington, USA) to determine DNA quality and concentration.

2.6. Bacterial 16S rRNA gene amplicon 
sequencing

Bacterial community structure was analyzed by polymerase chain 
reaction (PCR) amplification, then sequencing of the highly variable 
V3-V4 region of the 16S rRNA gene. The KAPA High Fidelity HotStart 
Readymix PCR Kit (Kapa Biosystems®) was utilized, with ~50 ng of 
template genomic DNA used per reaction. Labeled with Illumina 
MiSeq-compatible adaptors, the widely used primer pair 341F 
(5’-CCTACGGGNGGCWGCAG-3’) and 785R (5’-GACTACHVGG 
GTATCTAATCC-3’) (Klindworth et  al., 2013) was used with the 
following thermocycling conditions: initial denaturation and activation 
of enzymes at 95°C for 3 min, followed by 25 cycles of denaturation 
(95°C for 30 s), annealing (55°C for 30 s) and elongation (72°C for 30 s), 
with a final extension of 72°C for 10 min. PCR products were 

electrophoresed on 1% (w/v) agarose gels with SYBR Safe nucleic acid 
stain (Invitrogen Co., USA) to ensure correct amplicon size. Negative 
PCR controls, in which nuclease-free H2O was used instead of template 
DNA, as well as amplifications of eluates from the negative DNA 
extractions, did not produce any visible products. Randomly selected 
negative controls were nonetheless submitted for sequencing even if no 
product was visible on an agarose gel. PCR amplicons were purified 
using AMPure magnetic beads (Beckman-Coulter Inc., USA) in 
accordance with the manufacturer’s instructions, and quantified using 
a Qubit dsDNA high-sensitivity kit (Invitrogen Co., USA). Standardized 
concentrations of the purified samples were submitted to Auckland 
Genomics Ltd. for Illumina MiSeq sequencing (2 × 300 bp chemistry).

2.7. Bioinformatics

A bioinformatics pipeline previously described by Hoggard et al. 
(2019), and compatible with the USEARCH (Edgar, 2010) software 
package, was utilized to join the raw pairs of 16S rRNA gene sequence 
reads, remove primer-binding regions, quality filter and study the 
merged sequences (Edgar et al., 2011). Merged sequence reads were 
further error-corrected and zero-radius operational taxonomic units 
(zOTUs) of 100% similarity were generated (Edgar, 2016a). Non-target 
(e.g., human-derived) sequences were removed and the SILVA v123 
database used to assign taxonomy to each zOTU (Quast et al., 2013; 
Edgar, 2016b). All unassigned sequences were manually checked via 
BLAST nucleotide search and any sequences producing non-target 
(i.e., not bacteria) hits were removed (Johnson et  al., 2008). The 
sequence depth of each sample was rarefied to 2,405 reads (range: 
3–69,963), which was the lowest practical number of reads obtained 
across samples, to ensure an even number of sequences would 
be compared for each sample during downstream statistical analysis. 
The 16S rRNA gene sequence data from the Chinese-ancestry cohort 
were deposited in Genbank under SRA Bioproject PRJNA900794, and 
European-ancestry cohort data in the European Nucleotide Archive 
under accession number PRJEB43667.

2.8. Statistical analysis

The statistical environment R was used for all analyses (R Core 
Team, 2022), with a value of p <0.05 considered to be  statistically 
significant. Statistical analysis was performed using all available data 
from all participants. Fisher test was utilized for testing participant 
distribution by categorical parameters (i.e., clinical site and sex), while 
distribution by all other continuous constraints was tested with a 
two-sample t-test. A two-sample t-test was also used to compare gut 
microbiota diversity between cohorts and Bray–Curtis dissimilarity was 
utilized for the non-metric multidimensional scaling (nMDS) analysis 
of bacterial community structure. Significance of variance was 
determined with PERMANOVA, performing 9,999 unrestricted 
permutations of the raw data. Covariate analyses with PERMANOVA 
included testing for associations between ethnicity and key demographic 
variables (i.e., age and sex) and metabolic variables (i.e., FPG and BMI). 
Further details pertaining to the PERMANOVA analysis, including the 
R script used, are provided in the Supplementary material. Differential 
zOTU abundances were calculated using the log2 fold-change of counts 
data (based on European-ancestry cohort as the reference factor, 
representing a value of 0). Standard error (SEM) estimates were used for 
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the log2 fold-change values and the Wald test was performed for the 
generation of p-values (subsequently adjusted for false discovery rate 
using the Benjamini–Hochberg procedure).

3. Results

The European-ancestry and Chinese-ancestry cohorts both 
demonstrated dysglycaemia characteristic of prediabetes (mean ± SD: 
European-ancestry 6.1 ± 0.4; Chinese-ancestry 6.0 ± 0.4 mmol/L). They 
were also of similar age and height but with differences in mean body 
weight (104.0 ± 17.4; 77.6 ± 14.2 kg), BMI (37.4 ± 6.8; 27.7 ± 4.0 kg/m2), 
waist and hip circumference, total body fat (44.9 ± 8; 31.6 ± 6%) and 
abdominal fat (52.4 ± 8.7, 40.3 ± 6.7%), all of which were significantly 
lower in Chinese-ancestry participants (p < 0.001). Whilst the two 
cohorts had similar FPG, fasting insulin was significantly higher in 
Chinese-ancestry participants (European-ancestry 12 ± 6.9 μU/mL; 
Chinese-ancestry 16.7 ± 9.9 μU/mL; p = 0.04). Sex distribution also 
differed between ethnicities (European-ancestry 11 M:28F; Chinese-
ancestry 21 M:11F; p = 0.002). Demographic, anthropometric, 
metabolic and body composition data for the two cohorts are 
presented in Table 1.

In both cohorts, Firmicutes was by far the most abundant bacterial 
phylum (Figure 1), though its average relative sequence abundance 
was significantly higher among European-ancestry individuals 
(mean ± SD: 93.4 ± 5.5%) than Chinese-ancestry individuals 
(79.6 ± 10.4%; p < 0.001). The bacterial phyla Bacteroidetes (p = 0.001) 
and Actinobacteria (p = 0.006) also differed significantly between the 
cohorts, with both occurring at similar relative abundance in 
European-ancestry participants (Bacteroidetes =  2.7 ± 4.5%; 
Actinobacteria = 2.7 ± 2.7%), but Bacteroidetes (11 ± 11.2%) being more 
abundant than Actinobacteria (6.2 ± 5.8%) in Chinese-ancestry 
participants (p > 0.05). Members of the phyla Verrucomicrobia and 
Proteobacteria were also present in both cohorts, though their 
respective populations did not differ significantly between the cohorts. 
At a finer taxonomic level (i.e., zOTU), there was considerable inter-
individual variation, however among those zOTUs with ≥1% overall 
relative sequence abundance, four taxa were significantly more 
abundant in European-ancestry participants, namely OTU1_
Subdoligranulum (p = 0.01), OTU25_Blautia (p = 0.002), OTU45_
Ruminoclostridium_5 (p = 0.004) and OTU26_Dorea (p = 0.007).

Concerning alpha diversity (Figure 2), bacterial richness (number 
of observed zOTUs) did not differ significantly between the two 
cohorts (p = 0.526), but zOTUs were more evenly distributed in the 

FIGURE 1

Phylum-level (top) and zOTU-level (bottom) gut bacterial community composition for European-ancestry and Chinese-ancestry cohorts. zOTUs with 
≥1% overall 16S rRNA gene relative sequence abundance are shown, with all remaining zOTUs grouped together in “Other”.
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FIGURE 2

Mean alpha diversity parameters compared between the two ethnicity cohorts. P-values determined using unpaired t-test. (A) Mean number of 
observed zOTUs for each cohort. (B) Mean log2_Shannon diversity index of observed zOTUs for each cohort.

Chinese-ancestry cohort (Shannon diversity p = 0.018). PERMANOVA 
revealed a highly significant difference in bacterial community 
composition between the two cohorts (p < 0.001; r2 = 0.051), with the 
outcome that ethnicity but not age, sex, BMI or FPG was identified as 
being significantly associated with microbiota composition when 
these key factors were tested against each other. This ethnicity-
correlated difference in beta diversity was evident in the observed 
clustering of samples (albeit with some overlap) in the nMDS plot 
(Figure 3).

Differential abundances of zOTUs across the cohorts were 
explored using European-ancestry participants as the reference factor 
(representing an abundance of 0), with the majority of differentially 
abundant zOTUs being more abundant among the Chinese-ancestry 
participants (Figure 4). No zOTUs from phyla other than Firmicutes 
were over-represented among European-ancestry individuals, but 
different members of the same genus were often observed to 
be differentially enriched across either ethnic cohort.

4. Discussion

The underlying hypothesis for this study was that two ethnically 
distinct communities, both in the same country of residence and with 
increased risk of T2D-onset based on fasting dysglycaemia, would 
differ in their gut (fecal) microbiota profiles. To address this point, 
we conducted a direct comparison of fecal-derived 16S rRNA gene 
sequence data from two separate clinical trials investigating 
prediabetes in Chinese-ancestry and European-ancestry communities 
living in New Zealand. The two cohorts were matched for mean FPG 
during selection of participants for this sub-analysis. Coincidentally, 

Chinese-ancestry participants were enrolled at a lower BMI than 
European-ancestry participants, likely due to their higher propensity 
for T2D onset at lower BMI as is consistent with the aforementioned 
TOFI profile. Microbiota analyses were performed separately for 
samples from each clinical trial, but in the same laboratory at the 
University of Auckland, and the methodologies utilized for fecal 
sample collection and processing (DNA extraction, PCR and 
sequencing) were identical. While sample type for FPG measurement 
differed between the cohorts, both are internationally accredited 
methods and all participants included in the current analysis were 
identified with prediabetes.

Although not directly assessing the TOFI phenotype, which 
requires measurement of ectopic fat infiltration, our findings show this 
Asian cohort with prediabetes to be characterized by similar age and 
FPG but significantly lower body weight, BMI, total and abdominal 
body fat, and higher hyperinsulinaemia compared to the European-
ancestry cohort. This aligns with the hypothesis that Chinese-ancestry 
participants may have increased T2D susceptibility at lower BMI with 
accompanying lower total and upper body (abdominal) fat. In a 
previous larger study using MRI techniques to assess body 
composition in a different Chinese-ancestry cohort also residing in 
Auckland, we have shown % pancreas and visceral fat to have the 
strongest positive correlation with FPG, independent of age and % 
total body fat (Sequeira et al., 2022). In the context of gut microbiota 
structure, we observed significant differences between the two ethnic 
cohorts, with key differences in relative abundances of the Firmicutes, 
Bacteroidetes, and Actinobacteria bacterial phyla. While our 
microbiota findings could in principle reflect the substantial difference 
in, for example, BMI between the two cohorts, we note that ethnicity 
but not BMI was statistically significant in our analyses. The greater 
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relative abundance of Firmicutes observed in the European-ancestry 
cohort may have contributed to this cohort’s lower overall Shannon 
diversity. These findings are consistent with those from recent large-
scale studies in the USA (Brooks et  al., 2018) and Netherlands 
(Deschasaux et  al., 2018), in ethnically diverse participants from 
common urban environments. Here in our current analysis, as per 
PERMANOVA analyses, ethnicity also had a strong influence on gut 
bacterial composition in participants with fasting dysglycaemia 
consistent with prediabetes. It is unlikely that genetic factors are the 
only important characteristics that may be  driving microbiota 
diversity, but we  propose that they are likely to contribute. 
Interestingly, there is some evidence that such differences mitigate 
over time as immigrants adapt to a Western lifestyle (Vangay et al., 
2018), however this could not be assessed in our current cohorts as 
data on years of residence in New Zealand were not collected in the 
original studies. Conversely, no significant effect of ethnicity on gut 
microbiota composition was observed in a large Middle Eastern 
cohort (Rothschild et al., 2018), though this could potentially be due 
to more homogenous local dietary and lifestyle factors in comparison 
to the social diversity observed in Western countries.

In a recent multi-omics study, Ang et al. (2021) investigated the 
gut microbiome profiles of 46 East Asian and White individuals 
resident in the San Francisco Bay area, across a range of body 
composition profiles from lean to those with obesity, and showed a 
strong ethnically-associated distinction between the two cohorts. 
Consistent with our findings, they reported a high proportion of 
Firmicutes in individuals with obesity and also noted the East Asian 

cohort to have a higher relative abundance of Bacteroidetes. 
Unexpectedly, although they were able to explain some of the observed 
gut microbiota differences by ethnicity and geography, they did not 
identify any associations with host diet. Methodological differences in 
dietary data collection between the two origin studies in our current 
analysis prevented a quantitative comparison of background diet, but 
this would be  of interest to determine. Moreover, the observed 
ethnicity-associated differences in the study of Ang and colleagues 
were stronger in lean individuals, indicating a potential capacity for 
obesity-related influences to “overwrite” or diminish ethnicity-
associated microbial signatures. Although they suggest the possibility 
of a shared ethnicity-independent microbiome pattern that increases 
host susceptibility to obesity onset (Ang et al., 2021), such outcomes 
elevate the importance of controlling for ethnicity (in addition to 
demographic and metabolic parameters) in studies exploring 
associations between the gut microbiota and diseases of interest.

All samples analyzed in this study were obtained from participants 
with overweight or obesity and prediabetes. Perhaps unsurprisingly, 
among the highly abundant zOTUs (≥1% overall 16S rRNA gene 
relative sequence abundance) observed, several bacterial genera were 
previously associated with prediabetes as well as frank T2D. Bacteria 
negatively correlated with diabetes such as Faecalibacterium  
(4 zOTUs) (Furet et al., 2010; Graessler et al., 2013; Karlsson et al., 
2013; Zhang et al., 2013; Remely et al., 2014; Murphy et al., 2017; Gao 
et al., 2018; Salamon et al., 2018; Ghaemi et al., 2020; Molinaro et al., 
2020), Bifidobacterium (Wu et al., 2010, 2017; Xu et al., 2015; Candela 
et al., 2016; Pedersen et al., 2016; Sedighi et al., 2017; Barengolts et al., 

FIGURE 3

Visualization of bacterial community beta diversity in the two ethnicity cohorts, using non-metric multidimensional scaling (nMDS) based on Bray–
Curtis dissimilarity.
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2018; Gao et al., 2018; Ghaemi et al., 2020) (2 zOTUs in Chinese-
ancestry participants) and Bacteroides (Munukka et al., 2012; Zhang 
et al., 2013, 2020; Candela et al., 2016; Yamaguchi et al., 2016; Lippert 
et al., 2017; Ghaemi et al., 2020) were found in both cohorts, with the 
further addition of Akkermansia (Everard et al., 2013; Zhang et al., 
2013, 2020; Greer et al., 2016; Allin et al., 2018; Ghaemi et al., 2020) in 
Chinese-ancestry participants. Both cohorts also harbored two bacteria 
previously shown to be positively associated with T2D, Blautia (Zhang 
et al., 2013, 2020; Egshatyan et al., 2016; Inoue et al., 2017; Lippert et al., 
2017; He et al., 2018) (3 zOTUs in European-ancestry participants) and 

Ruminococcus (Zhang et al., 2013; Candela et al., 2016; Patrone et al., 
2016; Allin et al., 2018; Salamon et al., 2018; Molinaro et al., 2020) (2 
zOTUs in European-ancestry participants and 3 zOTUs in Chinese-
ancestry participants). While butyrate-producing bacteria are generally 
considered to be negatively associated with T2D co-morbidities (Vital 
et al., 2017) such as adipocyte inflammation (Wang et al., 2015) and 
insulin resistance (Gao et al., 2009, 2019), butyrate producers in the 
genera Pseudobutyrivibrio (Xu et al., 2015; Nie et al., 2019; Zhao et al., 
2019), Coprococcus (Chávez-Carbajal et al., 2019) and Anaerostipes 
(Org et al., 2017; Zhao et al., 2019) have previously been linked with 

FIGURE 4

Differential abundance of zOTUs (based on European-ancestry participants as the reference factor, representing an abundance of 0). All positively 
measuring zOTUs represent taxa more abundant in Chinese-ancestry participants, and negatively measuring zOTUs represent taxa more abundant in 
European-ancestry participants. zOTUs measuring 0 indicate a balanced distribution of taxa across both cohorts. All zOTUs from the same genus are 
stacked horizontally (based on their respective differential abundance). zOTUs are color-coded by their respective phyla.
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T2D and metabolic syndrome, hence their precise role remains unclear. 
In this study, both cohorts contained a high abundance of 
Pseudobutyrivibrio and Coprococcus, as well as Anaerostipes in the 
Asian cohort. Nevertheless, and as evident from our differential 
abundance analyses (Figure 4), there can exist considerable variation 
at the zOTU level within a given genus (such as Dialister, 
Ruminococcaceae_UCG-014), with different members often 
differentially enriched in either ethnic cohort despite their close 
genetic distances.

5. Conclusion

Our findings have revealed a clear distinction between the gut 
microbiota profile of two disparate communities from the same 
country of residence, predominantly from the city of Auckland. These 
were a European-ancestry cohort with prediabetes and a Chinese-
ancestry cohort with prediabetes plus phenotype traits consistent 
with TOFI (i.e., dysglycaemia and possible early pancreatic β-cell 
dysfunction despite a lean external appearance). While sex 
distribution did differ between the two cohorts, our findings support 
the notion that ethnicity, defined as self-perceived cultural affiliation 
encompassing diet, lifestyle and genetic components, may at least 
partially explain some of the commonly observed high variation in 
the gut microbiota among individuals. However, even after 
accounting for ethnicity we  observed substantial inter-individual 
variation in zOTU-level assignments within each cohort. Human 
diet, lifestyle and genetics are broad characteristics that have been 
proposed to shape gut microbiota composition, and are likely all 
contributing in our current study together with other factors that may 
affect these highly host-specific variables. A notable recent gut 
microbiome study conveyed the importance of controlling for 
frequency of alcohol consumption and bowel movement quality 
(based on the Bristol stool scale), among other factors (Vujkovic-
Cvijin et al., 2020). Social factors such as family size, living conditions, 
income, religion, education and employment in turn may all have an 
impact on diet and lifestyle and therefore should also be considered. 
Our findings underscore the potential influence of ethnicity on gut 
microbiota composition in the context of individuals with overweight 
and prediabetes.
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