
Frontiers in Microbiology 01 frontiersin.org

Recent advances in 
PGPR-mediated resilience toward 
interactive effects of drought and 
salt stress in plants
Ahmad Al-Turki 1, M. Murali 2*, Ayman F. Omar 1,3, Medhat Rehan 1,4 
and R.Z. Sayyed 5,6*
1 Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, 
Qassim University, Buraydah, Saudi Arabia, 2 Department of Studies in Botany, University of Mysore, 
Mysore, India, 3 Department of Plant Pathology, Plant Pathology, and Biotechnology Lab. and EPCRS 
Excellence Center, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt, 4 Department of 
Genetics, College of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt, 5 Department of 
Microbiology, PSGVP Mandal’s S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, 
Shahada, India, 6 Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, 
Malaysia

The present crisis at hand revolves around the need to enhance plant resilience 
to various environmental stresses, including abiotic and biotic stresses, to ensure 
sustainable agriculture and mitigate the impact of climate change on crop 
production. One such promising approach is the utilization of plant growth-
promoting rhizobacteria (PGPR) to mediate plant resilience to these stresses. 
Plants are constantly exposed to various stress factors, such as drought, salinity, 
pathogens, and nutrient deficiencies, which can significantly reduce crop yield and 
quality. The PGPR are beneficial microbes that reside in the rhizosphere of plants and 
have been shown to positively influence plant growth and stress tolerance through 
various mechanisms, including nutrient solubilization, phytohormone production, 
and induction of systemic resistance. The review comprehensively examines the 
various mechanisms through which PGPR promotes plant resilience, including 
nutrient acquisition, hormonal regulation, and defense induction, focusing on 
recent research findings. The advancements made in the field of PGPR-mediated 
resilience through multi-omics approaches (viz., genomics, transcriptomics, 
proteomics, and metabolomics) to unravel the intricate interactions between 
PGPR and plants have been discussed including their molecular pathways 
involved in stress tolerance. Besides, the review also emphasizes the importance 
of continued research and implementation of PGPR-based strategies to address 
the pressing challenges facing global food security including commercialization of 
PGPR-based bio-formulations for sustainable agricultural.
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1. Introduction

Besides environmental pressures that plants encounter (biotic or abiotic), they also suffer 
significant consequences due to their ability to travel from one location to another compared to 
other living things. As it is well documented, plants often suffer from numerous stressors (biotic 
and abiotic) during their life cycle. Each one of them can considerably impede plants’ growth 
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and development. The main factor contributing to the global decline 
in agricultural crop yield is biotic stress, which is brought on by 
harmful microbes like bacteria, fungi, viruses, insects, and nematodes 
(Murali et al., 2021a; Gowtham et al., 2022; Hamidian et al., 2023; 
Karimian et  al., 2023). In addition, the abiotic stressors that are 
detrimental to plants include flooding, drought, soil salinity, extreme 
temperature, extremely high or low light conditions, contamination 
with organic pollutants and heavy metals, and excessive radiation 
(Sarker et al., 2021; Murali et al., 2021a; Ahmad et al., 2022). The 
abiotic stresses adversely affect the physiological, biochemical, and 
molecular responses of plants in a multitude of manners, which lowers 
productivity (Murali et al., 2021a; Munir et al., 2022). The plants grow 
poorly when exposed to these stresses due to osmotic stress, oxidative 
stress, reactive oxygen species (ROS) production, hormonal 
imbalance, ionic toxicity, and reduced nutrient mobilization (Ma 
et al., 2020).

The abiotic stresses impact plant responses, including the 
alteration of genes involved in the central metabolic pathways and a 
change in the growth rate leading to a significant loss in the yield of 
the crops (Ullah et  al., 2021). Most stressed plants point to 
environmental changes; their roots are where they first respond to 
such challenging circumstances. Out of the available arable lands, 90% 
are vulnerable to these stressors, and it is noted that the crop output is 
reduced and limited to up to 70% when exposed to these abiotic 
stressors continuously (Waqas et al., 2019). Due to global climate 
change, drought and soil salinity are two major environmental factors 
that reduce plant growth and productivity in many plant species, 
especially in arid and semi-arid regions of the world. The world will 
face a significant challenge of 70% more food production to adequately 
sustain the projected 2.3 billion more people by 2050. Therefore, it is 
imperative to induce stress resilience in crops against drought and 
salinity stress to meet future generations’ food demands. The plant 
growth-promoting rhizobacteria (PGPR) have emerged as promising 
allies in sustainable agriculture, offering the potential to enhance plant 
tolerance to abiotic stresses, such as drought and salinity. From the 
literature it has been well noted that these PGPR have been found as 
effective biological agents in the management of crop plants against 
drought and salt stress through multi-omic strategies thereby by 
improving plant growth and production (Kim et al., 2014; Singh et al., 
2017; Khan et al., 2021a,b; Mellidou et al., 2021; Vafa et al., 2021; 
Nishu et al., 2022; Zhao et al., 2022; Patel et al., 2023). The review aims 
to delve into the multifaceted realm of PGPR-mediated plant 
resilience, with three primary objectives: (i) to assess the impact of 
PGPR on enhancing plant tolerance to abiotic stresses such as drought 
and salt; (ii) to highlight recent advancements in understanding the 
mechanisms by which PGPR mediate plant resilience; and (iii) to 
critically evaluate the potential applications of PGPR-based strategies 
in sustainable agriculture. Previous salient reviews have primarily 
focused on either general PGPR-plant interactions or specific stress 
responses but often lack a comprehensive analysis of recent 
advancements and their implications for sustainable agriculture. 
Hence, the current study bridges this gap by amalgamating recent 
evidence to provide a holistic understanding of the impact of PGPR 
on plant tolerance to drought and salinity, elucidating the latest 
mechanistic insights, and critically evaluating their potential for 
sustainable agriculture. Consequently, it aims to offer a comprehensive 
reference for researchers, agronomists, and policymakers seeking 
innovative solutions to enhance crop resilience in a changing world.

2. Interactive effects of drought and 
salt stress

The repercussions of climate change have been growing, which 
has resulted in a sharp rise in drought in recent years. In addition to 
being an issue, soil salinity is also a result of global warming, especially 
for crops that require sufficient irrigation (Khan, 2022). Some 
farmlands are under-irrigated, resulting in salt accumulation inside 
the soil due to insufficient water supply in many areas. In this situation, 
the irrigation water either benefits the plants by being utilized or 
evaporates, leaving salt in the soil. Furthermore, the most salt-affected 
grounds are found in the arid and semi-arid regions of the world. The 
main barrier to plant growth is the high salt levels brought on by 
irrigation, which worsens drought impacts (Ullah et al., 2021). Soil 
salinity is measured by its electrical conductivity (EC), expressed in 
dS/m. At the same time, drought is described in the percent (%) field 
capacity of soil moisture content which can be defined as the amount 
of water available in the soil. Excessive salt levels are currently thought 
to have a detrimental impact on 20% of the world’s agricultural land 
used to cultivate irrigated crops (Khan, 2022). Drought and salinity 
stress significantly impact future agricultural production, which 
frequently co-occurs due to changes in climate and the struggle for 
water, land, and energy (Morari et al., 2015; Mitra et al., 2021; Khan, 
2022). Drought and salt stress severely inhibit food crop growth and 
physiochemical activity. For instance, plants under these stressors 
have the same morphological and physiochemical traits. It is observed 
that the drought stress progress in plants is facilitated via greater salt 
concentrations because salt-related solutes prevent water uptake 
impacting the leaf water content (Ahluwalia et al., 2021).

The plants explore common and distinct responses to modify 
plant growth and adaptation under drought and salinity stress. Most 
plants initially react similarly to drought and salinity, primarily caused 
by water deficit within the plant which results in a decreased growth 
rate. After the plants absorb salt, the sodium ions (Na+) are transported 
to the plant’s shoots via the xylem, eventually accumulating in the 
leaves and shoots (Ullah et al., 2021). The consensus is that sodium 
ion buildup in plants is harmful because it competes for binding sites 
with potassium ions (K+) essential for cellular activity (Desoky et al., 
2020; Hasanuzzaman et al., 2022). Similarly, ROS are developed within 
the plants that can subsequently induce lipid peroxidation in plant cell 
membranes, lead to electrolyte leakage from plant cells, and either 
augment photorespiration or reduce the transpiration ensuing in a 
slower photosynthesis rate, thereby having a detrimental effect on the 
production and quality of the plants (Khan, 2022).

It is necessary to advance agricultural production in terms of 
productivity and food safety due to the predicted population growth 
and rising living standards. Innovative agricultural technologies and 
production methods are urgently needed to simultaneously achieve 
sustainable agricultural productivity improvement and environmental 
and economic sustainability. To overcome salinity stress, plants 
employ various mechanisms (Figure 1) like (i) control of sodium ion 
absorption by roots and successive transfer of these ions to leaves, (ii) 
selective accumulation of sodium ions (Na+) in vacuoles or exclusion 
of these ions, (iii) vacuolar compartmentalization of Na+ at the plant 
cellular level, (iv) modification of plant cell membranes, (v) 
modulation of the level of plant hormones, and (vi) synthesis of 
antioxidant enzymes and compatible solutes (Ullah et al., 2021; Khan, 
2022). The salt stress tolerance also depends on the cultivars’ growth 
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stage and health, soil composition, microbe association, etc. (Ma et al., 
2020). Developing crops that can withstand salt and drought using 
transgenic technologies and conventional breeding techniques is often 
expensive, time-consuming, and challenging. Hence, investigating the 
potent PGPR as a viable replacement for toxic chemicals will help in 
the improvement of plants’ productivity and soil sustainability even 
under unfavorable environmental conditions, thereby providing a 
better perspective for agriculture (Brijesh Singh et  al., 2019; 
Murali et al., 2021a; Hoseini et al., 2022; Munir et al., 2022; Mawar 
et  al., 2023). Additionally, it will endeavor to comprehend the 
biochemical, physiological, and genetic pathways that the PGPR 
mediate, as they are crucial for enhancing plant tolerance to these 
environmental challenges.

3. Plant growth-promoting 
rhizobacteria

The rhizosphere-resident bacteria, commonly termed PGPR, 
can induce plant growth through several means, which might 
be either direct or indirect processes. These rhizobacteria are known 
as effective disease-fighters, helping agricultural productivity and 
sustainability (Bhat et al., 2022; Gamalero and Glick, 2022; Gowtham 
et al., 2022). The PGPR that flourishes in the rhizosphere improves 
plant growth by various mechanisms, such as nitrogen fixation, 
production of phytohormones, 1-aminocyclopropane-1-carboxylate 
(ACC) deaminase (Sagar et  al., 2020), exopolysaccharides (EPS; 
Sayyed et al., 2015, 2019; Ilyas et al., 2020), siderophores (Nithyapriya 
et al., 2021; Srivastava et al., 2022), antioxidants (Gowtham et al., 

2022), osmoprotectants (Ilyas et  al., 2020), nutrient uptake 
(Jabborova et al., 2020, 2022; Deepranjan et al., 2021; Kapadia et al., 
2021; Sarkar et  al., 2021), and induced systemic resistance (ISR; 
Reshma et al., 2018; Ali B. et al., 2022; Desai et al., 2023) in stressful 
conditions. These PGPR can also influence plant metabolism and 
gene expression directly, as well as the expression of root proteins, 
root morphology, and root growth (Vacheron et al., 2013; Kalam 
et al., 2020; Basu et al., 2021; Hamid et al., 2021; Ahmad et al., 2022; 
Lobhi et al., 2022). Besides, PGPR application exogenously can alter 
the plant rhizosphere microbial communities in soil, which 
modulates the host’s capacity for nutrient adsorption and pathogen 
interaction apart from modifying the ability of the plant to tolerate 
both biotic and abiotic stressors (Hariprasad et  al., 2021; Munir 
et  al., 2022). Therefore, they are possible options for chemical 
fertilizers in agriculture production, which are mentioned below 
depending on the host and stress factors.

4. Mechanisms induced by PGPR 
during amelioration of drought and 
salt stress

The stress-tolerant bacteria can survive better in severe drought and 
salt stress conditions and overcome their effect by different mechanisms 
(Fazeli-Nasab and Sayyed, 2019), such as changing plant root system 
morphology and structure, balancing osmotic stress and oxidative stress, 
and regulating ion homeostasis (Tables 1, 2). These plausible mechanisms 
involved during the plant-PGPR interaction to prevail over drought 
(Figure 2) and salt stress (Figure 3) are discussed below in detail.

FIGURE 1

Interactive effects and adaptive mechanism to drought and salt stress in plants.
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TABLE 1 Overview of PGPR-mediated enhancement of plant tolerance against drought stress.

Plants PGPR Strains/ 
Consortia

Beneficial traits 
produced by PGPR

Experimental details References

Abelmoschus esculentus Bacillus subtilis – Field experiment Puthiyottil and Akkara (2021)

Arabidopsis thaliana

Pseudomonas chlororaphis Volatiles: 2R,3R-butanediol Laboratory and pot experiments Cho et al. (2008)

B. endophyticus and P. aeruginosa
IAA, cytokinin, gibberellic aci 

and EPS
Laboratory experiment Ghosh et al. (2019)

Pseudomonas sp.
IAA, ABA, gibberellic acid, 

EPS, and ACC deaminase
Pot experiment Yasmin et al. (2022)

Brassica juncea B. marisflavi ABA analog/Xanthoxin Laboratory experiment Gowtham et al. (2021)

Cicer arietinum P. putida
Phosphate solubilization, 

IAA, and ACC deaminase

Pot experiment

Tiwari et al. (2016)

Eleusine coracana

Variovorax paradoxus, P. 

palleroniana, P. fluorescens, and 

Ochrobactrum anthropi

ACC deaminase Chandra et al. (2020)

H. annuus
P. putida EPS Sandhya et al. (2009)

B. subtilis and B. thuringiensis ACC deaminase Singh et al. (2019)

Lactuca sativa B. subtilis Cytokinin Arkhipova et al. (2007)

Lolium perenne Pseudomonas sp. and Bacillus sp.
ACC deaminase, IAA and 

EPS
Laboratory and pot experiments He et al. (2021)

Medicago sativa B. amyloliquefaciens IAA, EPS and siderophores

Pot experiment

Han et al. (2022)

Mentha piperita
P. fluorescens and B. 

amyloliquefaciens

ACC deaminase and IAA 

production
Chiappero et al. (2019)

Mucuna pruriens Enterobacter sp. and Bacillus sp.
IAA and ACC deaminase Saleem et al. (2018)

ACC deaminase Brunetti et al. (2021)

Ocimum basilicum Azospirillum baldaniorum
Induced immune response 

(ISR)
Greenhouse experiment Mariotti et al. (2021)

Oryza sativa

B. haynesii, B. paralicheniformis 

and B. licheniformis
ACC deaminase

Pot experiment

Joshi et al. (2020)

B. altitudinis and B. 

methylotrophicus
ABA Narayanasamy et al. (2020)

Gluconacetobacter diazotrophicus Nitrogen fixation and IAA Field experiment Silva et al. (2020)

Pennisetum glaucum B. amyloliquefaciens ACC deaminase

Pot experiment

Murali et al. (2021a,b)

Pisum sativum
Consortia of Pseudomonas sp., O. 

pseudogrignonense and B. subtilis
ACC deaminase Saikia et al. (2018)

Setaria italica
P. migulae, P. fluorescens, and E. 

hormaechei
EPS and ACC deaminase Niu et al. (2018)

Solanum lycopersicum

Enterobacter spp. IAA and gibberellic acid Laboratory experiment Bhatt et al. (2015)

B. amyloliquefaciens EPS

Pot experiment

Wang et al. (2019)

Streptomyces spp. ACC deaminase and IAA Abbasi et al. (2020)

B. subtilis ACC deaminase Gowtham et al. (2020)

Bacillus megaterium Extracellular arginine Morcillo et al. (2021)

Solanum tuberosum

V. paradoxus, P. oryzihabitans and 

Achromobacter xylosoxidans
IAA and ACC deaminase Pot and field experiments Belimov et al. (2015)

B. subtilis –

Pot experiment

Batool et al. (2020)

Sorghum bicolor

Pseudomonas sp. ACC deaminase Carlson et al. (2019)

Streptomyces sp. and Nocardiopsis 

sp.

Phosphate solubilization, 

IAA, siderophore, and ACC 

deaminase

Silambarasan et al. (2022)

(Continued)
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TABLE 1 (Continued)

Plants PGPR Strains/ 
Consortia

Beneficial traits 
produced by PGPR

Experimental details References

Spinacia oleracea
B. amyloliquefaciens and Bacillus 

sp.

Phosphate solubilization, 

IAA, and siderophore
Laboratory experiment Petrillo et al. (2022)

Trifolium repens B. megaterium and P. putida IAA

Pot experiment

Marulanda et al. (2009)

Trigonella foenum-graecum B. subtilis ACC deaminase Barnawal et al. (2013)

Triticum aestivum

B. thuringiensis
Reduction in volatile 

emissions
Timmusk et al. (2014)

Klebsiella sp., E. ludwigii and 

Flavobacterium sp.

Phosphate solubilization, EPS, 

IAA, siderophore, and ACC 

deaminase

Gontia-Mishra et al. (2016)

P. palleroniana and P. fluorescens ACC deaminase Chandra et al. (2018)

P. stutzeri, Moraxella 

pluranimalium, E. aerogenes, B. 

thuringiensis, B. simplex, B. 

pumilus, B. muralis, and B. 

amyloliquefaciens

IAA Raheem et al. (2018)

O. anthropi, P. palleroniana, P. 

fluorescens, and V. paradoxus
ACC deaminase Chandra et al. (2019)

Bacillus sp. and Enterobacter sp. IAA and salicylic acid Jochum et al. (2019)

B. cereus and Planomicrobium 

chinense
EPS Field experiment Khan and Bano (2019)

B. subtilis and A. brasilense EPS, Sugar and Proline Pot experiment Ilyas et al. (2020)

Streptomyces pactum – Laboratory experiment Li et al. (2020)

B. subtilis ACC deaminase

Pot experiment

Sood et al. (2020)

P. azotoformans EPS Ansari et al. (2021)

P. helmanticensis and P. baetica
Phosphate solubilization, IAA 

and siderophore
Karimzadeh et al. (2021)

Pseudomonas sp. and Serratia 

marcescens

Phosphate solubilization, 

ACC deaminase, IAA, 

siderophore and EPS

Khan and Singh (2021)

Chryseobacterium sp., 

Acinetobacter sp. and Klebsiella 

sp.

IAA and EPS Jar experiment Latif et al. (2022)

B. megaterium and B. 

licheniformis
ACC deaminase and IAA

Pot experiment

Rashid et al. (2022)

Vigna mungo
Consortia of Pseudomonas sp., O. 

pseudogrignonense and B. subtilis
ACC deaminase Saikia et al. (2018)

Vigna radiata P. aeruginosa IAA production Lab, pot, and field experiments Uzma et al. (2022)

Vitis vinifera

B. licheniformis and P. fluorescens ABA Laboratory experiment Salomon et al. (2014)

P. corrugata and E. soli ACC deaminase
Pot experiment

Duan et al. (2021)

Enterobacter sp. and Bacillus sp. IAA and salicylic acid Jochum et al. (2019)

B. velezensis ACC deaminase and EPS Laboratory experiment Nadeem et al. (2020)

P. fluorescens ACC deaminase Field experiment Zarei et al. (2020)

Bacillus spp.

Nitrogen fixation, phosphate 

solubilization, and IAA and 

EPS
Pot experiment

Azeem et al. (2022)

Ziziphus jujuba P. lini and S. plymuthica ACC deaminase Zhang et al. (2020)
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TABLE 2 Overview of PGPR-mediated enhancement of plant tolerance against salt stress.

Plants PGPR strains/Consortia Beneficial traits 
produced by PGPR

Experimental 
details

References

Arabidopsis thaliana

B. amyloliquefaciens Spermidine
Laboratory experiment

Chen et al. (2017)

P. putida – Chu et al. (2019)

Stenotrophomonas maltophilia Nitrogen fixation
Laboratory experiment

Alexander et al. (2020)

Avena sativa Klebsiella sp. IAA and ACC deaminase Sapre et al. (2018)

Capsicum annuum
B. licheniformis, Brevibacterium iodinum 

and Zhihengliuela alba
ACC deaminase

Pot experiment
Siddikee et al. (2011)

Cicer arietinum Pantoea dispersa ACC deaminase and IAA Panwar et al. (2016)

Cucumis sativus
B. megaterium, P. fluorescens and V. 

paradoxus

ACC deaminase, IAA, and 

siderophore Laboratory experiment
Nadeem et al. (2016)

Glycine max Bacillus sp. and Pseudomonas sp. ACC deaminase, IAA, and EPS Kumari et al. (2015)

Lactuca sativa
Lactobacillus sp., P. putida and Azotobacter 

chroococcum
IAA Laboratory experiment Hussein and Joo (2018)

Medicago sativa Halomonas maura and Ensifer meliloti EPS
Greenhouse and field 

experiments
Martínez et al. (2015)

Mentha arvensis
B. pumilus, Exiguobacterium oxidotolerans 

and Halomonas desiderata

Phosphate solubilization, 

siderophore, EPS, and ACC 

deaminase

Pot and glass house 

experiments
Bharti et al. (2014)

Oryza sativa

Enterobacter sp.
ACC deaminase, IAA, siderophore, 

and phosphate solubilization
Laboratory experiment Sarkar et al. (2018)

Glutamicibacter sp. IAA and ACC deaminase Pot experiment Ji et al. (2020)

B. aryabhattai and B. tequilensis EPS Glasshouse experiment Shultana et al. (2020)

B. aryabhattai, A. denitrificans and O. 

intermedium

IAA, phosphate solubilization, and 

Nitrogen fixation

Pot experiment

Sultana et al. (2020)

B. pumilus
Phosphate solubilization, ACC 

deaminase, IAA, and EPS
Kumar et al. (2021)

Pistacia vera
Arthrobacter endophyticus, Staphylococcus 

sciuri and Zobellella denitrificans

ACC deaminase, auxin, 

siderophore, EPS, and phosphate 

solubilization

Khalilpour et al. (2021)

Pisum sativum
A. protophormiae ACC deaminase Barnawal et al. (2014)

V. paradoxus ACC deaminase Wang et al. (2016)

Raphanus sativus
A. chroococcum, Lactobacillus sp., and P. 

putida
IAA Laboratory experiment Hussein and Joo (2018)

Solanum lycopersicum

Pseudomonas sp., Pantoea sp., Leifsonia 

sp., Bacillus sp. and Arthrobacter sp.

IAA, siderophore, and phosphate 

solubilization

Pot experiment

Cordero et al. (2018)

Leclercia adecarboxylata ACC deaminase and IAA Kang et al. (2019)

Pseudomonas sp. ACC deaminase and trehalose Orozco-Mosqueda et al. (2019)

Triticum aestivum

Bacillus sp., B. insolitus and Aeromonas 

hydrophila/caviae
EPS Ashraf et al. (2004)

Streptomyces sp. IAA and siderophore Greenhouse experiment Sadeghi et al. (2012)

E. cloacae, P. putida, P. fluorescens and S. 

ficaria
ACC deaminase Field experiment Nadeem et al. (2013)

Klebsiella sp. ACC deaminase

Pot experiment

Singh et al. (2015)

B. subtilis and Marinobacter lipolyticus EPS Talebi Atouei et al. (2019)

P. fluorescence, E. aurantiacum and B. 

pumilus

Phosphate solubilization, ACC 

deaminase, and IAA
Nawaz et al. (2020)

B. amyloliquefaciens Spermidine
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FIGURE 2

A pictorial overview of the functioning of PGPR in support of plant growth and stress tolerance against drought stress.

FIGURE 3

A pictorial overview of the functioning of PGPR in support of plant growth and stress tolerance against salt stress.

https://doi.org/10.3389/fmicb.2023.1214845
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Al-Turki et al. 10.3389/fmicb.2023.1214845

Frontiers in Microbiology 08 frontiersin.org

4.1. Changes in plant root system 
architecture

The root system architecture describes the entire spatial 
configuration and covers the root’s density, angle, surface area, 
volume, and biomass. Plants with a larger root architecture help in 
higher water absorption from the soil, thereby leading to the 
modification of root morphology that allows them to cope under 
drought stress and variations in root morphology are found to 
be species-specific (Paez-Garcia et al., 2015). Inoculating agricultural 
crop plants with PGPR can lead to significant changes in the root 
system architecture, wherein the changes are observed through 
stimulation of root elongation and density which helps in nutrient and 
water uptake. Besides, PGPR is known to induce the formation of 
lateral roots and root hairs that assist in nutrient absorption, stabilizing 
the plant in the soil, promote deeper root growth, enhance the 
formation of mycorrhizal associations for symbiotic relationships with 
plant roots, fix atmospheric nitrogen, and support stress tolerance. The 
changes in root system architecture induced by PGPR ultimately 
contribute to improved plant growth, increased crop yield, and better 
crop health (Grover et  al., 2021; Mohanty et  al., 2021; Gowtham 
et al., 2022).

The rhizosphere microbial communities significantly influence 
host plant health and phenotypic traits by changing the soil processes 
in stressful conditions (Grover et  al., 2021). During water stress 
conditions, some bacteria alter the cell membrane elasticity in root 
cells; these modifications are considered the first step in improving 
drought tolerance (Vacheron et al., 2013). Mishra et al. (2020) have 
noted that inoculating Zea mays with Ochrobactrum sp. under drought 
conditions improved the development of root hairs, root length, and 
dry weight. The combination and concentration of mineral nutrients 
in the soil substantially influence plant growth and development. The 
plants can retain enough nutrient content despite shifting soil 
environments through changes to root architecture, the emergence of 
root-based transport systems, and symbiotic relationships with helpful 
soil bacteria (Naylor and Coleman-Derr, 2017). It is important to note 
that the specific changes in root system architecture can vary 
depending on the crop species, the strain of PGPR used, and 
environmental conditions (Brijesh Singh et al., 2019; Murali et al., 
2021a; Gowtham et al., 2022). Therefore, selecting appropriate PGPR 
strains and implementing proper agronomic practices are essential for 
maximizing the benefits of PGPR inoculation in agriculture. As a 
result, it was discovered that PGPR strains may enhance soil fertility, 
control pH, safeguard crops from phytopathogens, and lessen the 
effects of abiotic stress on various crops.

4.2. Balancing osmotic stress

Osmotic stress is the first immediate effect caused by drought and 
salt stress, which disrupts leaf water potential (Ψ) and causes stomatal 
closure, generates ROS, membrane lipid peroxidation, and increases 
antioxidant enzymatic activities and accumulation of osmolytes in 
plants (Brijesh Singh et al., 2019; Gowtham et al., 2022). In contrast, 
the stomatal limitations reduced the efficiency of photosystem II and 
limited CO2 assimilating enzyme activities, which are the significant 
challenges posed by the plants that lead to reduced photosynthetic 
rates under extreme drought conditions (Batool et al., 2020). Due to 

the imbalanced gas exchange and decreased leaf area, photosynthesis 
slows down, and therefore, to mitigate the effect of these stressors on 
plants, they should sustain water homeostasis and maintain their 
photosynthetic structures unharmed. Further, the osmotic stress 
brought on by salt and drought directly impacts numerous soil 
processes, including stressing out the microorganisms (Hasanuzzaman 
et al., 2022). When under stressful conditions, the soil bacteria adjust 
their osmotic conditions and sustain themselves hydrated by cellular 
compatible solute accumulation that assists in maintaining the right 
amount of water in their cells (Desoky et al., 2020).

Meenakshi et al. (2019) and Abbasi et al. (2020) have illustrated 
that Solanum lycopersicum and Triticum aestivum plants’ vulnerability 
to the adverse effect of drought stress decreased the bacterial 
inoculation that assisted in the increased water usage effectiveness, 
maintaining cell membrane integrity and RWC in the infected plants’ 
shoot and root tissues. In addition, Setaria italica plants showed better 
growth under drought conditions due to treatment with Pseudomonas 
fluorescens, which increased soil moisture by colonizing both the root 
surface and the soil adhering to them (Niu et al., 2018). Besides, using 
Bacillus subtilis, a PGPR strain, enhanced the RWC in tomato plants 
and improved plant growth compared to untreated plants (Gowtham 
et al., 2020).

The plant-rhizobacterial interactions are researched to date to 
understand better the mechanisms implicated in PGPR-mediated 
osmotic stress tolerance. These bacterial associations significantly 
impact the formation of extracellular chemicals, increased food 
availability in the rhizosphere, and protection against abiotic 
challenges affecting plant growth. Accordingly, exopolysaccharides 
(EPS), volatile organic compounds (VOCs), and suitable osmolytes, 
which are produced by bacteria outside of their cells, operate as signal 
molecules for plant growth in challenging environments (Ma et al., 
2020; Kapadia et al., 2022; Khumairah et al., 2022; Sagar et al., 2022a). 
The EPS are highly hydrated organic polymers with fundamental 
defensive roles against abiotic stress during plant-microbe interactions 
(Sayyed et  al., 2015; Ahmad et  al., 2022). The EPS production is 
assumed to be  directly responsible for the regulation of water 
potential, aggregation of soil particles, ensures requisite 
communication between rhizobacteria and plant roots, resulting in 
the sustainability of the host under initial osmatic stress (Naseem 
et al., 2018; Ilyas et al., 2020).

Similarly, PGPR has been employed to successfully combat the 
severe impact of drought through uplifting the EPS production and 
also through rhizome-sheaths formation around the roots to guard 
against dehydration, thereby denoting the importance of 
EPS-producing PGPR in reducing the scarcity of water and improving 
global food security (Ahmad et al., 2022). The EPS-producing PGPR, 
including Agrobacterium spp., A. vinelandii, Rhizobium sp., 
R. leguminosaru, Bacillus drentensis, and Xanthomonas sp., are 
synergistically essential for nourishing the soil and supporting crop 
production under salinity stress (Mahmood et al., 2016). Likewise, Ma 
et al. (2020) have confirmed that the EPS-producing PGPR maintained 
soil aggregation, dehydration, and water potential, which are critical 
in improving nutrient uptake that directly correlates to enhancing 
plant growth. Nevertheless, relief of osmatic stress in plants mainly 
relies on the growth stage, intensity, and period of the stress and the 
efficiency of PGPR application to relieve osmotic stress. Therefore, it 
is important to identify the rhizobacteria that produce EPS to get over 
the adverse effect of drought and salt stress in crop plants.
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The VOCs are a mixture of low molecular weight volatile 
compounds produced by bacteria that possess antibacterial properties 
and other cross-talk interactions with the plant pathogens and their 
host (Tilocca et  al., 2020). These bacterial volatiles can alter the 
formation or dispersal of biofilms and alter bacterial motility, 
including ammonia, nitric oxide, hydrogen sulfide, trimethylamine, 
and 2-amino-acetophenone (Schulz-Bohm et al., 2017). Some bacteria 
produce VOCs, which can change how other bacteria behave, control 
the level of antibiotic resistance, and have antagonistic effects on other 
nearby bacteria in the rhizosphere. The emission of VOCs plays an 
intriguing signaling function during the association of microbes, and 
it is well observed that certain rhizobacterial species can secrete or 
emit VOCs as extracellular molecules, which can alleviate the osmotic 
stress originating due to drought and salt stress (Russo et al., 2022). 
Similarly, Vaishnav et al. (2015) have noted an improvement in the 
production of VOCs upon inoculation with the PGPR Pseudomonas 
simiae strain, which in turn improved the growth, enhanced proline 
and chlorophyll content in Glycine max seedlings and elicited the 
induced systemic tolerance against osmotic stress caused by salt stress 
condition. The microbial VOCs (acetoin being the main one) 
produced by Bacillus amyloliquefaciens were able to significantly alter 
the morphological characters that helped in the higher accumulation 
of total chlorophyll and also helped in the reduction in the ABA levels 
in Mentha piperita under salt stress when compared to uninoculated 
plants (Cappellari and Banchio, 2020). The VOCs produced from 
PGPR strains are the factors for triggering induced systemic tolerance 
in the plant against stressors. Similarly, the better exploitation of 
VOCs emitted from these rhizobacteria has been noted as the prime 
plant defense mechanism for regulating their growth and enhancing 
stress tolerance through interactions with the phytohormones (Sudha 
et al., 2022).

To lessen competition for nutrient resources and niche spaces, 
various bacteria excrete antimicrobial compounds (such as 
bacteriocins; Subramanian and Smith, 2015). The most numerous and 
varied class of the bacteria’s defense systems are the bacteriocins, 
which are antimicrobial peptides produced by ribosomal enzymes. 
The development of fruitful plant-microbe partnerships is controlled 
by a large number of bacteriocin-producing PGPR strains, which 
create a variety of bacteriocins and exchange them in the rhizosphere 
(Nazari and Smith, 2020; Shah et al., 2021). In the rhizosphere, the 
bacteriocins function as signaling molecules between microbes or 
between microbes and plants (Figure 4). When exposed to abiotic 
stress, it not only prevents rival microorganisms from occupying its 
niche but also physically widens the niche by enhancing plant growth, 
thereby acting as a biostimulant agent for the sustainable 
agricultural industry.

The maintenance of osmotic equilibrium and to have a better 
response to drought and salt stress, plants lose intracellular water, 
which leads them to amass appropriate osmolytes in the cytoplasm 
which include trehalose, proline, etc. (Gowtham et al., 2022). The 
PGPR increases the amassing of osmolytes in the host plant as a 
defense mechanism against osmotic stress in environmental stressors. 
Besides, these microbes manufacture osmolytes faster than the plants 
linked with them. The defense mechanism the PGPR uses to 
counteract the osmotic stress in environmental stresses involves the 
enhanced accumulation of osmolytes in the host plant. Moreover, 
osmolytes are more quickly produced by the PGPR than their 
associated plants as their inoculation in plants improves the 

production of osmolytes, which may be related to the roots absorbing 
bacterial solutes or de novo synthesis in plants (Ma et al., 2020). When 
exposed to salinity, osmolytes produced by PGPR can improve root 
hydraulic conductivity and water potential, which benefits the plant’s 
stomatal opening and transpiration rate (Ilangumaran and Smith, 
2017). Therefore, the accumulation of certain osmolytes has facilitated 
various plants to resist drought and salt stress in beneficial PGPR.

One of the compatible solutes a plant makes when its water supply 
is cut off is proline. It decreases the cells’ water potential and helps 
sustain turgor pressure, assuring the plant’s development, metabolism, 
and yield rate. Proline content is closely correlated with drought stress, 
and proline concentration is highly linked with stress intensity. Due 
to water constraints, cells with a high proline concentration maintain 
their water balance and membrane stability (Khan et al., 2021a,b). 
Therefore, evaluating the proline content is essential to determining 
how plants are sensitive and resistant to abiotic stressors. Among the 
several osmolytes, the increase of proline content within the bacteria 
amid osmotic stress has drawn much attention and the PGPR can also 
control how proline is expressed in plants. Glycine betaine is one of 
the well-known compatible osmolytes which help increase resistance 
to abiotic stresses (specifically drought and salt) by improving water 
status and protecting cell membranes from ROS (Khan et al., 2020; 
Sagar et al., 2020; Kusale et al., 2021a). In addition, glycine betaine has 

FIGURE 4

Mechanism of action of bacteriocins excreted by PGPR in abiotic 
stress resilience.
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been well documented to augment the plant defense mechanisms, 
including the osmotic balance, enzyme activities, and genes associated 
with the tolerance. The plants exposed to PGPR inoculation under 
drought and salinity conditions exhibited a more significant 
accumulation of glycine betaine content as a major factor in reduced 
water loss. The higher glycine betaine content was noticed in drought-
stressed Z. mays plants inoculated with Pseudomonas spp. than in 
untreated plants (Sandhya et al., 2010). Pseudomonas putida and other 
rhizobia have been reported to mitigate drought stress in wheat (Najafi 
et al., 2021; Tanvere et al., 2023). Choline is another crucial osmolyte 
produced from glycine betaine accumulation to cope with drought 
stress. Studies have demonstrated that the microbial populations in 
the soil contribute significantly to the buildup of choline, a precursor 
to the metabolism of glycine betaine (Ghosh et al., 2021).

Trehalose is a non-reducing sugar that protects against extreme 
abiotic stress, like salt and drought, by stabilizing sugar glasses, 
vitrifying sugar molecules, and acting as a xeroprotectant in plant and 
bacterial cells (Ahmad et  al., 2023). Trehalose helps plants to 
communicate because it can keep the osmotic balance in their cells 
and protect the biological structures from damage during desiccation. 
The stress tolerance signal pathway can be established by applying 
even a small quantity of trehalose to the plant roots. Trehalose 
promotes the survivability of PGPR and other biocontrol agents when 
they are commercially formulated and stored for longer durations, 
besides boosting the competence of these microbes in the root regions 
and rendering a hand in the resistance against abiotic stresses. 
Azospirillum brasilense inoculation of Z. mays plants results in the 
conferment of drought resistance and a significant enhancement of 
root and leaf biomass (Rodríguez-Salazar et al., 2009).

Polyamines are the low molecular weight aliphatic amines, which 
play the complex role as an osmolyte associated with plant growth 
promotion which is subjected to abiotic stress response by accelerating 
the function of enzymes and genes involved in the antioxidant 
defensive system and ROS homeostasis (Chen et al., 2019). The three 
primary polyamines found in plants like, spermine, spermidine, and 
putrescine, are also crucial in how they react to biotic and abiotic 
stressors. Exogenous polyamines have been shown to increase drought 
and salinity tolerance, but further study is needed to comprehend how 
polyamines released by the PGPR ultimately affect plants. Under 
osmotic stress, Oryza sativa seedlings accumulated polyamines due to 
the inoculation of A. brasilense (Cassán et al., 2009). The spermidine 
secreted by the beneficial rhizobacterium Bacillus amyloliquefaciens 
reduced the impact of oxidative damage, decreased the toxicity of Na+, 
and ABA accumulation in Z. mays was inhibited, thereby resulting in 
the improvement of plant salt sensitivity (Chen et  al., 2017). The 
regulation of endogenous free polyamines in plants by the PGPR 
under water and salt stress was found to elevate the antioxidant 
defense capacity and encourage the expression of genes linked 
to antioxidants.

4.3. Balancing oxidative stress

Oxidative stress is critical for plants due to the large amounts of 
ROS produced in the membranes, which, under abiotic stress, can 
result in severe denaturation of protein, DNA mutation, and 
membrane lipid peroxidation (Chaves and Oliveira, 2004). PGPR 
employment can suppress the oxidative stress level by balancing the 

level of phytohormones, maximizing the activities of antioxidants and 
production of osmoprotectants, and correcting ion imbalance in 
plants grown under water deficit and salinity (Batool et al., 2020). The 
phytohormones are endogenous substances with a lower molecular 
weight that efficiently trigger the immune system’s response to biotic 
and abiotic stresses. Due to these abiotic stressors, the plants produce 
many hormones that include indoleacetic acid (IAA), ethylene, and 
abscisic acid (ABA), which aid the plant’s defense system (Ma et al., 
2020). These hormones alter the metabolism, morphology, and other 
systems of plants. Bacterial hormone production and its ability to 
activate endogenous hormones are essential for increasing drought 
tolerance (Singh and Jha, 2017; Jochum et al., 2019). Furthermore, soil 
bacteria could directly impact plants’ hormonal equilibrium by 
generating exogenous phytohormones. As a result, it is believed that 
alterations in hormone signaling, mediated by interactions between 
plants and microbes, are a likely mechanism for causing plants to 
tolerate drought and soil salinity (Hariprasad et al., 2021).

One of the main auxins, the IAA is physiologically crucial for the 
growth and development of plants as it is involved in cell division, 
structure of xylematic vessels, root branching, root elongation, 
differentiation of vascular tissues, phototropism, gravitropism, and 
plant tolerance to adverse environmental conditions. The IAA may 
have positive benefits when present in the optimum concentrations, 
but too much of this auxin can harm the plants in adverse 
environmental conditions. Multiple studies have shown that 
exogenous IAA typically applied to plants decreased drought and salt 
stress by controlling the photosynthetic rate, the effectiveness of water 
usage, and Na+ buildup (Desoky et al., 2020). The higher auxin level 
may help maintain plant growth, especially roots and leaves, as these 
are the significant elements that serve in their better resistance under 
an abiotic stress environment. The IAA production from soil bacteria 
is widespread and originates from many taxonomic groups (Gowtham 
et al., 2017).

Some PGPR produces IAA by converting L-tryptophan using 
several biosynthetic pathways (Ahmad et al., 2020). These pathways 
involve intermediates such as indole-3-acetamide (IAM), indole-3-
acetaldoxime (IAOx), indole-3-pyruvic acid (IPyA), and tryptamine 
(TAM). The four biosynthetic pathways leading to IAA production 
from L-tryptophan in bacteria include (i) IAM pathway wherein 
L-tryptophan is first converted into indole-3-acetamide (IAM) 
through the action of the enzyme tryptophan decarboxylase which 
gets transformed into IAA by the action of amidase enzymes; (ii) IAOx 
pathway in which L-tryptophan is first converted into IAOx through 
the action of tryptophan-2-monooxygenase and subsequently into 
IAA by the action of the enzyme indole-3-acetaldoxime hydrolase; 
(iii) IPyA pathway where L-tryptophan is first converted into IPyA 
through the action of tryptophan aminotransferase and then 
converted into IAA by the action of the enzyme indole-3-pyruvate 
decarboxylase and (iv) TAM pathway that includes conversion of 
L-tryptophan into TAM primarily through the action of tryptophan 
decarboxylase and subsequently into IAA by the action of the enzyme 
tryptamine 5-hydroxylase. The pathways mentioned above may 
be found in various bacteria that can produce IAA from L-tryptophan 
to impact plant growth promotion. However, the tryptophan-
independent pathway for IAA production has been described in 
Azospirillum brasilense, wherein the bacterium could produce IAA 
without relying on an exogenous tryptophan supply (Prinsen et al., 
1993). In addition, the enzymes that are participatory in the 
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tryptophan-independent pathway have not been identified yet. It is 
important to note that not all bacteria can synthesize IAA, irrespective 
of the pathways identified. Plant roots may uptake IAA synthesized by 
bacteria, thereby increasing the inherent plant pool. Enhanced IAA 
generally stimulates plant growth, suppressed when their 
accumulation is elevated. The PGPR-producing IAA improves root 
system architecture, increases water permeability into cells, increases 
leaf uptake, and regulates metabolic homeostasis to mediate abiotic 
stress tolerance. Moreover, IAA-producing PGPR is found to alleviate 
the agricultural production losses that result due to drought and 
salinity stress.

Commonly referred to as a “plant stress hormone” ethylene plays 
a part in several biological processes in plants, including the ripening 
of fruits, flowering, seed germination, leaf abscission, and tissue 
differentiation, and also manages elongation and branching of roots 
(Shekhawat et al., 2023). However, under biotic and abiotic stressors, 
a substantial amount of ethylene is produced within the plants, which 
limits the growth of the root, shoot, and leaf, resulting in plant growth 
restriction (Brijesh Singh et  al., 2019; Murali et  al., 2021a). The 
precursor molecule of ethylene, 1-aminocyclopropane-1-carboxylate 
(ACC), is produced by involving ACC synthase as the first step of its 
synthesis, and ACC oxidase then transforms ACC into ethylene. The 
rhizobacteria can considerably produce ACC deaminase, which 
converts ACC into α-ketobutyrate and ammonia. By preventing the 
production of ACC and ethylene, the PGPR impacts the plant’s 
ethylene cycle (Gowtham et al., 2020; Murali et al., 2021b). Thus, the 
levels of ethylene inside plants did not rise to the levels detrimental to 
plant growth. The scientific literature showed the effectiveness of 
PGPR in producing ACC deaminase enzyme, which can significantly 
promote plant development and enhance plants’ ability to tolerate 
ethylene generated under salt or drought stress by lowering the ACC 
produced by the plants and maintaining the same at appropriate levels. 
It is well known that the bacterial-produced ACC deaminase is linked 
to the ability of many crops to withstand salt and drought stress 
(Chandra et al., 2019; Danish et al., 2020).

By reducing levels of stress-induced ethylene and minimizing 
related growth inhibition, the PGPR containing ACC deaminase may 
be able to lessen the impacts of stress and increase plant growth under 
these conditions. Similarly, S. lycopersicum and Z. mays treated with 
ACC deaminase-producing B. subtilis and Achromobacter 
xylosoxidans, respectively, were able to protect the plants from 
drought-induced oxidative damage by regulating plant ethylene levels 
(Danish et  al., 2020; Gowtham et  al., 2020; Sagar et  al., 2022b). 
Moreover, some PGPR are known for their mutual production of IAA 
and ACC deaminase under adverse environmental conditions by 
promotion of cell division and root growth (by IAA) and hydrolyzation 
of excess amount of ACC and ethylene (by ACC deaminase) apart 
from improving the plant growth. The synergistic effects of bacterial 
IAA and ACC deaminase will help the plant to withstand adverse 
environmental conditions. However, the additional PGPR plant-
beneficial characteristics, including the production of IAA and 
osmoprotectant molecules, are closely attributed to bacterial ACC 
deaminase activity (Sagar et al., 2020).

The ABA is a stress-related phytohormone primarily produced to 
defend plants against drought and salt stress. Under stress, the ABA 
can be transported from the roots to the leaves. Numerous PGPR act 
as plant ABA content modulators and can alter ABA levels in plants, 
allowing for the regulation of salt and drought stress. According to 

studies, PGPR treatments raised the levels of ABA in plants. According 
to Cohen et al. (2009), ABA-producing Azospirillum lipoferum strains 
can still protect Z. mays plants from the osmotic damage caused by 
drought stress. According to Salomon et al. (2014), ABA-producing 
Pseudomonas and Bacillus strains operate as stress relievers and aid 
Vitis vinifera plants in dealing with drought stress by promoting ABA 
production and thereby reducing the rate of plant water loss. In this 
regard, the evidence generally suggests that the PGPR capable of 
producing ABA is considerably utilized for abiotic stress management 
in plants.

The PGPR not only produce phytohormones but also fix nitrogen, 
sequester iron-chelators (siderophores), and solubilize phosphate for 
the plants, enhancing their capacity to absorb soil nutrients and 
reduce the adverse effects of salt stress and drought (Raheem et al., 
2018; Gontia-Mishra et al., 2020). The Dissimilatory Nitrate Reduction 
to Ammonium (DNRA) is a microbial process (anaerobic respiration) 
that involves the reduction of nitrate (NO3

−) to ammonium (NH4
+), 

and the process occurs in certain bacteria, including some saprophytic 
bacteria like Bacillus and others (Sun et al., 2016; Liu et al., 2021). The 
saprophytic bacterium takes nitrate (a common form of nitrogen 
available) from their environment and is enzymatically reduced to 
nitrite (NO2

−) inside the bacterial cells. Further reduction of nitrite 
occurs, leading to the formation of intermediates like nitric oxide 
(NO) and eventually nitrous oxide (N2O) is an essential step in the 
DNRA process. The nitric oxide (NO) and/ or nitrous oxide (N2O) are 
further enzymatically reduced to ammonium (NH4

+) which can 
be used as a nitrogen source for the growth and metabolism of the 
bacteria (Sun et al., 2016). Overall, the DNRA process helps certain 
saprophytic bacteria to obtain energy by using nitrate as a terminal 
electron acceptor under anaerobic conditions and plays a significant 
role in the cycling of nitrogen compounds and affects the availability 
of nitrogen to the host plant. It is important to note that not all 
bacteria can perform DNRA, as it depends on their specific metabolic 
pathways and the presence of relevant enzymes. The DNRA activities 
are prevalent in many bacteria, such as Shewanella loihica, 
S. oneidensis, and S. putrefaciens, which harbor competing 
dissimilatory nitrate reduction pathway with the periplasmic nitrate 
reductase (Nap) genes (nrfA, nirS, and nirK) required for the first 
step of nitrate reduction (Nojiri et al., 2020; Liu et al., 2021). The 
rhizobacterial strains which accomplish the dissimilatory nitrate 
ammonification exhibit the sequential reduction of nitrate to nitrite 
and subsequently to ammonium under anaerobic conditions. 
Therefore, the relative contribution of DNRA activities of rhizobacteria 
plays an important role in plant growth, nitrogen balance, and even 
climate change.

The availability of essential nutrients, including nitrogen, is 
necessary for plant growth and productivity. The nitrogen-fixing 
bacteria are crucial for biological nitrogen fixation under abiotic 
stresses (Jabborova et  al., 2021). An enzyme nitrogenase complex 
present in bacteria is responsible for the nitrogen-fixation mechanism. 
These bacteria have the regulation of nitrogenase genes, which are 
necessary for nitrogen fixation as well as the synthesis and regulation 
of enzymes. The halo-tolerant PGPR possessing the potential to 
absorb the nitrogen will considerably improve the K+/ Na+ ratio by 
inhibiting Na+ uptake and elevating K+ and Ca2+ in salt-sensitive plants 
such as Glycine max and Triticum aestivum (Desoky et  al., 2020; 
Hasanuzzaman et  al., 2022). The PGPR controls the exchange of 
micro- and macro-nutrients, which decreases the buildup of Na+ and 
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Cl− ions. The use of specific bacteria is to enhance nutrient availability 
and improve the nutrient content of plants, particularly in terms of 
zinc uptake and accumulation in the rhizosphere. In this context, 
certain bacteria, especially zinc-solubilizing and zinc-accumulating 
bacteria, play a crucial role in increasing zinc availability and uptake 
by plants (Yadav et al., 2022). Iron deficiency is the primary constraint 
inducing plant chlorosis, eventually impacting crop quality and 
productivity (Han et al., 2022). Siderophores are the small organic 
compounds produced by some gramineous plants and microbes in 
iron-deficient environments, allowing plants to absorb iron from their 
surroundings even when there is less iron (Saha et al., 2016). Under 
unfavorable conditions, the siderophores are crucial for 
phytostabilization, offer metal coalescence, enhance plant 
development, and lower soil metal bioavailability. The pathogen is 
depleted of essential iron due to the formation of siderophores that 
firmly attach to soil Fe3+. By increasing the amount of iron in the 
environment, PGPR like Azotobacter vinelandii, Bacillus spp., and 
Pseudomonas sp. use siderophores produced to fulfill their requisite 
iron requirements in the rhizosphere (Ferreira et al., 2019). It was 
observed that the siderophores produced by PGPR are gaining more 
attention due to their function as iron chelators and their advantage 
over the application of synthetic chelating agents in terms of 
biodegradability. The usage of siderophores is practically limited in 
agriculture due to their complex structure and difficulty in production 
with low yield.

Under abiotic conditions like drought, salt, etc., the plants 
typically experience a nutritional shortfall due to a lack of phosphorus, 
which is primarily found in the soil in both organic and inorganic 
forms (Bechtaoui et  al., 2021). Plants’ insoluble phosphorus 
contributes to the phosphorous deficit, yet plants can only take up 
phosphorous as monobasic and dibasic ions. Plants may benefit from 
the phosphorus-solubilizing bacteria that can assist them with water 
shortages and overcome the limited phosphorus availability to plant 
systems in rhizospheric soil (Kour et al., 2020). Phosphate-solubilizing 
bacteria like Serratia, Azotobacter, Bacillus, Burkholderia, Enterobacter, 
Erwinia, Flavbacterium, Microbacterium, and Rhizobium can 
be  employed as biofertilizers. Rhizobacteria can solubilize the 
inorganic phosphorus that the plants cannot absorb, aiding plant 
development (Munir et al., 2022). The improvement of agricultural 
production is achieved by PGPR-mediated phosphate-dependent 
regulation under abiotic stress conditions, while the phosphorus 
solubilization might be attributed to the synthesis of organic acids by 
the PGPR at the rhizosphere (Kour et al., 2019).

The overproduction of ROS typically brought on by drought and 
salt stress damages normal cell metabolism by causing oxidative 
damage to DNA, lipids, and membrane proteins (Hasanuzzaman 
et al., 2022). Malondialdehyde (MDA), a lipid peroxidation marker 
that also serves as an oxidative stress marker, is frequently referred to 
as MDA. According to earlier research, beneficial bacteria can help 
plants develop under drought stress by lowering MDA levels, avoiding 
ROS buildup, and stimulating antioxidant enzyme activities (Abdelaal 
et al., 2021; Murali et al., 2021b). Plants use the principal enzymatic 
ROS scavenging system to reduce high ROS levels to protect 
themselves from oxidative stress. Salt-stressed Glycine max plants have 
higher levels of antioxidant enzymes (such as GSH and SOD) after 
being inoculated with halotolerant rhizobacterial strains (Khan 
A. et al., 2019; Hasanuzzaman et al., 2022). Soil bacteria activate the 

antioxidant system to improve cell membrane stability, increasing 
drought resistance. The PGPR regulates the antioxidant enzyme 
activity to prevent oxidative damage due to drought stress. The 
expression of antioxidant genes was increased after PGPR application, 
which enhanced the activities of antioxidant enzymes. Superoxide was 
reduced by the increased enzyme activity, which also shielded the 
chloroplast from ROS impact. According to Zhang et  al. (2020), 
ACC-deaminase-producing bacterial-treated Ziziphus jujuba plants 
significantly reduced the MDA level by enhancing the activity of 
antioxidant enzymes (POD and SOD) compared to non-inoculated 
plants with increased water stress. ACC deaminase-producing 
B. subtilis-treated plants can boost APX and SOD activity by lowering 
MDA and H2O2 contents compared to control plants cultivated in 
extreme drought conditions (Gowtham et al., 2020). Accordingly, it 
can be  deduced from the literature that PGPR treatment boosted 
enzyme activities and decreased the MDA level under water stress by 
increasing the plant’s capacity for scavenging and controlling the 
expression of antioxidant genes.

Gene expression research can be  used to compare and 
comprehend how an organism responds to its surroundings. Recent 
studies using molecular methods have examined how genes are 
expressed under drought stress in relation to PGPR-induced tolerance 
(Ghosh et al., 2019; Gowtham et al., 2022). Each PGPR has a unique 
gene set that enables it to respond in various protective ways to the 
damaging impacts of abiotic stressors like salinity and drought. A 
number of PGPR can change a plant’s gene expression, increasing the 
output of stress-protective substances such ROS detoxifying enzymes 
and osmolytes. IAA secretion (iaaM), nitrogen fixation (nifU), 
phenazine (phzCEF), siderophore (sbnA), and spermidine (speB) 
production are among the functional genes found in the PGPR that 
have been linked to plant growth promotion as well as stress tolerance 
(Xiong et  al., 2019). Khan A. et  al. (2019) have shown that the 
expression of soybean salt tolerance 1 (GmST1) and IAA-mediating 
(GmLAX3) genes was found to be upregulated upon the inoculation 
with the halo tolerant rhizobacterial strains in salt-stressed Glycine 
max plants. The PGPR inoculation can also cause the up-regulation 
of proteins associated with phosphatase activity related to 
phosphate solubilization.

4.4. Regulation of ion homeostasis

When the influx of ions exceeds the exclusion rate, salinity 
accumulates hazardous Na + and Cl − concentrations within leaves. 
Initially, the plants compartmentalize the excess salts in vacuoles to 
prevent their buildup in the cytosol and intracellular spaces, impeding 
respiration and photosynthesis. The ability of the soil bacteria to 
sustain ion homeostasis must be advantageous for plant development 
and salinity tolerance. By ensuring a high K+/Na+ ratio, the PGPR can 
control the homeostasis of hazardous ions. It reduces the buildup of 
Na+ and Cl−in leaves, boosts ion exclusion from root cells, activates 
the development of ion transporters, and controls the exchange of 
micro- and macro-nutrients (Kusale et  al., 2021b). The plasma 
membrane-bound proteins known as high-affinity K+ transporters 
(HKTs) mediate Na+ transportation in plants and prevent excessive 
Na+ ion concentrations from building up in the shoots by preventing 
them from reaching the roots. The inoculation of rhizobacteria 
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influences the expression of several ion affinity transporters that help 
maintain cellular ion homeostasis in salt-stressed plants, which 
requires tissue-specific regulation of the HKT genes during plant-
microbe interactions. It has been reported that rhizobacterial 
inoculation controls the expression of various ion affinity transporters. 
The tissue-specific regulation of HKT genes is essential in plant-
microbe interactions for maintaining cellular ion homeostasis in salt-
stressed plants. Salt overload sensitive (SOS) genes and other enzymes 
that play a role as sodium antiporters can help plants adapt to salt 
stress. By decreasing the concentration of the ion Na+ and increasing 
the absorption of K+ion in salt-stressed Glycine max plants, the 
introduction of halotolerant rhizobacterial strains preserved the 
osmotic equilibrium (Khan M. A. et  al., 2019). Microorganisms 
produced during EPS synthesis protect plants from harmful ion 
absorption. They act as a physical barrier that guards against ion 
toxicity and safeguards the root system. The EPS can attach to cations 
like Na+, making it impossible for plants to absorb in 
saline surroundings.

5. Cry for help

Filed research in plant-microbe interactions has shown that the 
composition and diversity of the microbial community in the 
rhizosphere play a crucial role in the plant’s ability to withstand 
stress. Indeed, the “Cry for Help” concept is a significant aspect of 
microbial recruitment in the plants’ rhizosphere under abiotic and 
biotic stresses. During their lifecycle, plants encounter various stress, 
such as drought, salinity, pathogen attack, or nutrient deficiency, 
wherein plants release specific chemical signals, known as VOCs, 
root exudates, or other chemical signals, into the rhizosphere. These 
exudates serve as a salt overly sensitive signal to attract beneficial 
microbes that can aid the plant in mitigating the stress and 
improving overall growth and health. The process of attraction 
through these chemical signals is called microbial recruitment. 
Several functions are attributed to the recruited microbes in the 
rhizosphere, including enhanced nutrient acquisition, pathogen 
suppression, plant growth promotion, and abiotic stress tolerance. 
Several key points are essential in understanding the concept of Cry 
for Help in microbial recruitment in the rhizosphere, like chemical 
signaling, microbial diversity, mutualistic relationships, enhanced 
stress tolerance, and induced systemic resistance (ISR). The study of 
Cry for Help and microbial recruitment in the rhizosphere is 
essential for understanding the complex interactions between plants 
and microbes. It has implications for sustainable agriculture and 
environmental management. By harnessing the power of beneficial 
microbes, it may be possible to develop strategies to enhance plant 
resilience to various stresses and reduce the reliance on chemical 
inputs in agriculture.

6. Key challenges and multi-omics 
approach

Several key challenges need to be addressed before widespread 
adoption and successful commercialization can be achieved through 
PGPR by ensuring consistent and reliable results across different 

crops and environments. Successful integration of PGPR into 
existing conventional agricultural practices is essential as it is prone 
to specific challenges, which include (i) the maintenance of viability 
and activity of the bacteria during storage to achieve desired results 
in the field; (ii) compatibility with other agricultural inputs, such as 
fertilizers and pesticides to avoid any negative interactions; (iii) 
obtaining regulatory approval for the commercial use of PGPR 
products can be time-consuming and costly as they need to ensure 
the efficacy of these products for environmental safety, non-toxic to 
humans and animals and deliver the claimed benefits (Table  3). 
Raising awareness for the farming community, providing training, 
and offering technical support are essential for successfully adopting 
these products. To be  widely adopted, these products must 
demonstrate clear economic benefits that outweigh their costs. 
While PGPR can be environmentally friendly compared to certain 
chemical fertilizers and pesticides, it is crucial to assess the long-
term effects of PGPR application on soil health and microbial 
communities. Scaling up the production of PGPR products to meet 
the demand of commercial agriculture can be  challenging. 
Establishing an efficient distribution network to reach farmers 
globally is crucial for successful commercialization. Therefore, 
addressing these challenges will require continued research, 
collaboration between researchers and industry, and efforts to create 
awareness and understanding among farmers and stakeholders.

Enhancing the application of PGPR under stressful conditions is 
a promising avenue for sustainable agriculture, and tailoring PGPR 
formulations and applications to specific stress types requires a deeper 
understanding of stress-specific mechanisms. Transcriptomics, 
proteomics, and metabolomics can be employed to analyze the plant-
PGPR interaction under particular stress conditions. Integrating these 
omics data can provide insights into the stress-responsive genes, 
proteins, and metabolites involved, thereby facilitating the 
development of stress-tailored PGPR products. Not all PGPR strains 
exhibit the same level of stress tolerance, limiting their effectiveness 
under harsh conditions, and the application of genomics and 
metagenomics can help identify stress-tolerant PGPR strains from 
diverse microbial communities in the rhizosphere. In addition, 
metatranscriptomics and metaproteomics can assess changes in the 
gene expression and protein profiles of PGPR under stress. The above 
knowledge can guide the development of stress-adaptive PGPR 
formulations that maintain activity and viability during adverse 
conditions. The signaling pathways between PGPR and plants are 
complex and can be altered under stress, affecting communication and 
beneficial outcomes.

Similarly, phosphoproteomics and epigenomics can help unravel 
the changes in signaling pathways between PGPR and plants under 
stress. Understanding these modifications can enable the fine-tuning 
of PGPR formulations to enhance crop stress tolerance and growth 
promotion. Further, stress conditions will alter the soil microbial 
community, potentially influencing the interaction between PGPR 
and other microorganisms, and these changes can be assessed through 
metagenomics and 16S rRNA sequencing. Translating lab-scale 
findings to field conditions can be challenging, and monitoring PGPR 
performance in large-scale agricultural practice is essential for their 
practical applications. Besides, remote sensing technologies, combined 
with transcriptomics and metabolomics analyses of plant samples 
from various field sites, can enable real-time monitoring of 
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PGPR-mediated responses under diverse stressful conditions. This 
integrated approach can help optimize PGPR application strategies for 
different crops and environments. By addressing these key challenges 
through multi-omics approaches, we can enhance the commercial 
application of PGPR under stressful conditions and unlock their full 
potential in sustainable agriculture.

7. Conclusion

In an era marked by climate unpredictability and the ever-
increasing demand for agricultural productivity, harnessing the 
power of beneficial microbes like PGPR is emerging as a pivotal 

approach to enhance plant stress resilience. The review highlights 
the salient strategies and recent advancements in manipulating 
PGPR to combat the detrimental effects of stress on crop plants. 
Recent research underscores the role of PGPR in modulating root 
architecture that enable plants to explore a larger soil volume, 
deeper resources and establish a more efficient nutrient and water 
absorption system. The synergy between PGPR and plants is 
increasingly recognized as a powerful mechanism for stress 
mitigation wherein the partnership enhances nutrient uptake and 
bolsters the plant’s ability to withstand adverse conditions. 
Emerging technologies like the multi-omics approach and 
synthetic biology hold promise for tailoring PGPR strains and 
optimizing their performance in addition to integrating PGPR into 

TABLE 3 Multi-omics approaches associated in combating abiotic stress in plants upon application of PGPR.

PGPR strain Multi-omics approach Advancements and findings References

Pseudomonas spp.

Genomics
Identification of stress-responsive genes in P. fluorescens for drought and 

salt tolerance
Cho et al. (2015); Saakre et al. (2017)

Transcriptomics
Characterization of plant gene expression changes in response to the 

PGPR under drought and salt stress

Mellidou et al. (2021); Nishu et al. 

(2022)

Metabolomics Profiling of metabolites involved in salt stress mitigation by the PGPR Mellidou et al. (2021)

Functional validation
CRISPR-Cas9 knockout of candidate genes to validate the role of PGPR 

in salt stress tolerance
Chauhan et al. (2022)

Bacillus spp.

Proteomics Identification of salt stress-related proteins produced by Bacillus sp. Zhao et al. (2022)

Transcriptomics
Examination of plant gene expression changes in response to the PGPR 

under salt stress
Akbar et al. (2022)

Metagenomics
Analysis of the rhizosphere microbiome and its interaction with B. 

subtilis for drought tolerance
No et al. (2022)

Metabolomics
Elucidation of metabolic pathways influenced by Bacillus sp. in salt 

stress condition
Zhao et al. (2022)

Azospirillum spp.

Epigenomics
Study of DNA methylation patterns in the presence of A. brasilense in 

response to abiotic stresses
Lephatsi et al. (2021)

Metagenomics
Studying metagenomics to explain plant growth promoting 

mechanisms of A. lipoferum in drought stress
No et al. (2022)

Comparative genomics Comparison of A. brasilense genomes to identify stress-related genes Wiggins et al. (2022)

Integrative analysis
Systems biology modeling of A. brasilense-plant interactions under salt 

stress
Zuluaga et al. (2022)

Enterobacter spp.
Proteomics

Investigation of differential expressed proteins in inducing plant 

tolerance to salt stress upon E. cloacae inoculation
Singh et al. (2017)

Comparative genomics Studying the alleviation of salt stress by Enterobacter sp. Kim et al. (2014)

Rhizobium spp.

Transcriptomics
Differential drought stress-related gene expression in plants due to 

inoculation of R. leguminosarum

Jiménez-Guerrero et al. (2018); 

Barquero et al. (2022)

Functional validation
RNAi-mediated silencing of specific genes to assess the role of R. 

leguminosarum in salt stress resistance
Dong et al. (2013)

Arthrobacter spp.

Metabolomics
Identification of metabolites produced by Arthrobacter under salt stress 

condition
Khan et al. (2021a,b)

Metagenomics
Studying metagenomics to explain plant growth promoting 

mechanisms of A. chlorophenolicus in drought stress
No et al. (2022)

Comparative genomics
Comparative analysis of Arthrobacter sp. genomes to find stress-related 

genes under drought stress
Chhetri et al. (2022)

Transcriptomics
Studying to understand how Arthrobacter sp. adapts its metabolism in 

response to PEG-induced drought stress
Gabriel et al. (2022)
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precision agriculture systems, leading to more targeted and 
efficient stress management. In conclusion, the symbiotic 
relationship between PGPR and plants offers an exciting avenue for 
agricultural sustainability in the face of mounting environmental 
challenges. By strategically selecting and applying PGPR strains 
alongside complementary stress management practices, we can 
empower crops to thrive in stressed environments. These strategies 
and innovations might be explored in plant-microbe interactions 
as we  move closer to a future where resilient crops stand as a 
safeguard against the uncertainties of climate change and global 
food security.
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