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Introduction: Obesity is closely related to gut microbiota, however, the dynamic 
change of microbial diversity and composition during the occurrence and 
development process of obesity is not clear.

Methods: A weight-change model of adult Bama pig (2 years, 58 individuals) was 
established, and weight gain (27 weeks) and weight loss (9 weeks) treatments 
were implemented. The diversity and community structures of fecal microbiota 
(418 samples) was investigated by using 16S rRNA (V3-V4) high-throughput 
sequencing.

Results: During the weight gain period (1~27 week), the alpha diversity of fecal 
microbiota exhibited a “down-up-down” fluctuations, initially decreasing, recovering 
in the mid-term, and decreasing again in the later stage. Beta diversity also significantly 
changed over time, indicating a gradual deviation of the microbiota composition 
from the initial time point. Bacteroides, Clostridium sensu stricto 1, and Escherichia-
Shigella showed positive correlations with weight gain, while Streptococcus, 
Oscillospira, and Prevotellaceae UCG-001 exhibited negative correlations. In the 
weight loss period (30~38 week), the alpha diversity further decreased, and the 
composition structure underwent significant changes compared to the weight gain 
period. Christensenellaceae R-7 group demonstrated a significant increase during 
weight loss and showed a negative correlation with body weight. Porphyromonas 
and Campylobacter were positively correlated with weight loss.

Discussion: Both long-term fattening and weight loss induced by starvation led 
to substantial alterations in porcine gut microbiota, and the microbiota changes 
observed during weight gain could not be recovered during weight loss. This 
work provides valuable resources for both obesity-related research of human and 
microbiota of pigs.
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1. Introduction

Obesity is a major public health problem worldwide with related epidemics poses a threat 
to human health and quality of life (WHO, 2021). Gut microbiota is closely related to host 
obesity. Differences in fecal microbiota were found between obese and lean/normal humans in 
both European (Turnbaugh et al., 2009; Goodrich et al., 2014) and Asian (Liu et al., 2017; Yun 
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et al., 2017). For mechanism and therapeutic purpose, diverse animal 
models have been used to investigate obesity and associated 
microbiota, typically including mouse, rat, and pigs (Lecomte et al., 
2015; Chang et al., 2018; Kleinert et al., 2018). Pigs are recognized as 
important animal models in gastrointestinal tract studies due to 
having a similar anatomy and immune system to humans 
(Hvistendahl, 2012).

Studies on porcine gut microbiome indicated that gut microbiota 
(e.g., Prevotella) has an effect on the feed efficiency (Yang H. et al., 
2017; Jiang et al., 2023). Few studies have directly compared the fecal 
microbiota of pigs with high and low body weights (Han et al., 2017; 
Oh et al., 2020). In fact, these studies are more inclined to productivity 
and not applicable to obesity issue. Typically, high-fat diet (HFD) or 
high-energy diet (HED) treatments are used to construct obesity 
models in animals. Pedersen et al. constructed HFD-induced obesity 
models on two kinds of minipigs (Ossabaw and Göttingen) and many 
obesity-related bacteria were identified (including Bacteroides, 
Clostridium) (Pedersen et  al., 2013). Panasevich et  al. also used 
Ossabaw pigs and treated with HDF for 36 weeks. They found that 
although obesity significantly lowered alpha-diversity of both cecal 
and fecal microbiota, there are difference in obesity associated bacteria 
with distinct predicted function between cecal contents and feces 
(Panasevich et  al., 2018). However, shortcomings remain in these 
studies, i.e., relatively low number of individuals and samples, single 
time point (only at termination point), and no dynamic monitoring 
of microbiota changes during obesity process. In addition, although 
some studies have elaborately investigated the dynamic changes of 
swine gut microbiota at different ages (Ban-Tokuda et al., 2017; Wang 
et al., 2019; Luo et al., 2022), the time-period were from lactation to 
finishing (< 7 month), which is also not suitable for reference as 
obesity model (especially to simulate obesity of adult human).

Bama minipigs, an indigenous Chinese miniature pig breed, are 
widely used in biomedical research (Yang et al., 2015; Ruan et al., 
2016). Studies on gut microbiota of Bama pigs are mainly focused on 
growth promoters and probiotics (Liu et al., 2017; Wang et al., 2021; 
Azad et al., 2022), and microbial research based on obesity model of 
Bama pig has not been reported. Here, we constructed an obesity 
model with relatively large number of adult Bama pigs (2 years age), 
and fecal microbial ecosystem was analyzed using 16S rRNA gene 
sequencing. We  aimed to address the following objectives: (1) to 
dynamically delineate changes in diversity and composition structure 
of pig gut microbiota during weight gain and weight loss, (2) to 
identify gut bacteria highly correlated with pig body weight. This 
study has great significance not only as reference for accurately 
understanding the relationship between human obesity process and 
gut microbiota, but also to provide bioinformatical resource for future 
comparative research in pigs.

2. Materials and methods

2.1. Animal group design and sampling

The animal experiments were conducted with design and 
methods similar to those used in our previous multi-omics 
research project (Jin et al., 2023). A total of 60 2-year-old female 
adult individuals were selected from a large population of purebred 
Bama minipigs (a closed breeding herd which originally introduced 

from the national conservation farm located at Bama Yao 
autonomous county of Guangxi Zhuang autonomous region, 
China) and used in this study. All pigs were raised in the same 
experimental field under the same environmental conditions 
(Hengshu Bio-Techonlogy, Yibin, Sichuan, China). The animals 
were not treated with any vaccines, antimicrobials or other drugs 
from 1 month before and throughout the experiment period. The 
environment was controlled throughout the experimental period 
at a room temperature of 18 ~ 22°C and humidity of 30 ~ 70%. Pigs 
were raised in separate cages and allowed ad libitum to water. All 
pigs were fed twice daily (7:00 am, 6:00 pm) with restricted feed 
intake. The feed formulation and daily dosage was determined 
according to the nutritional requirements outlined by the Feeding 
Standard of Swine (NY/T 65–2004) and published by the Ministry 
of Agriculture and Rural Affairs of the People’s Republic of China.

All pigs were acclimated to a basic diet (BD, 12.9 MJ/kg) for 
1 week before treatment with daily dose at 3% of their initial average 
body weight. Then, the animal experiment was divided into a weight 
gain stage (Gain) and a weight loss stage (Lose) (Figure 1). During the 
Gain stage, pigs were fed a high-fat diet (HFD, 15.1 MJ/kg) for 
27 weeks (1 ~ 27 week), and the daily dose was monthly adjusted to 3% 
of their current average body weight by weighing for the next month. 
After that, 10 pigs were randomly selected (by drawing lots) for the 
weight loss experiments. Pigs in the Lose stage were transferred to a 
separate room (still caged individually) and stabilized by feeding basic 
diet for 2 weeks. In order to achieve weight loss, pigs were then 
subjected to starvation treatment for 9 weeks (30 ~ 38 week). They 
continued to be fed with basic diet, but daily dose was reduced to 10% 
of before (0.3% of their average body weight at week 27, not changed 
thereafter). The above feed macronutrient content is shown in 
Supplementary Table S1. The pigs were observed daily to determine 
their health conditions, and two individuals with abnormal physical 
conditions were directly eliminated.

Body weight was measured regularly by moving pigs to an 
electronic cage scale. In order to ensure the consistency of sampling 
process at different time points, both the sampling time (to avoid 
circadian effect) and fecal sample quality were strictly controlled. Fecal 
samples were collected on the next day after weighing during 
9:00 ~ 10:00 am with fecal container pre-cleaned the night before 
sampling. Feces with abnormal shape, color or volume was not 
included. All pigs (n = 58) were participated in the sampling, but only 
a part of individuals obtained the samples under the above conditions. 
Fresh feces were directly loaded into 50 mL screw-cap centrifuge tubes 
and immediately snap-frozen in a dry ice box, then transported to a 
laboratory and stored at −76°C until further analysis.

2.2. Sequencing and bioinformatics

Total bacterial DNA was extracted directly from each 200 mg 
thawed sample (scooped from the center part of feces) using 
TIANamp Bacteria DNA Kit (TIANGEN Biotech, Beijing, China) 
according to the manufacturer’s instructions. DNA concentration was 
measured using a NanoDrop spectrophotometer (Thermo Scientific), 
as well as quantified through agarose gel electrophoresis. We only 
selected samples from part of individuals for subsequent library 
construction and sequencing. Among them, all samples from 10 pigs 
that used for weight loss study were included, and out of the remaining 

https://doi.org/10.3389/fmicb.2023.1239847
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zeng et al. 10.3389/fmicb.2023.1239847

Frontiers in Microbiology 03 frontiersin.org

48 pigs, 30 pigs were randomly selected and their samples were 
sequenced (Supplementary Table S2). 16S rRNA gene amplicons were 
produced and sequenced at the Beijing Genomics Institute (BGI: 
Shenzhen, China) using the Illumina HiSeq 2 × 250 protocol. The 
V3-V4 region of the 16S rRNA gene was amplified using the 341f/806r 
barcoded primer pair (341f: 5′-XXXXXX CCT AYG GGR BGC ASC 
AG-3′, 806r: 5′-XXXXXX GGA CTA CHV GGG TWT CTA AT-3′).

The sequencing data analysis was performed using the QIIME21 
(Bolyen et al., 2019). The DADA2 method was used for sequence 
quality control (Callahan et al., 2016). Barcode and primer sequences 
were removed from the 5′ ends and low-quality bases were truncated 
from the 3′ ends according to the Q20 standard. The clean fasta 
sequences were overlapped and the feature table was constructed after 
de-redundancy. Features with very low sequence reads were filtered 
out (n > 30). The final high-quality representative feature sequences 
were used for taxonomic annotation with the SILVA rRNA database 
(132_99 release) used as reference2.

Before the diversity analysis, the feature table was collapsed to the 
genus level (silva taxonomy level ‘5_’) to improve biological reliability 
(the 16S V3-V4 region study may be not accurate at the species level). 
The Shannon’s diversity index and the ‘Number of Genus’ were 
computed for alpha-diversity, and differences between time points 
were tested using the Kruskal-Wallis H test with FDR based multiple 
comparisons adjustment (Kruskal and Wallis, 1952; Benjamini and 
Hochberg, 1995). Binary Jaccard and Bray-Curtis distances for each 
pair of samples were calculated to represent similarity relationships of 
the gut microbiota, and visualized using principal coordinates analysis 
(PCoA). PERMANOVA was used for group significance tests of 
beta-diversity.

Microbial composition was studied at three levels: phylum, family 
and genus. The relative abundances of dominant bacteria are displayed 
in stacked bar charts. The relative abundances data matrix at phylum 
and genus level were used for subsequent analysis, and low-abundance 
taxa (total average relative abundance <0.1%) were filtered out. The 
LEfSe (Linear discriminant analysis Effect Size) software was used 
with default parameters (factorial Kruskal-Wallis test ɑ <0.05, 
logarithmic LDA score > 2.0) to identify differentially abundant taxa 
between the Gain and Loss periods (https://huttenhower.sph.harvard.

1 https://qiime2.org/

2 https://www.arb-silva.de/

edu/lefse) (Segata et al., 2011). SparCC software (Friedman and Alm, 
2012) was used to calculate the Pearson and Spearman correlations 
between bacterial taxa (genus level) and pig body weight (bootstraps, 
n = 100). The dynamic change in relative abundance of these weight-
related taxa was analyzed.

PICRUSt2 (Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States) was used to analyze the 
function of the fecal microbiota (Douglas et al., 2020). The predicted 
metagenomes were subjected to KEGG and MetaCyc pathway 
analysis. Similar to microbiota analysis, the alpha and beta diversity of 
KEGG Orthology (KO) terms was studied and the significance of 
differences between groups were tested using the Kruskal-Wallis H 
test and PERMANOVA test, respectively.

3. Results

The body weight of the Bama pigs changed significantly during 
the experiments (Figure 2A). The average weight rose from 74.2 kg at 
week 0 to 142.0 kg at week 27 during the Gain period. In the Lose 
period, it dropped from 122.2 kg at week 27 to 94.1 kg at week 38. Due 
to quality control of sampling and subsequent experiments (DNA 
extraction, library construction, etc.), a part of samples was excluded, 
resulting in an irregular number of samples at each time point 
(Supplementary Table S2). A total of 418 fecal samples were enrolled 
in a microbial diversity study through the 16S rRNA gene high-
throughput sequencing approach, with 378 samples (13 ~ 40 per time 
point) in the weight gain period and 40 samples (10 per time point) 
in the weight loss period. After quality control of the sequence data, a 
total of 23,229,042 high-quality sequences were obtained with an 
average of 55,571 reads per sample, and the sample with the lowest 
sequence number has 20,636 reads. After sequence de-redundancy, 
we  constructed the feature metadata table of all samples, which 
contains 7,104 high-quality features (feature min counts >30). These 
features were annotated and clustered into 587 taxa at the genus level, 
with an average of 161 genera per sample (Supplementary Table S2).

3.1. Dynamic changes in fecal microbial 
diversity

Two statistical measure, the Shannon index and the Number of 
Genus were calculated to study changes in the alpha diversity of pig 

FIGURE 1

Experimental design and sampling. Animal experiments are divided into weight gain and weight loss periods, with a 2-week intermittent period (Int.) in 
between. Apart from the initial time point (week 0), the time point at the end of each week was used as name for labeling and describing the 
processing week. Bama pigs in the weight gain period (1  ~  27) received a high-fat diet (HFD) for 27  weeks, while those in the weight loss period (30  ~  38) 
were fed only 10% of a basic diet (BD) for 9  weeks. Fecal samples were collected at the time points marked by blue triangles, and body weight was 
recorded.
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microbiota over time. The diversity difference between initial and other 
time points in respective stages were compared. The high-fat diet 
(HFD) of the Gain period caused a “down-up-down’ fluctuation in 
diversity indices (Figures  2B,C). Both the Shannon index and the 
Number of Genus were significantly lower after 3 ~ 5 weeks of HFD 
treatment. By the week 9, they rose and returned to their original levels. 
For remaining 13–27 week, the Number of genus remained stable (one 
exception that increased at week 17), but the Shannon index decreased 
significantly by week 22 ~ 27 (Supplementary Table S3A, q < 0.05). 
After 3 weeks of starvation in the Lose period (30 ~ 32 week), the fecal 
microbial diversity was further sharply reduced compared to the Gain 
period (Supplementary Table S3A). No significant differences were 
found during the 32 ~ 36 week period, but by the end of the experiment 
at week 38, the diversity index dropped to its lowest point. In addition, 
we  separately tracked the changes of microbial diversity of 10 
individuals selected for lose period, and found that there was no 
significant difference from other individuals (Supplementary Figure S1), 

indicating that random selection had minimal impact on the 
diversity results.

We next assessed beta diversity with PCoA analysis and microbial 
composition differences of all samples were measured based on the 
binary Jaccard and Bray-Curtis distances of all taxa metadata. Overall, 
there was a significant difference between the Gain and Lose periods 
(Figure 2D; Supplementary Figure S2A; Supplementary Table S3B). 
During the Gain period, differences in microbiota between each pair 
of time points were all significant (Supplementary Table S3B), and the 
degree of distance gradually increased (compared to week 0, 
Supplementary Figure S3) as the Gain period continued, revealing the 
change of microbiota underwent a dynamic alienation process over 
time (Figure  2E; Supplementary Figure S2B). In the Lose period, 
although the overall difference among all time groups was significant 
(Figure 2F; Supplementary Table S3B, All between vs. All within, 
p < 0.01), there was no significant difference for pairwise comparisons 
between individual time groups (One exception in the Bray-Curtis 

FIGURE 2

Gut microbial diversities of Bama pigs. Two different stage groups (weight gain and weight loss period) are marked with red and green colors, 
respectively. (A) Changes in the average body weight over time (only include pigs for which sequence data is available, Supplementary Table S2). (B,C) 
Alpha diversity measures of fecal microbiota using Number of Genus (B) and the Shannon index (C). Error bars represent standard deviation (SD). 
Kruskal-Wallis H test was used to compare the intra-group differences between the initial time point (c) and other time points (*q  <  0.05). (D–F) PCoA 
plots of beta-diversity analysis using binary Jaccard distance metrics. Each node represents the fecal microbiota of one single sample. Microbiota 
differences between weight gain and weight loss periods were calculated (D), and the changes across time within each period are separately illustrated 
(E,F).
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results of week 34, Supplementary Figure S2C; 
Supplementary Table S3B). Moreover, we suspect that the microbiota 
changes early on during the initial 2-week period (week 30, 31) of food 
restriction and then stabilizes by week 32, so no gradient change 
similar to the Gain period occurs in the later time period.

3.2. Changes of the dominant gut bacteria

We analyzed changes in the relative abundance of dominant 
bacteria at three taxonomic levels (Phylum, Family and Genus). 
Overall, Firmicutes (64.3%), Bacteroidetes (27.9%), Proteobacteria 
(2.5%) and Spirochaetes (2.3%) were the most dominant phyla. At the 
family and genus level, the dominant bacteria were mainly 
Ruminococcaceae (29.5%, 43 taxa), Lachnospiraceae (14.6%, 64 taxa), 
Christensenellaceae (9.1%, 3 taxa), Bacteroides (3.7%), Treponema 
(2.0%), and Lactobacillus (1.7%).

The LEfSe analysis results revealed that the gut microbiota 
composition underwent extensive changes between the Gain and Lose 
periods (Figure 3; Supplementary Table S7). Each taxon was analyzed 
one at a time and presented in taxonomic order at the phylum level. 
Firmicutes decreased in the weight loss period, mainly due to the 
significant decrease of taxa in Ruminococcaceae (including 
Ruminococcus, Oscillibacter), Lachnospiraceae, Lactobacillus and 
Streptococcus. Although the total relative abundance of Bacteroidetes 
did not change significantly, it was actually neutralized by up and 
down changes of taxa in genus/family level. For example, Bacteroides 
and Porphyromonas increased significantly in the Lose period, while 

the p-251-o5 family, Prevotellaceae (including Prevotella), 
Rikenellaceae, and Muribaculaceae, were all significantly reduced. 
Proteobacteria increased in the Lose period due to an increase in 
Escherichia-Shigella and Desulfovibrio. Furthermore, the decrease of 
Spirochaetes was mainly due to the decrease in Treponema, and 
increase of Verrucomicrobia in the Loss period was mostly due 
to Akkermansia.

3.3. Gut bacteria related to pig body weight

We looked for gut bacteria that were correlated with body weight 
during the Gain and the Lose periods. Only the 85 most dominant 
taxa at the genus or family levels (relative abundance >0.001) were 
enrolled in both the Pearson and Spearman correlation tests 
(Supplementary Table S4). After filtering (|R| > 0.2, p  < 0.05, taxa 
relative abundance >0.005), 9 prominent taxa were identified, and the 
results were completely different between the Gain and Lose periods 
(Figure 4). In the Gain period, Bacteroides, Clostridium sensu stricto 1, 
and Escherichia-Shigella were positively correlated with body weight 
and their abundances increased over time; while Streptococcus, 
Oscillospira and Prevotellaceae UCG-001 were negatively correlated 
(decreased during the Gain period).

In the Lose period, Porpyromonas and Campylobacter were 
positively correlated and decreased in relative abundance over time 
(Supplementary Table S4). Only one taxon, ‘Christensenellaceae R-7 
group’, was negatively correlated with body weight, and its average 
relative abundance was very high (reaching 26.3% at week 38). In 

FIGURE 3

Dynamic changes in the composition of the pig microbiota. Each bar represents the average relative abundance of each taxon at a particular time 
point. In the ‘Family and Genus’ part, the genera with very low relative abundances (< 0.01) were summarized at the family level, and taxa that cannot 
be identified to the family level were merged into ‘Others’. Abundance differences of each taxon between the Gain and Lose periods were tested by 
LEfSe and ‘LEfSe+’ indicates the group with higher abundance. n/a, not applicable. Taxa names belonging to the same phylum were marked with the 
same color.
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addition, bacteria taxa with its abundance significant changed during 
weight gain period were not recovered in weight loss period.

3.4. Predicted function of pig gut 
microbiota

We next used PICRUSt2 to explore the functional profiles of pig 
gut microbiota. The 16S feature metadata of all samples were loaded 
for metagenome prediction, and predicted genes were studied for 
functional annotation and pathway attribution analysis based on the 
KEGG and MetaCyc databases. A total of 7,088 KEGG Orthology 
(KO) genes were acquired. The gene alpha diversity index (both 
Shannon and Observer KO number) was higher in the Lose group 
than the Gain group (Supplementary Table S5A-1, Shannon index: 
10.9 vs. 10.5, KOs: ~5,384 vs. ~5,126), indicating that although 
starvation-related weight loss led to a significant decrease of gut 
microbial species, the remaining bacteria carry more types of genes 

and may have relatively more complex functions. Meanwhile, 
comparisons across time points (week groups) revealed that both 
alpha and beta diversity of KOs varied significantly over time 
(Supplementary Table S5A-2, 3, test on “week” factor).

A correlation analysis was conducted on 4,556 abundant KOs 
(counts >100). In the weight gain period, 1,081 KOs were positively 
correlated with body weight, and 149 KOs were negatively correlated 
(Supplementary Table S5B). KEGG pathway affiliations of these 
weight-related KOs are shown in Figure 5A. However, only 6 KOs 
were significantly (all positive) related to body weight in the Lose 
period (Supplementary Table S5B), and it was not possible to find any 
weighted-related KOs that changed in the Gain period and recovered 
during the Lose period.

For the MetaCyc analysis, 2,138 predicted Enzyme genes were 
attributed to 415 MetaCyc pathways. Likewise, 35 pathways were 
corelated with body weight in the Gain period (Figure 5B, 33 positive 
and 2 negative) and 72 pathways were weight-related in the Lose 
period (Supplementary Table S5C).

FIGURE 4

Gut bacteria correlated with body weight. Linear graphs show the average relative abundances of weight-related bacteria over time (Mean  +  SEM). The 
red and green lines indicate the Gain and Lose periods, respectively. The results of the Spearman correlation test are marked in the figure.

FIGURE 5

Predicted KEGG and MetaCyc pathways correlated to pig body weight in the Gain stage. Microbial metagenomic information was predicted using the 
PICRUSt2 package based on the 16S metadata of all samples. (A) KOs were tested for Spearman correlation with body weight data, and only KOs with 
relatively strong correlation (|R|  >  0.3, p  <  0.01, Average counts >100) were mapped to KEGG pathways. (B) Predicted metagenome was annotated as 
Enzyme Classification (EC) and mapped to the MetaCyc pathway. The aggregated enzyme gene counts data (Average counts >1,000) was used for 
Spearman correlation test (|R|  >  0.2, p  <  0.01), and relative abundance of these pathways were shown as a heatmap.
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4. Discussion

4.1. The influence of weight gain and 
weight loss on microbial diversity

The high-fat diet (HFD) treatment is commonly used to construct 
obesity models of experimental animals (de La Serre et al., 2010; Fei 
et al., 2020). Here, we do not intend to distinguish the HFD and HED 
(high-energy diet) in discussion, as different studies have used 
inconsistent ingredient and fat ratios or indeterminate energy criteria 
(Matteo et al., 2012; Lecomte et al., 2015; Wan et al., 2019) sIn previous 
studies on mice and pigs, HFD significantly reduced the alpha 
diversity of animal intestinal microbiota (Chang et  al., 2018; 
Panasevich et al., 2018; Yin et al., 2018), but not significantly so in 
human cases, e.g., Shannon diversity was not significantly changed in 
young Chinese adults after a long-term HFD lasting for 6 months 
(Wan et al., 2019). In addition, a short-term animal-based diet (4 days, 
high fat and protein) also did not significantly change the alpha-
diversity index (David et  al., 2014). In light of these results, the 
influence of HFD on gut microbial diversity remains unclear. 
Differences in species, HFD formulations, and duration may all have 
impact on microbial diversity and lead to inconsistent results. In 
addition to HFD, the obesity traits of host may also affect gut 
microbiota. Several studies have shown that obese individuals are 
associated with higher (Kasai et al., 2015; Chávez-Carbajal et al., 2019) 
or lower (Turnbaugh et al., 2009; Liu et al., 2017; Yun et al., 2017) 
microbial diversity. HFD and the obesity phenotype are in fact two 
different influencing factors for gut microbiota.

In our study, the changes of fecal microbiota in pigs during long-
time HFD fattening were dynamically monitored. The “down-up-
down” variation of alpha diversity has never been observed before 
(Figure 2C) and its explanation can only be  speculative. The early 
reduction in alpha-diversity (after 3 weeks) was mainly due to HFD 
treatment (consistent finding in mice, after 2 weeks) (Yin et al., 2018). 
The rebound of diversity at the middle time points is hard to explain, 
but it’s not a simple recovery, because the microbial composition has 
changed significantly from our beta diversity results. After a long-term 
HFD, excessive obesity of pigs may again lead to decrease in gut 
microbial diversity (consistent finding in Ossabaw pig, after 36 weeks) 
(Panasevich et al., 2018).

The effect of weight loss on gut microbial diversity remains 
controversial. In human studies, calorie-restricted diets can increase 
(Frost et al., 2019) or has insignificant effect (Sowah et al., 2022) on 
fecal bacteria diversity. Studies employing lower-fat diet (LFD) (Wan 
et al., 2019) and a fruit and vegetable diet (Kopf et al., 2018) were 
associated with increased Shannon diversity. Inconsistent reports also 
appeared in mouse model studies, e.g., increased (Cignarella et al., 
2018) or not changed (Beli et al., 2018) in alpha diversity. Moreover, a 
study on obese women with very-low-calorie diets showed that 
although the diversity (observed ASVs) increased after diet restriction, 
the total bacteria copies decreased (von Schwartzenberg et al., 2021). 
In our weight loss experiments, we applied extreme dietary restriction 
(reduce 90%), a treatment that approximates the starvation model and 
led to a dramatic decline of alpha diversity. One study found that 
starvation of hybrid grouper led to significantly decreased abundance 
and diversity of intestinal microbiota (Liu et  al., 2020). The gut 
bacteria diversity of brown bears was lower after hibernation, a 
process that may constitute a model similar to starvation (Sommer 

et al., 2016). Overall, we speculate that distinct weight loss strategies 
may results in diverse changes in microbial diversity.

4.2. Gut bacteria related to body weight

In the current study, Bacteroides was positively correlated with pig 
body weight in the Gain period (Figure 4, increase with weight gain) 
while its relative abundance still extremely increased in Lose period 
(Figure  3), an apparently contradictory result. HFD can cause a 
significant increase in Bacteroides in adult human (Wan et al., 2019), 
and research has shown that multiple species of Bacteroides (B. fragilis, 
B. ovatus, B. vulgatus, etc.) are positively correlated with children’s 
BMI (Korpela et al., 2017; Indiani et al., 2018). Interestingly, some 
Bacteroides species are negatively related to obesity and in fact are used 
to reverse obesity. For example, B. acidifaciens can prevent obesity and 
improve insulin sensitivity in mice (Yang J. Y. et  al., 2017), and 
B. thetaiotaomicron can reduce plasma glutamate concentration and 
alleviate diet-induced body-weight gain and adiposity in mice (Liu 
et al., 2017). Therefore, we speculate that the changes in Bacteroides in 
the Gain and Lose periods in our study resulted from contributions 
from different Bacteroides species.

Multiple weight gain related bacterial taxa have also been reported 
in previous related studies. Escherichia coli was found to be higher in 
obese people (Gao et al., 2015; Pinart et al., 2022). A monocolonization 
study in mice found that E. coli colonization led to increased 
inflammation of host tissue, and aggravates HFD induced obesity and 
insulin resistance (Ju et al., 2023). Oscillospira is positively associated 
with leanness and health, and both HFD and inflammatory diseases 
can lead to a significant decrease of Oscillospira (Tims et al., 2013; 
Konikoff and Gophna, 2016; Khan et  al., 2018). Similarly, the 
abundance of Prevotellaceae was reduced in children consuming a 
western-style diet (high-fat and low fiber) (Davis et al., 2020), and also 
in patients with urinary and nervous system diseases (Gerhardt and 
Mohajeri, 2018; Sanada et al., 2020; Stanford et al., 2020).

Regarding the issue of weight loss, there are variations in the changes 
observed in Firmicutes across different reports. In a mouse model, a 
significant decrease in Firmicutes was discovered when obesity was 
reversed through Resveratrol supplementation (Sung et al., 2017). Similar 
patterns have been observed in studies on hibernating animals, including 
grizzly bears, squirrels, and frogs, where a reduction in Firmicutes and an 
increase in Bacteroidetes and Verrucomicrobia were consistently observed 
(Dill-McFarland et al., 2014; Sommer et al., 2016; Weng et al., 2016), 
aligning closely with our findings in pigs (Figure  3). However, 
contradictory outcomes have been reported in mice subjected to 
intermittent fasting (Beli et al., 2018; Cignarella et al., 2018).

Christensenellaceae, as evident from our pig model study 
(Figures 3, 4), emerges as the most crucial bacterium associated with 
weight loss. It has also been found to be enriched in human individuals 
with a low BMI. Studies involving whole fecal bacteria transplantation 
(Zhou et  al., 2017) and the transplantation of a single bacterium 
(C. minuta) (Goodrich et  al., 2014) have demonstrated that 
Christensenellaceae possesses the ability to modify the composition 
of the microbiome associated with obesity and reduce body weight. 
Additionally, Akkermansia has garnered considerable attention 
(Figure 3). Consistently, fasting in mice has been shown to significantly 
increase the abundance of Akkermansia (Beli et  al., 2018). 
Furthermore, it has been observed that both Akkermansia and 
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Christensenellaceae were significantly up-regulated in a study 
involving the use of weight-loss drugs (quercetin and resveratrol) to 
alleviate obesity in mice fed a high-fat diet (Zhao et al., 2017).

4.3. Function of weight-related gut 
microbiota

In a study involving intestinal metagenomics conducted on 
Chinese individuals (23), it was observed that obese individuals have 
a lower gene count of gut bacteria compared to lean individuals. 
Interestingly, several obesity-upregulated KEGG pathways aligned 
with our findings in pigs, including ‘ABC transporters’, 
‘Phosphotransferase system (PTS)’, ‘Galactose metabolism’, 
‘Lipopolysaccharide biosynthesis’, and ‘Fructose and mannose 
metabolism’. Furthermore, two pathways, namely ‘Sulfur metabolism’ 
and ‘Methane metabolism’, were found to be upregulated following a 
high-fat diet in mice (Hong et  al., 2020). Notably, the ‘Ribosome’ 
pathway exhibited downregulation in studies involving diabetic mice 
fed a high-fat diet (Liu et al., 2019) and in obese women with liver 
steatosis (Hoyles et  al., 2018), highlighting its consistent 
downregulation across various obesity-related conditions. These 
repeatedly validated pathways warrant attention, while further 
investigation is needed to explore other pathways in detail.

5. Conclusion

The long-term HFD-fattening of Bama pigs can induce significant 
dynamic changes in their gut microbiota and eventually lead to a 
decrease in microbial diversity. The weight gain process was 
accompanied by an increased abundance of Bacteroides and 
Clostridium sensu stricto 1, and a decrease of Streptococcus, 
Oscillospira, and Prevotellaceae UCG-001. Weight loss through 
starvation did not restore the gut microbiota to its previous structure, 
but further reduced microbial diversity and the abundance of 
Porphyromonas and Campylobacter. Notably, Christensenellaceae R-7 
group exhibits a significant association with weight loss. These 
weight-related gut bacteria in pigs could still be  investigated as 
potential and functionally relevant microbial resources for pigs. This 
obesity model study based on Bama pigs revalidate many existing 
findings, and the original results again demonstrate the complexity 
of the relationship between gut microbiota and body weight.
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