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Introduction: Microorganisms play an important role in the multifunctionality of 
soil ecosystems. Soil microbial diversity and functions have a great impact on plant 
growth and development. The interactions between tea trees and soil microbiota 
can be linked with planting patterns and management strategies, whose effects 
on soil microbial community structure and metabolites are still unclear.

Methods: Here we used amplicon sequencing and metabolomic analysis to 
investigate the differences in soil microbial composition and metabolites among 
three tea production systems: organic, non-organic, and intercropping.

Results: We detected significant differences among the three systems and found that 
Firmicutes, Proteobacteria, Acidobacteriota, Actinobacteriota and Chloroflexi were 
the main bacteria in the three soil groups, although they varied in relative abundance. 
Acidobacteria bacterium increased significantly in the organic and intercropping 
groups. For fungi, Ascomycota and Basidiomycota were the main differential fungal 
phyla. Fungi alpha-diversity in the non-organic group was significantly higher than 
that in the other two groups, and was correlated with multiple soil physical and 
chemical factors. Moreover, network analysis showed that bacteria and fungi were 
strongly correlated. The changes in soil microorganisms caused by management 
and planting patterns may affect soil quality through corresponding changes in 
metabolites. Metabolomic analysis showed differences in metabolite composition 
among different groups. It was also found that the arachidonic acid metabolic 
pathway was affected by changes in soil microorganisms, and may further affect soil 
quality in an essential manner.

Discussion: Planting patterns and management strategies may significantly affect 
soil microorganisms and therefore metabolites. Changes in soil microorganisms, 
especially in fungi, may alter soil quality by affecting soil physicochemical 
properties and metabolites. This study will provide new insights into soil quality 
monitoring from a microbiological perspective.
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1. Introduction

Tea (Camellia sinensis L.), belonging to the family Theaceae, is an 
evergreen shrub or small tree whose leaves and leaf buds are used to 
produce tea (Kui et  al., 2021b). Tea has become one of the most 
popular beverages in the world, with multiple health benefits 
(Trevisanato and Kim, 2000; Perez-Burillo et  al., 2021; Bag et  al., 
2022). Tea tree is one of the most important economic crops in China. 
In 2019, tea planting area in China reached approximately 3.1 million 
hectares, with a total yield of 2.78 million tons (Xie et al., 2022). To 
maintain high yield and quality, chemical fertilizers, particularly 
nitrogen fertilizers, have been widely used. However, the long-term 
excessive application of fertilizers exerts negative impacts on soil and 
plants, leading to soil acidification, nutrient loss, and decreased tea 
quality (Yang et  al., 2018; Wang et  al., 2020). To address these 
problems, the application of organic fertilizer has become one of the 
most important agricultural practices in tea plantations these days 
(Huang et al., 2022; Ye et al., 2022).

Soils are a vast reservoir of biodiversity, containing myriad life 
forms that are essential to the functioning of ecosystems (Nielsen 
et al., 2015; Mishra et al., 2023). Rapid advances in high-throughput 
sequencing technology have deepened our understanding of the 
composition and functional roles of soil microorganisms. The soil 
microbial community governs the biogeochemical cycling pertaining 
to macronutrients, micronutrients, and other elements vital for the 
growth of plants and animals (Jansson and Hofmockel, 2020). It is 
influenced by and interacts with environmental factors, such as 
minerals, nutrients, redox conditions, and organic carbon 
composition, which may alter microbial diversity and richness 
(Jansson and Hofmockel, 2020). Changes in the composition and 
function of microbial communities can also influence the 
biogeochemical processes of carbon flow, further accelerating or 
mitigating climate change (Naylor et al., 2020). Studies have shown 
that any loss in microbial diversity will likely reduce the 
multifunctionality in terrestrial ecosystems, and damage ecosystem 
services such as nutrient cycling, soil fertility, primary production, and 
climate regulation (Delgado-Baquerizo et al., 2016; Kong et al., 2023; 
Wang et al., 2023).

In the past few years, attention has been diverted to the effects of 
plant-associated microbial community on plant growth and health 
(Pascale et  al., 2019; Rai et  al., 2023). The plant rhizosphere 
microbiome plays an important role in plant growth, yield, and disease 
resistance (Qu et al., 2020). Currently, various microbial taxa including 
beneficial bacteria and fungi, are used as biological fertilizers. They 
can improve plant nutrition by mobilizing or increasing the availability 
of nutrients in the soil, and thus have great potential to enhance soil 
fertility (Singh et al., 2008, 2010; Mitter et al., 2021). Microorganisms 
in the soil can improve soil fertility and provide nutrients for plants by 
decomposing litter as well (Hattenschwiler et al., 2005).

Applying exogenous organic matter helps to improve the balance 
and stability of soil microorganisms (Gryta et al., 2020). Changes in 
the levels of soil organic matter has the potential to alter bacterial 
microbiome, and thereby the macrophage activation of Echinacea 
purpurea root extracts (Haron et al., 2019). It was also found that using 
organic fertilizers can reinforce soil ability to suppress pathogenic 
fungi in the peanut rhizosphere (Chen et  al., 2020). Overall, the 
application of organic fertilizer can promote microbial activities, 
enhance the synergistic effect within soil microbiome, increase the 

availability of soil organic matter and nutrients, and improve plant 
biomass (Zhang et al., 2019).

Tea planting systems depend highly on soil quality. The evaluation 
of soil quality under different management strategies and planting 
patterns is important for the production of organic tea. However, 
variations in soil microbial composition of different types of tea 
plantations and their due effects on soil quality are still unclear. In this 
study, we explored the microbial profiles and metabonomics of three 
soils of tea plantations: organic, non-organic, and intercropping to 
clarify the unique interactions between soil microbial community and 
metabolites, and their influences on soil properties, such as organic 
matter, total nitrogen, total phosphorus, and total potassium. This 
research will provide valuable insights into the improvement of soil 
quality in tea plantations through the use of microorganisms, and 
finally promoting tea plant growth.

2. Materials and methods

2.1. Soil sampling

Soil samples were collected from two tea plantations in Menghai 
County, Yunnan Province, southwestern China in August 2022. One 
plantation (latitude: 22°2′56″N, longitude: 100°37′48″E) was certified 
organic by Controllo e Certificazione Prodotti Biologici (CCPB, a 
renowned and professional inspection and certification body based in 
Italy for accrediting organic and eco-friendly production). Docynia 
delavayi trees (a wild fruit tree distributed in southwestern China) 
formed a natural intercropping system with tea trees in parts of the 
plantation. In the other plantation (latitude: 22°2′58″N, longitude: 
100°37′44″E), non-organic practices were conducted, in which 
chemical fertilizers and pesticides were used. The two plantations were 
geographically close to each other. Three groups of soil samples were 
collected using a stainless steel spade from the following tea 
production systems of the two plantations: organic, non-organic, and 
intercropping. Soil of 10–20 cm deep and 5–15 cm near tea tree roots 
were taken. Each group included 10 samples. For each sample, five 
subsamples were collected in a zigzag pattern and mixed thoroughly. 
The well-mixed soil samples were carefully transferred to aseptic 
sampling bags and frozen at −80°C (Tedeschi and De Paoli, 2011) for 
further analysis.

2.2. Determination of soil characteristics

Soil pH was determined in a mixture of soil and water at a ratio of 
1:5 (wt/vol) using pH strips (Zhang et  al., 2019). Soil ammonia 
nitrogen (NH4) and nitrate nitrogen (NO3) were extracted with a 2 M 
KCL solution. Available potassium (AK) was determined by the 
atomic absorption method (Carter and Gregorich, 2007). Available 
phosphorus (AP) was determined based on the OD value at 880 nm 
by sodium bicarbonate extration, according to the Olsen method 
(Olsen, 1954). Total nitrogen (TN) was analyzed by fully burning each 
sample in a high-temperature reactor (Ma et  al., 2017). Total 
phosphorus (TP) and total potassium (TK) were determined by 
NaOH molybdenum-antimony colorimetry method (Butkhup and 
Samappito, 2008). Organic matter (OM) was determined by a total 
organic matter analyzer (multi N/C 3100, Analytik Jena, Germany).
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2.3. DNA extraction and sequencing

DNA was extracted from 0.5 g of soil using the Magnetic Soil and 
Stool DNA Kit (Tiangen, China) (Zhu et  al., 2021). DNA 
concentrations were measured using a NanoDrop  2000-UV 
spectrophotometer (Thermo Scientific, Waltham, MA, United States). 
The 341 forward (5’-CCTAYGGGRBGCASCAG-3′) and 806 reverse 
(5′-GGACTACNNGGGTATCTAAT-3′) primers (Frank et al., 2013) 
were used to amplify the V3–4 region of the 16S rRNA gene, while the 
SSU0817 forward (5′-TTAGCATGGAATAATRRAATAGGA-3′) and 
1,196 reverse (5′-TCTGGACCTGGTGAGTTTCC-3′) primers 
(Borneman and Hartin, 2000) were used to amplify the ITS1-F region 
of the 18S rRNA gene. PCR products were detected by 2% agarose gel 
electrophoresis. The target strip was recovered using a glue recovery 
kit (Qiagen, China). The library was sequenced using the Illumina 
NovaSeq sequencing platform. The raw sequencing data were 
uploaded to the public database National Center for Biotechnology 
Information (NCBI), with the accession number PRJNA983565.

2.4. Analysis of sequencing data

Raw tags were obtained by merging pair-ended reads using 
FLASH (V1.2.11, http://ccb.jhu.edu/software/FLASH/). Quality 
control was conducted on the raw tags using the fastp program to get 
high-quality clean tags, from which chimeras were detected and 
removed with Vsearch software (2.14.1) (Rognes et al., 2016). Then 
the DADA2 R package (Callahan et al., 2016) was used to denoise the 
sequences and generate amplicon sequence variants (ASVs) for 
further analysis. ASVs were later classified using the Naive Bayes 
classifier. Alpha-diversity values of the Shannon index and Chao1 
index were calculated with the QIIME2 software (Bolyen et al., 2019). 
Bray–Curtis dissimilarity was calculated using the R-package vegan 
(v4.1.1) (Dixon, 2003) while PCoA analysis was performed using the 
ade4 R package (Dray and Dufour, 2007). LDA EFfect Size (LEfSe) 
(Segata et al., 2011) was conducted to identify differential markers 
between sample groups.

2.5. Data acquisition of metabolomic study 
based on liquid chromatography tandem 
mass spectrometry (LC-MS/MS)

One hundred mg of each soil sample was transferred to an 
Eppendorf tube and mixed with 1,000 μL of extraction solution 
(methanol: water = 3:1, isotope labeled internal standard). The mixture 
was homogenized at 35 Hz for 4 min and sonicated in an ice-water 
bath for 5 min (Alseekh et  al., 2021). The homogenization and 
sonication cycle was repeated three times. The samples were incubated 
for 1 h at −40°C and centrifuged at 12000 rpm (RCF = 13,800 × g, 
R = 8.6 cm) for 15 min at 4°C (Alseekh et  al., 2021). The obtained 
supernatant fluid was transferred to a fresh glass vial for analysis. 
Quality control (QC) samples were prepared by mixing an equal 
aliquot of the supernatants from all soil samples.

A Vanquish UHPLC system (Thermo Fisher Scientific, 
United States) was used for this study (Wang et al., 2016). The target 
compounds were separated by an Acquity™ UPLC HSS T3 column 

(100 mm × 2.1 mm, 1.8 μm). Eluent A was water containing 5 mmol/L 
ammonium acetate and 5 mmol/L acetic acid, while eluent B was 
acetonitrile. Column temperature was at 4°C and sample volume 
was 2 μL.

2.6. Soil metabolomic analysis

The original LC–MS/MS data were converted to mzXML format 
by ProteoWizard. XCMS was used for peak identification, peak 
extraction, peak alignment, and integration (Smith et al., 2006). 
Then BiotreeDB (V2.1) self-built secondary mass spectrum 
database was applied for material annotation. The cutoff value was 
set at 0.3. Deviations were filtered based on relative standard 
deviation (RSDS), namely coefficient of variation (CV). Only peak 
area data with no more than 50% null value in one group or no 
more than 50% hollow value in all groups were retained. Missing 
values in the original data were simulated. The numerical simulation 
method was used to fill in half of the minimum value. Then, the 
data were normalized to the internal standard peak intensity to 
generate a new data matrix. Partial least squares regression was 
used to establish the relationship model between metabolite 
expression and samples. Metabolites with a variable importance in 
projection (VIP) value >1  in OPLS-DA analysis and p < 0.05  in 
univariate analysis were considered significantly changed (Chong 
and Xia, 2018).

2.7. Statistical analysis

R software (v4.1.1) was used for statistical analysis. The Wilcoxon 
rank-sum test was used to compare differences in Shannon index and 
Chao1 index. PERMANOVA analysis was performed to assess 
differences in beta diversity between soil groups. Environmental 
indicators were statistically analyzed by t-test. Spearman correlation 
was used to investigate microbial metabolites and environmental 
factors. The significance threshold was set at |r| > 0.6 and p < 0.05. 
Network visualization and analysis were conducted using Gephi 
software (v0.9.2).

3. Results

3.1. Effects of different management 
strategies on soil physical and chemical 
properties

Differences in the main physical and chemical properties of soils 
under different management strategies were investigated. The results 
showed that the levels of TN, OM, AN (alkeline-N) and pH in 
intercropping group were increased significantly, followed by organic 
and non-organic groups. TK was significantly increased in organic 
group compared with non-organic group soil. Although AP and AK 
showed no significant difference among soil samples, the lowest values 
were found in the non-organic group (Table 1). These results revealed 
that soil characteristics may be  affected by different management 
strategies and planting methods.
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3.2. Effects of different management 
strategies on soil microbial communities

Considering the close relationship between soil characteristics and 
its microbial community, bacterial and fungal compositions of the 
three groups of soil were analyzed (four replicates for each sample 
group). A total of 761,015 and 928,360 high quality sequences were 
obtained in bacteria and fungi, respectively. The results of microbial 
annotation showed that Chloroflexi, Actinobacteriota, Acidobacteriota, 
Proteobacteria, and Firmicutes were the main phyla of bacteria, but 
their proportions vary among the three soil systems. The relative 
abundance of Acidobacteriota in non-organic group was higher than 
that in organic group, while Proteobacteria and Firmicutes were higher 
in intercropping group. The relative abundance of Firmicutes in 
organic group was lowest, while that of Actinobacteriota in organic 
group was highest (Figure 1A). For fungal composition at the phylum 
level, Ascomycota was dominant with the highest abundance in all 
three soil systems. Basidiomycota was mostly detected in organic 
group, while Mortierellomycota was mostly in intercropping group 
(Figure 1A). At the genus level, the microbial composition showed 
diversity among the three groups of samples. The top 10 genera of 
bacteria and fungi were analyzed (Figure  1B), among which 
Streptococcus, AD3, Subgroup2, Veillonella, and Rothia were the genera 
of bacteria that were abundant in soil. Streptococcus was most abundant 
in intercropping group, followed by non-organic and organic groups. 
AD3 was dominant in organic group, while the abundance of 
Subgroup2 was highest in non-organic group. Hygrocybe and Fusarium 
were the two fungi genera of highest relative abundance in organic 
group. In contrast, non-organic and intercropping groups were mainly 
dominated by Archaeorhizomyces, which had the highest abundance in 
intercropping group than in the other groups of soils. Besides, a certain 
abundance of Mortierella was detected in intercropping group.

To further explore the differences in bacterial and fungal 
community structure among different soil groups, principal 
coordinate analysis (PCoA) was performed (Figure 1C). We observed 
significant separation of fungal composition among the three types of 
soil, indicating that fungal community structure might be strongly 
affected by different strategies of soil management. By alpha-diversity 
analysis, we  found no significant difference in bacterial diversity 
among the three groups (Figure 2A). However, significant differences 
were detected in fungal diversity, with non-organic group displaying 
the highest value (Figure 2B).

The numbers of shared and unique ASVs of bacteria and fungi of 
different soils are demonstrated in Venn diagrams. In terms of 
bacteria, 779 shared ASVs were detected among the three soils, with 
organic group having the most unique ASVs (2474) and non-organic 
group the least (1633) (Figure 2C). Regarding fungi, 265 shared ASVs 
were detected, with the largest number of unique ASVs in non-organic 

group (1021) and the smallest (410) in intercropping group 
(Figure 2D). The higher proportions of unique bacterial and fungal 
ASVs in each group revealed great differences among the three soils 
in microbial community structure.

3.3. Comparative analysis of microbial 
biomarkers of different soils

LEfSe analysis was used to identify microbial biomarkers, which 
showed significant differences in the species of bacteria (Figure 3A) 
and fungi (Figure 3B) among soils. In organic group, Acidobacteria 
bacterium, bacterium Ellin515, Paraburkholderia caledonica, 
Spartobacteria bacterium, and Methylobacterium oxalidis were the 
most abundant bacterial species. Bathyarchaeia and Rudaea were 
detected to be  significantly enriched in non-organic group. 
Steroidobacter, Nitrospirae bacterium, Acidobacteria bacterium, 
Spirochaeta sp., Xanthobacteraceae bacterium, bacterium MI-37, 
Hyphomicrobium facile were significantly enriched in intercropping 
group. For fungal biomarkers, Saitozyma podzolica and Penicillium 
alagoense were significantly enriched in organic group, Beauveria 
australis, Mortierella amoeboidea, and Mortierella minutissim in 
intercropping group, while Agaricomycetes in non-organic group. In 
general, these microbial biomarkers may respond to planting patterns 
and management strategies to varying degrees, leading to the 
differences among soil samples.

3.4. Correlation analysis between fungi, 
bacteria, and environmental factors

To investigate fungal-bacterial interactions in tea plantation soils, 
the three groups of soils were mixed, and a correlation network 
analysis (|r| > 0.7, p < 0.05) was performed (Supplementary Figure S1A). 
Overall, the network consists of 146 nodes. Fungi involved 94 nodes 
(64.38%) while bacteria nodes accounted for only 35.62%, indicating 
that the network was dominated by fungal activities. The proportion 
of positive correlation was 59.24%, and that of negative correlation 
was 40.76%, revealing predominantly synergistic interactions within 
the bacterial-fungal community. The topological role of each ASV in 
the microbial network was demonstrated in a Zi-Pi plot to investigate 
the bacterial and fungal co-occurrence in tea plantation soils 
(Supplementary Figure S1B). We  found that most ASVs were 
categorized as connectors, indicating a high degree of connectivity in 
symbiotic interactions between the bacterial and fungal communities. 
We thus assume that there may be strongly interacted species within 
the co-occurrence network, which may contribute to the stability of 
the network itself.

TABLE 1 Physicochemical properties of soils under different management systems.

TN (g/kg) TP (g/kg) TK (g/kg) AN (mg/kg) AP (mg/kg) AK (mg/kg) OM (g/kg) pH

Organic 1.020 ± 0.25c 0.95 ± 0.22 7.02 ± 0.069b 94.26 ± 13.45c 1.31 ± 0.026 172.97 ± 8.67 33.41 ± 4.29c 4.94 ± 0.059c

Non-organic 4.24 ± 0.13b 0.93 ± 0.032 10.85 ± 0.58a 240.19 ± 3.9b 1.66 ± 0.43 208.44 ± 51.18 110.461 ± 4.01b 5.26 ± 0.041b

Intercropping 6.35 ± 0.25a 1.16 ± 0.01 7.15 ± 0.098b 331.73 ± 8.67a 1.61 ± 0.31 204.18 ± 44.84 155.58 ± 0.90a 5.78 ± 0.149a

Data within a column without shared letters indicate significant differences at p < 0.05. Data represent the mean ± standard (n = 3 biological replicates). TN, total nitrogen; TP, total phosphorus; 
TK, total potassium; AN, alkeline-N; AK, available potassium; AP, available phosphorus; OM, organic matter.
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Mantel test analysis was used to explore the relationship between 
soil microbial community and physical and chemical parameters. The 
results showed that soil physical and chemical properties were mostly 
positively correlated with each other, which had the most significant 
effect on the fungal community. Bacteria, however, responded poorly 
to soil physical and chemical changes (Figure 4).

3.5. Soil metabolite patterns and 
differential analysis

Non-targeted metabolomic analysis was performed to unravel 
metabolic characteristics of different soils, and a total of 2,617 
metabolites were identified. PCA was performed to establish the 

FIGURE 1

Composition analysis of soil microorganisms. Bacterial and fungal community compositions in organic, non-organic and intercropping groups at 
phylum (A) and genus (B) levels. Bacterial and fungal principal component analysis based on Bray–Curtis distance matrix (C).
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relationship between metabolite expression and soil samples 
(Figure  5A). An obvious separation was observed, indicating 
differences in the abundances of metabolites in soils managed under 
different systems.

Metabolites identified in the three soils overlapped extensively. 
The main metabolites included lipids and lipid-like molecules, 
organic nitrogen compounds, organoheterocyclic compounds, 
organic oxygen compounds, and organic acids and derivatives, 
although slight differences in metabolite abundances among the soils 
were observed (Figure 5B). A metabolite interaction network showed 
that the interaction patterns of metabolites were mostly positive 
(78.54%), with 9,10-epoxyoctadecanoic acid, (9xi,10xi,12xi)-9, 

10-dihydroxy-12-octadecenoic acid, palmitoyl serinol, sorbitol, 
maslinic acid, and kojibiose showing high degrees of connectivity 
(Figure 5C). The highest number of differential metabolites were 
detected between intercropping and non-organic groups, while the 
lowest number between intercropping and organic groups. A total of 
23 overlapping metabolites were found among the three groups of 
soil (Figure 5D). Most metabolites were increased in organic and 
intercropping groups, especially acetoacetic acid, kojibiose, and 
deoxyguanosine, which were significantly concentrated in the two 
soils (Supplementary Figures S2A,B). KEGG enrichment analysis was 
performed on differential metabolites between organic and 
non-organic groups, and intercropping and non-organic groups, 

FIGURE 2

Microbial diversity in soils under different management systems. Diversity analysis of bacteria (A) and fungi (B) using the Shannon and Chao1 indices. 
Venn diagram analysis of bacterial (C) and fungal (D) species in the three soils.
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respectively. It was found that the expression of ABC transporters was 
higher in organic and intercropping groups than in non-organic 
group. We  also found significant differences in arachidonic acid 
metabolism, linoleic acid metabolism, and other metabolic pathways 
(Supplementary Figures S2C,D). Changes in these metabolic 
pathways may be one of the factors contributing to the differences in 
soil fertility under different management systems.

3.6. Regulatory network of soil differential 
metabolites, microorganisms, and 
environmental factors

A co-occurrence network was constructed based on bacterial-
fungal communities, differential metabolites, and environmental 
factors of the three soils (Figure 6). Bathyarchaeia was negatively 
correlated with most metabolites and environmental factors, while 
Steroidobacter was positively correlated with metabolites.  
The fungus Mortierella was positively correlated with 
9,10-epoxyoctadecanoic acid, hypogeic acid, 5-KETE, trehalose-
6-phosphate, and other metabolites. The metabolite alkeline-N 
has high connectivity in the network and is strongly correlated 
with most factors. Soil physical and chemical properties such as 
pH, TN, and OM interact with most metabolites and 
microorganisms, and their changes may affect the composition of 
soil microorganisms and metabolites.

4. Discussion

Soil is one of the most important assets of planet earth, 
encompassing a large proportion of microscopic biodiversity, 
including prokaryotes and microscopic eukaryotes (Mishra et  al., 
2023). Most of the processes of nutrient availability and loss pathways 
in soil are mediated by microorganisms. In this study, we collected 
three groups of soil samples and explored their differences in physical 
and chemical properties, microbiome, and metabolite composition.

Tea cultivation intensity and duration have strong impacts on 
microbial community structure, microbial biomass and its functioning, 
likely through soil acidification and fertilizer addition (Han et al., 2007). 
Yan et al. (2020) found that the soil of tea plantations in China tended 
to become acidic, and the pH value of many sites dropped to less than 
4.5, which was too acidic for tea growth, and may have adverse effects 
on soil microorganisms. In contrast, no significant soil acidification was 
observed in organic tea plantations. Data from several studies showed 
that fungi had a higher association with pH and were more susceptible 
to soil pH than bacteria. An increasing soil pH will significantly affect 
fungal community structure and total fungal biomass (Carrino-Kyker 
et al., 2016; Kui et al., 2021a). Fungal alpha and beta diversity had a 
greater effect on tea yield and quality than bacterial diversity (Tang et al., 
2022). Plant growth may therefore be affected through changes in 
microbial community structure by altering soil pH.

It has been reported that soil microbial community structure and 
biological function can be improved by organic soil management, 

FIGURE 3

Differential microbiological analysis among different groups. LDA EFfect Size (LEfSe) analysis of soil bacteria groups (A). LEfSe analysis of soil fungi 
groups (B).
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such as the use of organic fertilizers (Diacono and Montemurro, 
2010). In this study, the highest bacterial diversity was detected in 
organic soil, although not statistically significant, which indirectly 

reflects that organic soil management may provide a more suitable 
environment for bacterial reproduction, resulting in a higher bacterial 
diversity and abundance than other management strategies. In 

FIGURE 4

Correlations of soil microbial communities and physicochemical properties. Physicochemical properties are demonstrated in a heatmap constructed 
by Spearman correlation. Correlations between physicochemical properties and bacterial-fungal communities were determined using the Mantel test 
for correlation. Significance levels: *p  <  0.05, **p  <  0.01, ***p  <  0.001.

FIGURE 5

Analysis of metabolite patterns in different soils. (A) PCA analysis of soil metabolites in the three soils. (B) Main metabolites of the three groups of soils. 
(C) Correlation network analysis of soil metabolites. (D) Venn diagram analysis of soil differential metabolites.
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contrast, the diversity of fungi in non-organic group was much higher 
than that in organic and intercropping groups, which may be related 
to soil pH. Chloroflexi, Actinobacteriota, Proteobacteria, and 
Firmicutes were the main bacterial phylum in all the three soils, while 
Basidiomycota, Ascomycota were the main phylum of fungi. This 
result is generally consistent with previous studies (Tan et al., 2019; 
Naumova et al., 2021; Kui et al., 2021a; Aira et al., 2022; Liu et al., 
2022). Furthermore, we detected Streptococcus in soil microorganisms, 
and its relative abundance was highest in intercropping group but 
lowest in organic group. Streptococcus is a group of pathogenic bacteria 
mostly detected in the intestinal tract of humans and animals and are 
associated with a variety of diseases (Peng et al., 2020; Zhao et al., 
2022). The genera Streptococcus detected in soil has been reported to 
be heavy metal resistant, and increase with the accumulation of heavy 
metals (Li et al., 2020). On the other hand, Streptococcus has the ability 
to degrade hydrocarbons and improve the quality of contaminated soil 
(Aqeel et  al., 2021). Acidobacteria Subgroup2 was significantly 
positively correlated with the production of phosphatase and may 
be involved in the degradation of organophosphorus (Mason et al., 
2021). It had a higher relative abundance in non-organic group, which 
may be explained by a lower abundance of organophosphorus in this 
soil. We  assume that the relative abundance of Acidobacteria 
Subgroup2 was increased to compensate for the organophosphorus 
loss in non-organic managed soil. In terms of fungi, higher 
abundances of Fusarium and Hygrocybe were identified in organic soil. 
The Fusarium genus comprises important saprophytic and 
phytopathogenic fungi and is widespread in nature (Zubi et al., 2021). 

It spends most of its life cycle in soil and interacts extensively with soil 
microorganisms (Mukjang et  al., 2022). A higher abundance of 
Fusarium in organic group might be caused by a high carbon level in 
the soil, which can shelter its conidia and thus supports its growth and 
survival (Logrieco et al., 1995; Zubi et al., 2021). Hygrocybe is believed 
to be related to C and N cycles (Carron et al., 2020). Organic soil 
containing more Hygrocybe may be  beneficial for soil carbon 
utilization. The relative abundance of Archaeorhizomyces in 
intercropping group was much higher than that in non-organic and 
organic groups. Previous studies have found that the relative 
abundance of Archaeorhizomyces in soil is positively correlated with 
the application of bioferfertilizer and may promote plant growth 
(Zhang et al., 2018). Acidobacteria bacterium are abundant in soil and 
are an important component of the soil microbial community (Kalam 
et al., 2020). We found that they were significantly enriched in organic 
and intercropping groups compared with non-organic group. 
Genomes of Acidobacteria bacterium encode a wide range of 
carbohydrate-active enzymes, which are involved in the 
decomposition, utilization, and biosynthesis of various carbohydrates 
(Dedysh and Sinninghe Damsté, 2018). Studies have found that the 
significant difference in the distribution of Acidobacteria bacterium 
among soils is mainly caused by the input of N and pH values (Liu 
et al., 2017). Therefore, we speculated that the enrichment of this 
bacterial species in organic group might be related to the high level of 
carbon and organic matter in the soil (Dedysh and Sinninghe Damsté, 
2018). We also found that Bathyarchaeia was significantly enriched in 
non-organic soil and may be negatively correlated with a variety of soil 

FIGURE 6

Correlation network of the soil physicochemical properties, soil differential metabolites, and microbial biomarkers (LDA score >2.0) (|Spearman’s r| 
>0.6, p  <  0.05). The red line indicates a positive correlation and the blue line indicates a negative correlation.
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metabolites and environmental factors. Bathyarchaeia is closely related 
to soil pH, EC, and levels of Na+and Cl− in salt-stressed soil (Wang 
et al., 2019). This suggests that Bathyarchaeia may play specific roles 
in regulating ecological functions in different soil environments. Some 
studies suggested that the improvement of soil fertility by organic 
fertilizer and soil regulator might decrease the relative abundance of 
the soil bacterium Steroidobacter (Wang et al., 2021). Steroidobacter 
was significantly detected in intercropping group in this study and was 
negatively correlated with a variety of metabolites. Steroidobacter may 
affect soil quality through the interactions with soil metabolites.

Metabolites in soil are mainly produced by plant roots and soil 
microorganisms (Kalu et al., 2021). A number of soil bacteria produce 
both volatile and soluble compounds, which likely play important 
roles in long-distance microbial interactions (Tyc et al., 2017). Study 
has found that Kojibios has a promoting effect on the growth of 
potential probiotic strains of Bifidobacterium, Lactobacillus, and 
Streptococcus (Garcia-Cayuela et al., 2014). It has been detected in 
soybean root exudates (Timotiwu and Sakurai, 2002), but its effect on 
plant soil remains unclear. Here we found that Kojibiose is the major 
differential metabolite in organic group and may be essential in the 
overall soil metabolic network. Mortierella has been reported to 
survive under unfavorable environmental conditions, promote plant 
growth, reduce chemical fertilizers and pesticides, and enhance crop 
yield (Ozimek and Hanaka, 2021). We  found that Mortierella is 
positively correlated with the abundances of 9,10-epoxy octadecanoic 
acid, hypogeic acid, 5-KETE, trehalose-6-phosphate, and other 
metabolites. Trehalose metabolism in rhizobia is key for signaling 
plant growth, yield, and adaptation to abiotic stress, and its 
manipulation has a major agronomical impact on leguminous plants 
(Suarez et al., 2008). Mortierella has also been suggested to produce 
arachidonic acid (Botha et al., 1999). Organic acids and fatty acids 
were potential metabolites mediating the plant-bacteria interaction in 
the tea rhizosphere (Sun et  al., 2022). The metabolic pathways of 
arachidonic acid and linolenic acid were detected to be  different 
among soils. Studies have found that arachidonic acid is the main 
allelopathic substance affecting the interactions between the fungus 
Arbuscular mycorrhizal and bacteria (Lu et al., 2023). At the same 
time, arachidonic acid can also recruit beneficial microorganisms to 
the host rhizosphere to promote plant growth and soil nutrient 
turnover (Lu et al., 2023). Differences in the metabolic pathway of 
arachidonic acid among soils may be caused by varying microbial 
abundances, such as Mortierella, which may affect the growth and 
development of tea trees.

5. Conclusion

By exploring microbial and metabolite composition in soils of tea 
plantations under different management strategies, we  detected 
significant differences in bacterial and fungal community 
compositions between organic, non-organic, and intercropping 
groups. Changes in soil pH might affect the composition of 
microorganisms, especially fungi. Soil metabolites are rich in lipids 
and lipid-like molecules, organic nitrogen compounds, and 
organoheterocyclic compounds, most of which are positively 
correlated. Changes in soil microbial community also affected the 
metabolic pathway of arachidonic acid, which is an important 
compound that influences soil quality. Importantly, we assume that 

soil quality of tea plantations may be influenced by varying microbial 
compositions through different metabolic pathways and their 
metabolites in the soil. This study will provide a basis for the 
improvement of soil fertility from the perspective of soil 
microorganisms by investigating the effects of microbial changes on 
soil quality and clarifying the underlying mechanisms.
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